1
|
Handoko, Adham M, Rachmadi L, Wibowo H, Gondhowiardjo SA. Cold Tumour Phenotype Explained Through Whole Genome Sequencing in Clinical Nasopharyngeal Cancer: A Preliminary Study. Immunotargets Ther 2024; 13:173-182. [PMID: 38524775 PMCID: PMC10959245 DOI: 10.2147/itt.s452117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Nasopharyngeal cancer (NPC) is a complex cancer due to its unique genomic features and association with the Epstein-Barr virus (EBV). Despite therapeutic advancements, NPC prognosis remains poor, necessitating a deeper understanding of its genomics. Here, we present a comprehensive whole genome sequencing (WGS) view of NPC genomics and its correlation with the phenotype. Methods This study involved WGS of a clinical NPC biopsy specimen. Sequencing was carried out using a long read sequencer from Oxford Nanopore. Analysis of the variants involved correlation with the phenotype of NPC. Results A loss of genes within chromosome 6 from copy number variation (CNV) was found. The lost genes included HLA-A, HLA-B, and HLA-C, which work in the antigen presentation process. This loss of the major histocompatibility complex (MHC) apparatus resulted in the tumour's ability to evade immune recognition. The tumour exhibited an immunologically "cold" phenotype, with mild tumour-infiltrating lymphocytes, supporting the possible etiology of loss of antigen presentation capability. Furthermore, the driver mutation PIK3CA gene was identified along with various other gene variants affecting numerous signaling pathways. Discussion Comprehensive WGS was able to detect various mutations and genomic losses, which could explain tumour progression and immune evasion ability. Furthermore, the study identified the loss of other genes related to cancer and immune pathways, emphasizing the complexity of NPC genomics. In conclusion, this study underscores the significance of MHC class I gene loss and its probable correlation with the cold tumour phenotype observed in NPC.
Collapse
Affiliation(s)
- Handoko
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Marlinda Adham
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Otorhinolaryngology - Head and Neck Surgery Department, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Lisnawati Rachmadi
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Heri Wibowo
- Integrated Laboratory, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Soehartati A Gondhowiardjo
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Bugbee T, Gathoni M, Payne C, Blubaugh M, Matlock K, Wixson T, Lu A, Stancic S, Chung PA, Palinski R, Wallace N. Inhibition of p300 increases cytotoxicity of cisplatin in pancreatic cancer cells. Gene 2023; 888:147762. [PMID: 37666373 PMCID: PMC10563798 DOI: 10.1016/j.gene.2023.147762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Pancreatic cancer is a notoriously deadly disease with a five-year survival rate around 10 percent. Since early detection of these tumors is difficult, pancreatic cancers are often diagnosed at advanced stages. At this point, genotoxic chemotherapeutics can be used to manage tumor growth. However, side effects of these drugs are severe, limiting the amount of treatment that can be given and resulting in sub-optimal dosing. Thus, there is an urgent need to identify chemo-sensitizing agents that can lower the effective dose of genotoxic agents and as a result reduce the side effects. Here, we use transformed and non-transformed pancreatic cell lines to evaluate DNA repair inhibitors as chemo-sensitizing agents. We used a novel next generation sequencing approach to demonstrate that pancreatic cancer cells have a reduced ability to faithfully repair DNA damage. We then determine the extent that two DNA repair inhibitors (CCS1477, a small molecule inhibitor of p300, and ART558, a small molecule inhibitor of polymerase theta) can exploit this repair deficiency to make pancreatic cancer cells more sensitive to cisplatin, a commonly used genotoxic chemotherapeutic. Immunofluorescence microscopy and cell viability assays show that CCS1477 delayed repair and significantly sensitized pancreatic cancer cells to cisplatin. The increased toxicity was not seen in a non-transformed pancreatic cell line. We also found that while ART558 sensitizes pancreatic cancer cells to cisplatin, it also sensitized non-transformed pancreatic cancer cells.
Collapse
Affiliation(s)
- Taylor Bugbee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mary Gathoni
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Carlie Payne
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Morgan Blubaugh
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Kaydn Matlock
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Taylor Wixson
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Andrea Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Steven Stancic
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Peter A Chung
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Rachel Palinski
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Wendel S, Wallace NA. Interactions among human papillomavirus proteins and host DNA repair factors differ during the viral life cycle and virus-induced tumorigenesis. mSphere 2023; 8:e0042723. [PMID: 37850786 PMCID: PMC10732048 DOI: 10.1128/msphere.00427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
This review focuses on the impact of human papillomavirus (HPV) oncogenes on DNA repair pathways with a particular focus on how these relationships change as productive HPV infections transition to malignant lesions. We made specific efforts to incorporate advances in the understanding of HPV and DNA damage repair over the last 4 years. We apologize for any articles that we missed in compiling this report.
Collapse
Affiliation(s)
- Sebastian Wendel
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
| | | |
Collapse
|
4
|
Romero-Masters JC, Muehlbauer LK, Hayes M, Grace M, Shishkova E, Coon JJ, Munger K, Lambert PF. MmuPV1 E6 induces cell proliferation and other hallmarks of cancer. mBio 2023; 14:e0245823. [PMID: 37905801 PMCID: PMC10746199 DOI: 10.1128/mbio.02458-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Laura K. Muehlbauer
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Evgenia Shishkova
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Hu C, Bugbee T, Palinski R, Akinyemi IA, McIntosh MT, MacCarthy T, Bhaduri-McIntosh S, Wallace N. Beta human papillomavirus 8E6 promotes alternative end joining. eLife 2023; 12:e81923. [PMID: 36692284 PMCID: PMC9897725 DOI: 10.7554/elife.81923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.
Collapse
Affiliation(s)
- Changkun Hu
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Taylor Bugbee
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Rachel Palinski
- Veterinary Diagnostic Laboratory, Kansas State UniversityManhattanUnited States
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
| | - Thomas MacCarthy
- Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony BrookUnited States
| | - Sumita Bhaduri-McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Nicholas Wallace
- Division of Biology, Kansas State UniversityManhattanUnited States
| |
Collapse
|
6
|
Transcription Properties of Beta-HPV8 and HPV38 Genomes in Human Keratinocytes. J Virol 2022; 96:e0149822. [PMID: 36394329 PMCID: PMC9749460 DOI: 10.1128/jvi.01498-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Persistent infections with high-risk human papillomaviruses (HR-HPV) from the genus alpha are established risk factors for the development of anogenital and oropharyngeal cancers. In contrast, HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer (cSCC) in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Keratinocytes are the in vivo target cells for HPV, but keratinocyte models to investigate the replication and oncogenic activities of beta-HPV genomes have not been established. A recent study revealed, that beta-HPV49 immortalizes normal human keratinocytes (NHK) only, when the viral E8^E2 repressor (E8-) is inactivated (T. M. Rehm, E. Straub, T. Iftner, and F. Stubenrauch, Proc Natl Acad Sci U S A 119:e2118930119, 2022, https://doi.org/10.1073/pnas.2118930119). We now demonstrate that beta-HPV8 and HPV38 wild-type or E8- genomes are unable to immortalize NHK. Nevertheless, HPV8 and HPV38 express E6 and E7 oncogenes and other transcripts in transfected NHK. Inactivation of the conserved E1 and E2 replication genes reduces viral transcription, whereas E8- genomes display enhanced viral transcription, suggesting that beta-HPV genomes replicate in NHK. Furthermore, growth of HPV8- or HPV38-transfected NHK in organotypic cultures, which are routinely used to analyze the productive replication cycle of HR-HPV, induces transcripts encoding the L1 capsid gene, suggesting that the productive cycle is initiated. In addition, transcription patterns in HPV8 organotypic cultures and in an HPV8-positive lesion from an EV patient show similarities. Taken together, these data indicate that NHK are a suitable system to analyze beta-HPV8 and HPV38 replication. IMPORTANCE High-risk HPV, from the genus alpha, can cause anogenital or oropharyngeal malignancies. The oncogenic properties of high-risk HPV are important for their differentiation-dependent replication in human keratinocytes, the natural target cell for HPV. HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Currently, the replication cycle of beta-HPV has not been studied in human keratinocytes. We now provide evidence that beta-HPV8 and 38 are transcriptionally active in human keratinocytes. Inactivation of the viral E8^E2 repressor protein greatly increases genome replication and transcription of the E6 and E7 oncogenes, but surprisingly, this does not result in immortalization of keratinocytes. Differentiation of HPV8- or HPV38-transfected keratinocytes in organotypic cultures induces transcripts encoding the L1 capsid gene, suggesting that productive replication is initiated. This indicates that human keratinocytes are suited as a model to investigate beta-HPV replication.
Collapse
|
7
|
Hu C, Wallace N. Beta HPV Deregulates Double-Strand Break Repair. Viruses 2022; 14:948. [PMID: 35632690 PMCID: PMC9146468 DOI: 10.3390/v14050948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to increase genomic instability stemming from ultraviolet light exposure by disrupting DNA damage responses. Implicit in this hypothesis is that the virus encodes one or more proteins that impair DNA repair signaling. Fluorescence-based reporters, next-generation sequencing, and animal models have been used to test this primarily in cells expressing beta HPV E6/E7. Of the two, beta HPV E6 appears to have the greatest ability to increase UV mutagenesis, by attenuating two major double-strand break (DSB) repair pathways, homologous recombination, and non-homologous end-joining. Here, we review this dysregulation of DSB repair and emerging approaches that can be used to further these efforts.
Collapse
Affiliation(s)
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|