1
|
Requena P, Gómez-Pérez GP, McCall MBB, Barrios D, Aguilar R, Fernández-Morata J, Vidal M, Campo JJ, Sanchez C, Yazdabankhsh M, Sim BKL, Hoffman SL, Kremsner P, Lell B, Mordmüller B, Dobaño C, Moncunill G. Effect of controlled human Plasmodium falciparum infection on B cell subsets in individuals with different levels of malaria immunity. RESEARCH SQUARE 2025:rs.3.rs-6221433. [PMID: 40321757 PMCID: PMC12048015 DOI: 10.21203/rs.3.rs-6221433/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Continuous exposure to Plasmodium falciparum (Pf) has been associated with alterations in B cells. We investigated the effect of controlled human malaria infection (CHMI) on B cell phenotypes in individuals with different Pf immunity status: malaria-naïve, immunized with PfSPZ-CVac and semi-immune (lifelong-exposed) volunteers. Compared to naïve, semi-immune but not vaccinated individuals, had increased baseline frequencies of immature B cells (CD19+CD10+), active naive (IgD+CD27-CD21-) B cells, active atypical (IgD-CD27-CD21-) memory B cells (MBCs), active classical (IgD-CD27+CD21-) MBCs and CD1c+-B cells but lower frequencies of some IgG+-B cells. The frequencies of CD1c+ active atypical MBCs correlated positively with anti-Pf antibodies and negatively with circulating eotaxin levels, while the opposite was observed for IgG+ resting atypical MBCs. During early blood-stage infection (day 11 after CHMI), there was an expansion of resting classical (IgD-CD27+CD21+) MBCs in all three groups. Vaccination, compared to placebo, altered the effect of CHMI on B cells, showing a positive association with resting classical MBCs (β = 0.190, 95%CI 0.011-0.368) and active naïve-PD1+ (β = 0.637, 95%CI 0.058-1.217) frequencies, and a negative one with CD1c+ resting atypical MBCs (β=-0.328, 95%CI -0.621--0.032). In addition, the sickle cell trait in semi-immune subjects altered the effect of CHMI on several B cells. In conclusion, lifelong but not vaccine exposure to malaria was associated with increased frequencies of multiple B cell subsets, with higher and lower percentages of CD1c and IgG expressing-cells, respectively. A single infection (CHMI) induces changes in B cell frequencies and is modulated by sickle cell trait and malaria-immunity status.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Yazdabankhsh
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center
| | | | | | | | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné (CERMEL)
| | | | | | | |
Collapse
|
2
|
Chick JA, Abongdia NN, Shey RA, Apinjoh TO. Computational design, expression, and characterization of a Plasmodium falciparum multi-epitope, multi-stage vaccine candidate (PfCTMAG). Heliyon 2025; 11:e42014. [PMID: 39906795 PMCID: PMC11791285 DOI: 10.1016/j.heliyon.2025.e42014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Malaria, a tropical disease, claims the lives of thousands of people annually and the development of resistance to insecticides and antimalarial drugs poses a great challenge to current prevention and control strategies. Current malaria vaccines are limited in efficacy, duration of protection, and safety, due to the high antigenic diversity and complex life cycle of the Plasmodium parasite. This study sought to design and assess a more effective multi-stage, multi-epitope vaccine candidate for the control of malaria. A multi-epitope malaria vaccine candidate was designed in silico using multiple antigens from both the pre-erythrocytic and erythrocytic stages, expressed in bacteria, and its sero-reactivity to antibodies in plasma from malaria-positive (cases) and negative individuals (controls) was assessed using enzyme-linked immunosorbent assay (ELISA). Immunization experiments were equally conducted with BALB/c mice. In-silico analysis revealed that the designed antigen, PfCTMAG (Plasmodium falciparum Circumsporozoite, Thrombospondin-related adhesion protein, Merozoite surface protein 2, Apical asparagine (Asn)-rich protein and Glutamate-Rich Protein), effectively bound to Toll-like receptor 4 (TLR-4) and triggered a strong immune response. In sero-reactivity studies, malaria-positives (cases) had higher anti-PfCTMAG IgG ( p = 0.024) and IgM ( p < 0.001) levels compared to malaria negatives (controls). The mice immunized with PfCTMAG did not show adverse reactions and had higher levels of IgG antibodies (p = 0.002) compared to controls, thereby validating the safety and immunogenicity of PfCTMAG as a promising vaccine candidate.
Collapse
Affiliation(s)
- Joan A. Chick
- Department of Chemical and Biological Engineering, National Higher Polytechnic Institute, The University of Bamenda, Cameroon
| | - Nadege N. Abongdia
- Department of Chemical and Biological Engineering, National Higher Polytechnic Institute, The University of Bamenda, Cameroon
| | - Robert A. Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Cameroon
| | - Tobias O. Apinjoh
- Department of Chemical and Biological Engineering, National Higher Polytechnic Institute, The University of Bamenda, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Cameroon
| |
Collapse
|
3
|
Zhu C, Jiao S, Xu W. CD8 + Trms against malaria liver-stage: prospects and challenges. Front Immunol 2024; 15:1344941. [PMID: 38318178 PMCID: PMC10839007 DOI: 10.3389/fimmu.2024.1344941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Attenuated sporozoites provide a valuable model for exploring protective immunity against the malarial liver stage, guiding the design of highly efficient vaccines to prevent malaria infection. Liver tissue-resident CD8+ T cells (CD8+ Trm cells) are considered the host front-line defense against malaria and are crucial to developing prime-trap/target strategies for pre-erythrocytic stage vaccine immunization. However, the spatiotemporal regulatory mechanism of the generation of liver CD8+ Trm cells and their responses to sporozoite challenge, as well as the protective antigens they recognize remain largely unknown. Here, we discuss the knowledge gap regarding liver CD8+ Trm cell formation and the potential strategies to identify predominant protective antigens expressed in the exoerythrocytic stage, which is essential for high-efficacy malaria subunit pre-erythrocytic vaccine designation.
Collapse
Affiliation(s)
- Chengyu Zhu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiming Jiao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyue Xu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Mura M, Misganaw B, Gautam A, Robinson T, Chaudhury S, Bansal N, Martins AJ, Tsang J, Hammamieh R, Bergmann-Leitner E. Human transcriptional signature of protection after Plasmodium falciparum immunization and infectious challenge via mosquito bites. Hum Vaccin Immunother 2023; 19:2282693. [PMID: 38010150 PMCID: PMC10760396 DOI: 10.1080/21645515.2023.2282693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
The identification of immune correlates of protection against infectious pathogens will accelerate the design and optimization of recombinant and subunit vaccines. Systematic analyses such as immunoprofiling including serological, cellular, and molecular assessments supported by computational tools are key to not only identify correlates of protection but also biomarkers of disease susceptibility. The current study expands our previous cellular and serological profiling of vaccine-induced responses to a whole parasite malaria vaccine. The irradiated sporozoite model was chosen as it is considered the most effective vaccine against malaria. In contrast to whole blood transcriptomics analysis, we stimulated peripheral blood mononuclear cells (PBMC) with sporozoites and enriched for antigen-specific cells prior to conducting transcriptomics analysis. By focusing on transcriptional events triggered by antigen-specific stimulation, we were able to uncover quantitative and qualitative differences between protected and non-protected individuals to controlled human malaria infections and identified differentially expressed genes associated with sporozoite-specific responses. Further analyses including pathway and gene set enrichment analysis revealed that vaccination with irradiated sporozoites induced a transcriptomic profile associated with Th1-responses, Interferon-signaling, antigen-presentation, and inflammation. Analyzing longitudinal time points not only post-vaccination but also post-controlled human malaria infection further revealed that the transcriptomic profile of protected vs non-protected individuals was not static but continued to diverge over time. The results lay the foundation for comparing protective immune signatures induced by various vaccine platforms to uncover immune correlates of protection that are common across platforms.
Collapse
Affiliation(s)
- Marie Mura
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Host-Pathogen Interactions, Microbiology and Infectious Diseases, IRBA-Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Burook Misganaw
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vysnova Inc, Landover, MD, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tanisha Robinson
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sidhartha Chaudhury
- Center of Enabling Capabilties, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Andrew J. Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - John Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Elke Bergmann-Leitner
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
5
|
Dooley NL, Chabikwa TG, Pava Z, Loughland JR, Hamelink J, Berry K, Andrew D, Soon MSF, SheelaNair A, Piera KA, William T, Barber BE, Grigg MJ, Engwerda CR, Lopez JA, Anstey NM, Boyle MJ. Single cell transcriptomics shows that malaria promotes unique regulatory responses across multiple immune cell subsets. Nat Commun 2023; 14:7387. [PMID: 37968278 PMCID: PMC10651914 DOI: 10.1038/s41467-023-43181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.
Collapse
Affiliation(s)
- Nicholas L Dooley
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | | | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Julianne Hamelink
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Kiana Berry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kim A Piera
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
- Subang Jaya Medical Centre, Selangor, Malaysia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | | | - J Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Michelle J Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia.
- University of Queensland, Brisbane, QLD, Australia.
- Queensland University of Technology, Brisbane, QLD, Australia.
- Burnet Institute, Melbourne, VIC, Australia.
| |
Collapse
|