1
|
Kozieł A, Cieślik A, Janek Ł, Szymczak A, Domański I, Knysz B, Szetela B. Changes in the HIV Epidemic in Lower Silesia, Poland, Between 2010 and 2020: The Characteristics of the Key Populations. Viruses 2024; 16:1445. [PMID: 39339921 PMCID: PMC11437477 DOI: 10.3390/v16091445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The HIV (Human Immunodeficiency Virus) epidemic remains a significant public health issue, requiring ongoing access to preventive methods. This study aimed to analyze the evolution of the HIV epidemic in Lower Silesia from 2010 to 2020, focusing on the key populations. A retrospective analysis of the medical records from newly diagnosed HIV patients at a major HIV clinic in Wroclaw was conducted, examining demographic data, infection routes, and laboratory results. An 84% increase in newly diagnosed HIV cases was observed over the decade, with the most common route of infection being sex between men (70% among those with a known infection route). These patients were generally in better clinical condition compared to their heterosexual counterparts, as indicated by a higher median CD4+ T cell count (465/μL vs. 250/μL). The changes in clinical status and infection routes were statistically significant. The HIV epidemic in Lower Silesia has shifted, with a notable rise in new infections among men who have sex with men. Heterosexual patients were often diagnosed at more advanced stages. Prevention strategies should adapt to these changing trends, with education and testing accessibility remaining priorities nationwide.
Collapse
Affiliation(s)
- Aleksandra Kozieł
- Department of Infectious Diseases, Liver Disease and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Cieślik
- Department of Infectious Diseases, Liver Disease and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Łucja Janek
- Statistical Analysis Centre, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Szymczak
- Department of Infectious Diseases, Liver Disease and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Igor Domański
- Department of Infectious Diseases, Liver Disease and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Brygida Knysz
- Department of Infectious Diseases, Liver Disease and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Liver Disease and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland
- All Saint's Clinic, Wrocławskie Centrum Zdrowia SP ZOZ, 50-136 Wrocław, Poland
| |
Collapse
|
2
|
Li K, Chen H, Li J, Feng Y, Liang S, Rashid A, Liu M, Li S, Chu Q, Ruan Y, Xing H, Lan G, Qiao W, Shao Y. Distinct genetic clusters in HIV-1 CRF01_AE-infected patients induced variable degrees of CD4 + T-cell loss. mBio 2024; 15:e0334923. [PMID: 38385695 PMCID: PMC10936439 DOI: 10.1128/mbio.03349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024] Open
Abstract
CRF01_AE strains have been shown to form multiple transmission clusters in China, and some clusters have disparate pathogenicity in Chinese men who have sex with men. This study focused on other CRF01_AE clusters prevalent in heterosexual populations. The CD4+ T-cell counts from both cross-section data in National HIV Molecular Epidemiology Survey and seropositive cohort data were used to evaluate the pathogenicity of the CRF01_AE clusters and other HIV-1 sub-types. Their mechanisms of pathogenicity were evaluated by co-receptor tropisms, predicted by genotyping and confirmed with virus isolate phenotyping, as well as inflammation parameters. Our research elucidated that individuals infected with CRF01_AE clusters 1 and 2 exhibited significantly lower baseline CD4+ T-cell counts and greater CD4+ T-cell loss in cohort follow-up, compared with other HIV-1 sub-types and CRF01_AE clusters. The increased pathogenesis of cluster 1 or 2 was associated with higher CXCR4 tropisms, higher inflammation/immune activation, and increased pyroptosis. The protein structure modeling analysis revealed that the envelope V3 loop of clusters 1 and 2 viruses is favorable for CXCR4 co-receptor usage. Imbedded with the most mutating reverse transcriptase, HIV-1 is one of the most variable viruses. CRF01_AE clusters 1 and 2 have been found to have evolved into more virulent strains in regions with predominant heterosexual infections. The virulent strains increased the pressure for early diagnosis and treatment in HIV patients. To save more lives, HIV-1 surveillance systems should be upgraded from serology and genotyping to phenotyping, which could support precision interventions for those infected by virulent viruses. IMPORTANCE Retroviruses swiftly adapt, employing error-prone enzymes for genetic and phenotypic evolution, optimizing survival strategies, and enhancing virulence levels. HIV-1 CRF01_AE has persistently undergone adaptive selection, and cluster 1 and 2 infections display lower counts and fast loss of CD4+ T cells than other HIV-1 sub-types and CRF01_AE clusters. Its mechanisms are associated with increased CXCR4 tropism due to an envelope structure change favoring a tropism shift from CCR5 to CXCR4, thereby shaping viral phenotype features and impacting pathogenicity. This underscores the significance of consistently monitoring HIV-1 genetic evolution and phenotypic transfer to see whether selection bias across risk groups alters the delicate balance of transmissible versus toxic trade-offs, since virulent strains such as CRF01_AE clusters 1 and 2 could seriously compromise the efficacy of antiviral treatment. Only through such early warning and diagnostic services can precise antiviral treatments be administered to those infected with more virulent HIV-1 strains.
Collapse
Affiliation(s)
- Kang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanhuan Chen
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Jianjun Li
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Yi Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shujia Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Abdur Rashid
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Meiliang Liu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sisi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qingfei Chu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhua Ruan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xing
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yiming Shao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Zhejiang University, Hangzhou, China
- Changping Laboratory, Beijing, China
| |
Collapse
|
3
|
Azzman N, Gill MSA, Hassan SS, Christ F, Debyser Z, Mohamed WAS, Ahemad N. Pharmacological advances in anti-retroviral therapy for human immunodeficiency virus-1 infection: A comprehensive review. Rev Med Virol 2024; 34:e2529. [PMID: 38520650 DOI: 10.1002/rmv.2529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The discovery of anti-retroviral (ARV) drugs over the past 36 years has introduced various classes, including nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitor, fusion, and integrase strand transfer inhibitors inhibitors. The introduction of combined highly active anti-retroviral therapies in 1996 was later proven to combat further ARV drug resistance along with enhancing human immunodeficiency virus (HIV) suppression. As though the development of ARV therapies was continuously expanding, the variation of action caused by ARV drugs, along with its current updates, was not comprehensively discussed, particularly for HIV-1 infection. Thus, a range of HIV-1 ARV medications is covered in this review, including new developments in ARV therapy based on the drug's mechanism of action, the challenges related to HIV-1, and the need for combination therapy. Optimistically, this article will consolidate the overall updates of HIV-1 ARV treatments and conclude the significance of HIV-1-related pharmacotherapy research to combat the global threat of HIV infection.
Collapse
Affiliation(s)
- Nursyuhada Azzman
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, Permatang Pauh, Pulau Pinang, Malaysia
| | - Muhammad Shoaib Ali Gill
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Wan Ahmad Syazani Mohamed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Level 3, Block C, Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia (MOH), Shah Alam, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
4
|
Reeves DB, Mayer BT, deCamp AC, Huang Y, Zhang B, Carpp LN, Magaret CA, Juraska M, Gilbert PB, Montefiori DC, Bar KJ, Cardozo-Ojeda EF, Schiffer JT, Rossenkhan R, Edlefsen P, Morris L, Mkhize NN, Williamson C, Mullins JI, Seaton KE, Tomaras GD, Andrew P, Mgodi N, Ledgerwood JE, Cohen MS, Corey L, Naidoo L, Orrell C, Goepfert PA, Casapia M, Sobieszczyk ME, Karuna ST, Edupuganti S. High monoclonal neutralization titers reduced breakthrough HIV-1 viral loads in the Antibody Mediated Prevention trials. Nat Commun 2023; 14:8299. [PMID: 38097552 PMCID: PMC10721814 DOI: 10.1038/s41467-023-43384-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
The Antibody Mediated Prevention (AMP) trials (NCT02716675 and NCT02568215) demonstrated that passive administration of the broadly neutralizing monoclonal antibody VRC01 could prevent some HIV-1 acquisition events. Here, we use mathematical modeling in a post hoc analysis to demonstrate that VRC01 influenced viral loads in AMP participants who acquired HIV. Instantaneous inhibitory potential (IIP), which integrates VRC01 serum concentration and VRC01 sensitivity of acquired viruses in terms of both IC50 and IC80, follows a dose-response relationship with first positive viral load (p = 0.03), which is particularly strong above a threshold of IIP = 1.6 (r = -0.6, p = 2e-4). Mathematical modeling reveals that VRC01 activity predicted from in vitro IC80s and serum VRC01 concentrations overestimates in vivo neutralization by 600-fold (95% CI: 300-1200). The trained model projects that even if future therapeutic HIV trials of combination monoclonal antibodies do not always prevent acquisition, reductions in viremia and reservoir size could be expected.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Bo Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E Fabian Cardozo-Ojeda
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Paul Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - James I Mullins
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Nyaradzo Mgodi
- Clinical Trials Research Centre, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Myron S Cohen
- Institute for Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Catherine Orrell
- Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin Casapia
- Facultad de Medicina Humana, Universidad Nacional de la Amazonia Peru, Iquitos, Peru
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Shelly T Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- GreenLight Biosciences, Medford, MA, USA
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Chen Y, Cao Z, Li J, Chen J, Zhu Q, Liang S, Lan G, Xing H, Liao L, Feng Y, Shao Y, Ruan Y, Chen H. HIV transmission and associated factors under the scale-up of HIV antiretroviral therapy: a population-based longitudinal molecular network study. Virol J 2023; 20:289. [PMID: 38049910 PMCID: PMC10696835 DOI: 10.1186/s12985-023-02246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
OBJECTIVES To evaluate the prevention efficacy of scaling up HIV/AIDS antiretroviral therapy (ART) on HIV transmission at the population level and determine associated factors of HIV secondary transmission. METHODS We used HIV longitudinal molecular networks to assess the genetic linkage between baseline and newly diagnosed cases. A generalized estimating equation was applied to determine the associations between demographic, clinical characteristics and HIV transmission. RESULTS Patients on ART had a 32% lower risk of HIV transmission than those not on ART. A 36% reduction in risk was also seen if ART-patients maintained their HIV viral load lower than 50 copies/mL. A 71% lower risk occurred when patients sustained ART for at least 3 years and kept HIV viral load less than 50 copies/mL. Patients who discontinued ART had a similar HIV transmission risk as those not on ART. Patients who were older, male, non-Han, not single, retired, infected via a heterosexual route of transmission and those who possessed higher CD4 counts had a higher risk of HIV transmission. HIV-1 subtype of CRF01_AE was less transmissible than other subtypes. CONCLUSIONS The efficacy of ART in a real-world setting was supported by this longitudinal molecular network study. Promoting adherence to ART is crucial to reduce HIV transmission.
Collapse
Affiliation(s)
- Yi Chen
- The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Zhiqiang Cao
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Jianjun Li
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China
| | - Jin Chen
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Qiuying Zhu
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China
| | - Shujia Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China
| | - Hui Xing
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Lingjie Liao
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Yi Feng
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Yuhua Ruan
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
| | - Huanhuan Chen
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, 530028, China.
| |
Collapse
|
6
|
Ge Y, Zhou Y, Lu J, Qiu T, Shi LE, Zhang Z, Hu H, Wei P, Fu G. Immune reconstitution efficacy after combination antiretroviral therapy in male HIV-1 infected patients with homosexual and heterosexual transmission. Emerg Microbes Infect 2023:2214250. [PMID: 37216217 DOI: 10.1080/22221751.2023.2214250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We aimed to explore the impact of sexual transmission modes on immune reconstitution after combined antiretroviral therapy (cART). We have retrospectively analyzed longitudinal samples from 1557 treated male patients with virological suppression (HIV-1 RNA<50 copies/ml) for at least 2 years. Both heterosexuals (HET) and men who have sex with men (MSM) patients showed an increasing annual trend in CD4+ T cell counts after receiving cART (HET, β: 23.51 (cell/µl)/year, 95% CI: 16.70 to 30.31; MSM, β: 40.21 (cell/µl)/year, 95% CI: 35.82 to 44.61). However, the CD4+ T cell recovery rate was much lower in HET patients than MSM patients, determined by both the generalized additive mixed model (P < 0.001) and generalized estimating equations (P = 0.026). Besides HIV-1 subtypes, baseline CD4+ T cell counts and age at cART initiation, HET was an independent risk factor for immunological non-responders (adjusted OR: 1.73; 95% CI: 1.28 to 2.33). HET was also associated with lower probability of achieving conventional immune recovery (adjusted HR: 1.37; 95%CI: 1.22 to 1.67) and optimal immune recovery (adjusted HR: 1.48, 95%CI: 1.04-2.11). Male HET patients might have poorer immune reconstitution ability even after effective cART. Early initiation of cART after diagnosis and clinical monitoring for male HET patients should be highly emphasized.
Collapse
Affiliation(s)
- You Ge
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ying Zhou
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu, China
| | - Jing Lu
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu, China
| | - Tao Qiu
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu, China
| | - Ling-En Shi
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu, China
| | - Zhi Zhang
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu, China
| | - Haiyang Hu
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Gengfeng Fu
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Kalidasan V, Ravichantar N, Muhd Besari A, Yunus MA, Mohd Yusoff N, Mohamed Z, Theva Das K. Latent HIV-1 provirus in vitro suppression using combinatorial CRISPR/Cas9 strategy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ge Y, Liu Y, Fu G, Lu J, Li X, Du G, Fei G, Wang Z, Li H, Li W, Wei P. The Molecular Epidemiological and Immunological Characteristics of HIV-1 CRF01_AE/B Recombinants in Nanjing, China. Front Microbiol 2022; 13:936502. [PMID: 35910646 PMCID: PMC9335199 DOI: 10.3389/fmicb.2022.936502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus-type 1 (HIV-1) CRF01_AE/B recombinants are newly emerging strains that are spreading rapidly in Southern and Eastern China. This study aimed to elucidate the molecular epidemiological characteristics of HIV-1 CRF01_AE/B recombinants in Nanjing and to explore the impact of these novel strains on the immunological status. A total of 1,013 blood samples from newly diagnosed HIV-1-infected patients were collected in Nanjing from 2015 to 2019, among which 958 partial Pol sequences were sequenced successfully. We depicted the molecular epidemiological characteristics of CRF01_AE/B recombinants by the molecular evolutionary analysis, Bayesian system evolution analysis, and transmission network analysis. The generalized additive mixed model was applied to evaluate the CD4+ T-cell count change of CRF01_AE/B recombinants. The Kaplan–Meier analysis was performed to assess the time from combined antiretroviral therapy (cART) initiation to immune reconstruction. We have identified 102 CRF01_AE/B recombinants (102/958, 10.65%) in Nanjing, including CRF67_01B (45/102, 44.12%), CRF68_01B (35/102, 34.31%), and CRF55_01B (22/102, 12.57%). According to the Bayesian phylogenetic inference, CRF55_01B had a rapid decline stage during 2017–2019, while CRF67_01B and CRF68_01B have experienced a fast growth phase during 2014–2015 and then remained stable. We have constructed 83 transmission networks, in which three larger clusters were composed of CRF67_01B and CRF68_01B. CRF01_AE/B recombinants manifested a faster decrease rate of CD4+ T-cell count than CRF_07BC but similar to CRF01_AE. The probability of achieving immune reconstruction in CRF01_AE/B recombinants was lower than CRF07_BC in the subgroup of baseline CD4+ T-cell count at cART initiation <300 cells/μl. In summary, CRF67_01B and CRF68_01B were the major strains of CRF01_AE/B recombinants in Nanjing, which have formed large transmission clusters between Nanjing and other provinces. CRF01_AE/B recombinants might be associated with rapid disease progression and poor immune reconstruction. The continuous epidemiological monitoring of CRF01_AE/B recombinants should be highly emphasized.
Collapse
Affiliation(s)
- You Ge
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yangyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Gengfeng Fu
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, China
| | - Jing Lu
- Institute of HIV/AIDS/STI Prevention and Control, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, China
| | - Xiaoshan Li
- Department of Lung Transplant Center, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, China
| | - Guoping Du
- Department of Southeast University Hospital, Southeast University, Nanjing, China
| | - Gaoqiang Fei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Zemin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Han Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Wei Li
- Department of Quality Management, Children's Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Pingmin Wei
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Wei Li
| |
Collapse
|