1
|
Lagrave A, Enfissi A, Tirera S, Pierre Demar M, Jaonasoa J, Carod JF, Ramavoson T, Succo T, Carvalho L, Devos S, Dorleans F, Leon L, Berlioz-Arthaud A, Musso D, Klitting R, de Lamballerie X, Lavergne A, Rousset D. The Genetic Evolution of DENV2 in the French Territories of the Americas: A Retrospective Study from the 2000s to the 2024 Epidemic, Including a Comparison of Amino Acid Changes with Vaccine Strains. Vaccines (Basel) 2025; 13:264. [PMID: 40266131 PMCID: PMC11945534 DOI: 10.3390/vaccines13030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Dengue virus type 2 (DENV2) is endemic to hyperendemic in the French territories of the Americas (FTAs), including French Guiana, Guadeloupe, Martinique, Saint-Barthelemy, and Saint-Martin. In 2023-2024, French Guiana, Martinique, and Guadeloupe experienced unprecedented dengue epidemics partly associated with this serotype. In response, we conducted a retrospective study of the diversity of DENV2 strains circulating in the FTAs from 2000 to 2024. METHODS To this end, we selected DENV2 samples from the collection at the National Research Center for Arboviruses in French Guiana (NRCA-FG) and sequenced them using Oxford Nanopore Technologies (ONT)-based next-generation sequencing (NGS). RESULTS Phylogenetic analysis revealed that (i) the 77 DENV2 sequences from the FTAs belong to two distinct genotypes-Asian American and Cosmopolitan; (ii) from the 2000s up to the 2019 epidemic in French Guiana, all sequenced strains belonged to the Asian American genotype; (iii) and from 2019 to 2020, strains circulating in Martinique and Guadeloupe belonged to the Cosmopolitan genotype, specifically the Indian subcontinent sublineage, while (iv) strains from the 2023-2024 outbreak in Martinique, Guadeloupe, and French Guiana fall within a distinct sublineage of the same genotype-Other Cosmopolitan. Additionally, we analyzed amino acid (AA) changes in FTA sequences compared to the Dengvaxia® and Qdenga® vaccines. The analysis of amino acid changes in FTA sequences compared to the vaccines (Dengvaxia® and Qdenga®) identified 42 amino acid changes in the prM/E regions (15 in the prM region and 27 in the E region) relative to CYD-2 Dengvaxia® and 46 amino acid changes in the prM/E regions relative to Qdenga®, including 16 in the prM region and 30 in the E region. Some of these AA changes are shared across multiple genotypes and sublineages, with 8 substitutions in the prM region and 18 in the E region appearing in both analyses. This raises questions about the potential impact of these changes on vaccine efficacy. CONCLUSION Overall, these findings provide a current overview of the genomic evolution of DENV2 in the FTA, which is crucial for developing more effective prevention and control strategies and for selecting future vaccines tailored to circulating strains.
Collapse
Affiliation(s)
- Alisé Lagrave
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| | - Antoine Enfissi
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| | - Sourakhata Tirera
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| | - Magalie Pierre Demar
- Laboratoire Centre Hospitalier de Cayenne, Cayenne, French Guiana; (M.P.D.); (J.J.)
| | - Jean Jaonasoa
- Laboratoire Centre Hospitalier de Cayenne, Cayenne, French Guiana; (M.P.D.); (J.J.)
| | - Jean-François Carod
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana; (J.-F.C.); (T.R.)
| | - Tsiriniaina Ramavoson
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana; (J.-F.C.); (T.R.)
| | - Tiphanie Succo
- Santé Publique France, Cellule Guyane, Cayenne, French Guiana; (T.S.); (L.C.); (S.D.)
| | - Luisiane Carvalho
- Santé Publique France, Cellule Guyane, Cayenne, French Guiana; (T.S.); (L.C.); (S.D.)
| | - Sophie Devos
- Santé Publique France, Cellule Guyane, Cayenne, French Guiana; (T.S.); (L.C.); (S.D.)
| | - Frédérique Dorleans
- Santé Publique France, Cellule Antilles, French Caribbean Islands; (F.D.); (L.L.)
| | - Lucie Leon
- Santé Publique France, Cellule Antilles, French Caribbean Islands; (F.D.); (L.L.)
| | | | - Didier Musso
- Laboratoires Eurofins Guyane, French Guiana; (A.B.-A.); (D.M.)
| | - Raphaëlle Klitting
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France; (R.K.); (X.d.L.)
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Xavier de Lamballerie
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France; (R.K.); (X.d.L.)
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Anne Lavergne
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| | - Dominique Rousset
- Arbovirus National Reference Center, Virology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana; (A.L.); (A.E.); (S.T.); (A.L.)
| |
Collapse
|
2
|
Wang L, Huang AT, Katzelnick LC, Lefrancq N, Escoto AC, Duret L, Chowdhury N, Jarman R, Conte MA, Berry IM, Fernandez S, Klungthong C, Thaisomboonsuk B, Suntarattiwong P, Vandepitte W, Whitehead SS, Cauchemez S, Cummings DAT, Salje H. Antigenic distance between primary and secondary dengue infections correlates with disease risk. Sci Transl Med 2024; 16:eadk3259. [PMID: 38657027 DOI: 10.1126/scitranslmed.adk3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection even in previously exposed individuals. In addition, for some pathogens, such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease through a mechanism known as antibody-dependent enhancement. However, it remains unclear whether the antigenic distances between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalizations across years. Here, we develop a framework that combines detailed antigenic and genetic characterization of viruses with details on hospitalized cases from 21 years of dengue surveillance in Bangkok, Thailand, to identify the role of the antigenic profile of circulating viruses in determining disease risk. We found that the risk of hospitalization depended on both the specific order of infecting serotypes and the antigenic distance between an individual's primary and secondary infections, with risk maximized at intermediate antigenic distances. These findings suggest that immune imprinting helps determine dengue disease risk and provide a pathway to monitor the changing risk profile of populations and to quantifying risk profiles of candidate vaccines.
Collapse
Affiliation(s)
- Lin Wang
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Angkana T Huang
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Leah C Katzelnick
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Ana Coello Escoto
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Loréna Duret
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Nayeem Chowdhury
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Jarman
- Coalition for Epidemic Preparedness Initiative, Washington, DC 20006, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | | | - Warunee Vandepitte
- Queen Sirikit National Institute of Child Health, Bangkok 10400, Thailand
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris 75015, France
| | - Derek A T Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Masrinoul P, Sun-Arlee P, Yoksan S, Wanlayaporn D, Juntarapornchai S, Punyahathaikul S, Ketsuwan K, Palabodeewat S, Kongchanagul A, Auewarakul P. Intra-serotypic antigenic diversity of dengue virus serotype 3 in Thailand during 2004-2015. Epidemiol Infect 2024; 152:e11. [PMID: 38185822 PMCID: PMC10804135 DOI: 10.1017/s0950268823001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
In addition to the well-known differences among the four dengue serotypes, intra-serotypic antigenic diversity has been proposed to play a role in viral evolution and epidemic fluctuation. A replacement of genotype II by genotype III of dengue virus serotype 3 (DENV3) occurred in Thailand during 2007-2014, raising questions about the role of intra-serotypic antigenic differences in this genotype shift. We characterized the antigenic difference of DENV3 of genotypes II and III in Thailand, utilizing a neutralizing antibody assay with DENV3 vaccine sera and monotypic DENV3 sera. Although there was significant antigenic diversity among the DENV3, it did not clearly associate with the genotype. Our data therefore do not support the role of intra-serotypic antigenic difference in the genotype replacement. Amino acid alignment showed that eight positions are potentially associated with diversity between distinct antigenic subgroups. Most of these amino acids were found in envelope domain II. Some positions (aa81, aa124, and aa172) were located on the surface of virus particles, probably involving the neutralization sensitivity. Notably, the strains of both genotypes II and III showed clear antigenic differences from the vaccine genotype I strain. Whether this differencewill affect vaccine efficacy requires further studies.
Collapse
Affiliation(s)
- Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Panumas Sun-Arlee
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Duangnapa Wanlayaporn
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sanjira Juntarapornchai
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Surat Punyahathaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kunjimas Ketsuwan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Somnuek Palabodeewat
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Alita Kongchanagul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Kikawa C, Cartwright-Acar CH, Stuart JB, Contreras M, Levoir LM, Evans MJ, Bloom JD, Goo L. The effect of single mutations in Zika virus envelope on escape from broadly neutralizing antibodies. J Virol 2023; 97:e0141423. [PMID: 37943046 PMCID: PMC10688354 DOI: 10.1128/jvi.01414-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The wide endemic range of mosquito-vectored flaviviruses-such as Zika virus and dengue virus serotypes 1-4-places hundreds of millions of people at risk of infection every year. Despite this, there are no widely available vaccines, and treatment of severe cases is limited to supportive care. An avenue toward development of more widely applicable vaccines and targeted therapies is the characterization of monoclonal antibodies that broadly neutralize all these viruses. Here, we measure how single amino acid mutations in viral envelope protein affect neutralizing antibodies with both broad and narrow specificities. We find that broadly neutralizing antibodies with potential as vaccine prototypes or biological therapeutics are quantifiably more difficult to escape than narrow, virus-specific neutralizing antibodies.
Collapse
Affiliation(s)
- Caroline Kikawa
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | | | - Jackson B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jesse D. Bloom
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Basic Sciences, Fred Hutch Cancer Center, Seattle, Washington, USA
- Computational Biology, Fred Hutch Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| |
Collapse
|
5
|
Kikawa C, Cartwright-Acar CH, Stuart JB, Contreras M, Levoir LM, Evans MJ, Bloom JD, Goo L. The effect of single mutations in Zika virus envelope on escape from broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557606. [PMID: 37808848 PMCID: PMC10557620 DOI: 10.1101/2023.09.13.557606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Zika virus and dengue virus are co-circulating flaviviruses with a widespread endemic range. Eliciting broad and potent neutralizing antibodies is an attractive goal for developing a vaccine to simultaneously protect against these viruses. However, the capacity of viral mutations to confer escape from broadly neutralizing antibodies remains undescribed, due in part to limited throughput and scope of traditional approaches. Here, we use deep mutational scanning to map how all possible single amino acid mutations in Zika virus envelope protein affect neutralization by antibodies of varying breadth and potency. While all antibodies selected viral escape mutations, the mutations selected by broadly neutralizing antibodies conferred less escape relative to those selected by narrow, virus-specific antibodies. Surprisingly, even for broadly neutralizing antibodies with similar binding footprints, different single mutations led to escape, indicating distinct functional requirements for neutralization not captured by existing structures. Additionally, the antigenic effects of mutations selected by broadly neutralizing antibodies were conserved across divergent, albeit related, flaviviruses. Our approach identifies residues critical for antibody neutralization, thus comprehensively defining the as-yet-unknown functional epitopes of antibodies with clinical potential.
Collapse
Affiliation(s)
- Caroline Kikawa
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | | | - Jackson B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Jesse D. Bloom
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109, USA
- Basic Sciences and Computational Biology, Fred Hutch Cancer Center, Seattle Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| |
Collapse
|
6
|
Wang L, Huang AT, Katzelnick LC, Lefrancq N, Escoto AC, Duret L, Chowdhury N, Jarman R, Conte MA, Berry IM, Fernandez S, Klungthong C, Thaisomboonsuk B, Suntarattiwong P, Vandepitte W, Whitehead S, Cauchemez S, Cummings DA, Salje H. Antigenic diversity and dengue disease risk. RESEARCH SQUARE 2023:rs.3.rs-3214507. [PMID: 37577717 PMCID: PMC10418532 DOI: 10.21203/rs.3.rs-3214507/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection. In addition, for some pathogens such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease, through a mechanism known as antibody-dependent enhancement. However, it remains a mystery whether the antigenic distance between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalisations across years. Here we develop an inferential framework that combines detailed antigenic and genetic characterisation of viruses, and hospitalised cases from 21 years of surveillance in Bangkok, Thailand to identify the role of the antigenic profile of circulating viruses in determining disease risk. We find that the risk of hospitalisation depends on both the specific order of infecting serotypes and the antigenic distance between an individual's primary and secondary infections, with risk maximised at intermediate antigenic distances. These findings suggest immune imprinting helps determine dengue disease risk, and provides a pathway to monitor the changing risk profile of populations and to quantifying risk profiles of candidate vaccines.
Collapse
Affiliation(s)
- Lin Wang
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Angkana T. Huang
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Leah C. Katzelnick
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Ana Coello Escoto
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Loréna Duret
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Nayeem Chowdhury
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Jarman
- Coalition for Epidemic Preparedness Initiative, Washington DC, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Stephen Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
| | - Derek A.T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Thomas SJ. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines 2023; 8:55. [PMID: 37061527 PMCID: PMC10105158 DOI: 10.1038/s41541-023-00658-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
Dengue is a major global public health problem requiring a safe and efficacious vaccine as the foundation of a comprehensive countermeasure strategy. Despite decades of attempts, the world has a single dengue vaccine licensed in numerous countries, but restrictions and conditions of its use have deterred uptake. Recently, clinical efficacy data has been revealed for two additional dengue vaccine candidates and the data appears encouraging. In this perspective I discuss dengue, the complexities of dengue vaccine development, early development setbacks, and how the latest data from the field may be cause for measured optimism. Finally, I provide some perspectives on evaluating dengue vaccine performance and how the pursuit of the perfect dengue vaccine may prevent advancement of vaccines which are good enough.
Collapse
Affiliation(s)
- Stephen J Thomas
- SUNY Upstate Medical University, Institute for Global Health and Translational Sciences, Syracuse, NY, USA.
| |
Collapse
|
8
|
Jagtap S, Pattabiraman C, Sankaradoss A, Krishna S, Roy R. Evolutionary dynamics of dengue virus in India. PLoS Pathog 2023; 19:e1010862. [PMID: 37011104 PMCID: PMC10101646 DOI: 10.1371/journal.ppat.1010862] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
More than a hundred thousand dengue cases are diagnosed in India annually, and about half of the country's population carries dengue virus-specific antibodies. Dengue propagates and adapts to the selection pressures imposed by a multitude of factors that can lead to the emergence of new variants. Yet, there has been no systematic analysis of the evolution of the dengue virus in the country. Here, we present a comprehensive analysis of all DENV gene sequences collected between 1956 and 2018 from India. We examine the spatio-temporal dynamics of India-specific genotypes, their evolutionary relationship with global and local dengue virus strains, interserotype dynamics and their divergence from the vaccine strains. Our analysis highlights the co-circulation of all DENV serotypes in India with cyclical outbreaks every 3-4 years. Since 2000, genotype III of DENV-1, cosmopolitan genotype of DENV-2, genotype III of DENV-3 and genotype I of DENV-4 have been dominating across the country. Substitution rates are comparable across the serotypes, suggesting a lack of serotype-specific evolutionary divergence. Yet, the envelope (E) protein displays strong signatures of evolution under immune selection. Apart from drifting away from its ancestors and other contemporary serotypes in general, we find evidence for recurring interserotype drift towards each other, suggesting selection via cross-reactive antibody-dependent enhancement. We identify the emergence of the highly divergent DENV-4-Id lineage in South India, which has acquired half of all E gene mutations in the antigenic sites. Moreover, the DENV-4-Id is drifting towards DENV-1 and DENV-3 clades, suggesting the role of cross-reactive antibodies in its evolution. Due to the regional restriction of the Indian genotypes and immunity-driven virus evolution in the country, ~50% of all E gene differences with the current vaccines are focused on the antigenic sites. Our study shows how the dengue virus evolution in India is being shaped in complex ways.
Collapse
Affiliation(s)
- Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|