1
|
Zhai D, Lu H, Liu S, Liu J, Zhang W, Wu J, Li J, Bai R, Yan F, Zhao C. Fungal Warriors: Effects of Beauveria bassiana and Purpureocillium lilacinum on CCYV-Carrying Whiteflies. Biomolecules 2025; 15:593. [PMID: 40305369 PMCID: PMC12025157 DOI: 10.3390/biom15040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such as the cucurbit chlorotic yellows virus (CCYV), which causes significant damage to cucurbit crops. Traditional chemical pesticide treatments have limitations, including the development of resistance, harm to non-target organisms, and environmental contamination. Traditional chemical pesticides have limitations when it comes to controlling plants infested by CCYV and whitefly. However, the underlying reasons for these limitations remain unclear, as does the impact of entomopathogenic fungi on whitefly responses. This study explores the potential of using biological control agents, specifically Beauveria bassiana and Purpureocillium lilacinum, to manage whitefly populations and control CCYV transmission. Laboratory experiments were conducted to evaluate the pathogenicity of these fungi on non/viruliferous whitefly. The results indicated that both fungi effectively reduced whitefly populations, with B. bassiana showing particularly strong adverse effects. Whiteflies infected with CCYV exhibited a higher LC50 to B. bassiana and P. lilacinum. Furthermore, bio-pesticides significantly altered the bacterial microbiome dynamics of the whitefly. Interestingly, CCYV increased the susceptibility of whiteflies to entomopathogenic fungus. The findings suggest that these biocontrol agents offer a sustainable alternative to chemical pesticides. Our study unraveled a new horizon for the multiple interaction theories among bio-pesticides-insects-symbionts-viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengming Yan
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (D.Z.); (H.L.); (S.L.); (J.L.); (W.Z.); (J.W.); (J.L.); (R.B.)
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (D.Z.); (H.L.); (S.L.); (J.L.); (W.Z.); (J.W.); (J.L.); (R.B.)
| |
Collapse
|
2
|
Yu Z, Guo Y, Chen H, Wan W, Hu M, Li Y, Wei T, Chen Q. A phloem-limited unculturable bacterium induces mild xenophagy in insect vectors for persistent infection. Microbiol Res 2025; 297:128186. [PMID: 40262357 DOI: 10.1016/j.micres.2025.128186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Xenophagy is an important antibacterial defense mechanism that many organisms use to engulf intracellular pathogens. However, the mechanisms of xenophagy triggered by insect-borne plant bacteria are not well understood. Candidatus Liberibacter asiaticus (CLas) causes Huanglongbing, which poses a serious threat to citrus production. CLas is a phloem-limited unculturable bacterium that is transmitted by the Asian citrus psyllid in a persistent and propagative manner in nature. Here, we found that CLas infection in the gut of psyllids triggered a mild and anti-bacterial xenophagy. Xenophagy limited excessive propagation of CLas to maintain psyllid survival, because overload of CLas was detrimental to psyllid life. Furthermore, the outer membrane β-barrel protein (OMBB) of CLas is the key secreted protein that induces xenophagy in psyllids by interacting with ATG8 and ATG14. OMBB can independently induce autophagy in psyllid and non-host cells. Together, these results revealed that an insect-borne plant bacterium activates mild xenophagy to control its propagation, thereby achieving persistent infection in insect vectors.
Collapse
Affiliation(s)
- Zhongkai Yu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Yuxin Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Hongyan Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Wenqiang Wan
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Mengting Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - You Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China.
| | - Qian Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China.
| |
Collapse
|
3
|
Zhang R, Wang T, Cheng Y, Qiu J, Jia D, Chen H, Wei T, Zhang XF. Rice stripe mosaic virus M protein antagonizes G-protein-induced antiviral autophagy in insect vectors. PLoS Pathog 2025; 21:e1013070. [PMID: 40300033 PMCID: PMC12040238 DOI: 10.1371/journal.ppat.1013070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/26/2025] [Indexed: 05/01/2025] Open
Abstract
In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis, persistently transmitted viruses such as rice stripe mosaic virus (RSMV) infect the gut epithelium and eventually pass to the salivary glands where they will be transmitted to the next rice (Oryza sativa) plant. To efficiently exploit insect vectors for transmission, plant viruses must overcome various immune mechanisms within the vectors, including autophagy. However, understanding how plant viruses overcome insect autophagic defenses remains limited. In this study, we provide evidence that infection with RSMV triggers an autophagic antiviral response in leafhopper cells. In this response, the G protein of RSMV binds to a leafhopper AMP-activated protein kinase (AMPK), leading to enhanced phosphorylation of Beclin-1 (BECN1), thereby inducing autophagy. Knockdown of AMPK and genes encoding members of the phosphoinositide 3-kinase (PI3K) complex composed of the autophagy-related protein 14 (ATG14), BECN1, and vacuolar protein sorting 34 (VPS34) facilitated viral infection in leafhoppers. To suppress leafhopper-induced autophagy, RSMV M protein specifically interacts with ATG14, resulting in the disintegration of PI3K complexes. This leads to reduced phosphatidylinositol-3-phosphate content and thus inhibits the G-protein- induced autophagy. Our study sheds light on the mechanism by which this rice virus evades insect autophagy antiviral defenses.
Collapse
Affiliation(s)
- Ruonan Zhang
- State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Tengfei Wang
- State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yu Cheng
- State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiaxin Qiu
- State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongsheng Jia
- State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Chen
- State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiao-Feng Zhang
- State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Du YX, Qi YH, Lu YH, Li BX, He YJ, Zhang Y, Lin L, Zhang CX, Wang XW, Chen JP, Lu G, Li JM. A plant virus attenuates the Toll immune pathway by degradation of Pellino to facilitate viral infection in insect vectors. J Virol 2025:e0002125. [PMID: 40162791 DOI: 10.1128/jvi.00021-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Many plant viruses are persistently transmitted by insect vectors. The viral antagonism of insect innate immune responses is a critical step in ensuring persistent viral infection. Recent studies have shown that the Toll immune pathway mediates the persistent and propagative transmission of rice stripe virus (RSV) in its insect vector (Laodelphax striatellus). However, whether other host factors are involved in the Toll pathway and how RSV counteracts the Toll immune response in L. striatellus remain unclear. Here, we reported that LsPellino also inhibited RSV infection in L. striatellus by interacting with LsTube and participating in the Toll immune pathway. In contrast, the viral nonstructural protein NS3 hijacked the suppressor of cytokine signaling 5 (LsSOCS5) to promote the degradation of LsPellino via the 26S proteasome pathway, thereby suppressing the Toll immune response. In summary, these findings demonstrate that RSV attenuates the Toll immune pathway by degradation of LsPellino to facilitate viral infection in insect vectors. Our research provides new insights into controlling the transmission of vector-borne viruses. IMPORTANCE Plant virus diseases pose a serious threat to global crop production. Nearly half of the known plant viruses are persistently transmitted by insect vectors, and these plant viruses must counteract various innate immune responses to maintain persistent infection. Here, we uncover a novel counter-defense mechanism against Toll antiviral defense. Our research showed that LsPellino exerts antiviral function by interacting with LsTube and participating in the Toll immune pathway. To counteract this immunity, a plant virus, rice stripe virus, attenuates the Toll immune pathway and promotes viral infection by using viral nonstructural protein NS3 to mediate the degradation of LsPellino in its insect vector, Laodelphax striatellus. This study not only contributes to a better understanding of the arms race between viruses and insect vectors but also provides a new perspective for controlling the transmission of plant viruses.
Collapse
Affiliation(s)
- Yu-Xiao Du
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Hua Qi
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yan-Hua Lu
- Yongjia County Agriculture and Rural Bureau, Yongjia, Zhejiang, China
| | - Bo-Xue Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Juan He
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yan Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiao-Wei Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Ping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Gang Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Lu L, Feng Q, Wang S, Ghafar MA, Cheng H, Zhou C, Wang L. miR-278-3p targets ATG16L1 to modulate autophagy and suppresses CLas proliferation in Diaphorina citri. Int J Biol Macromol 2025; 308:142441. [PMID: 40154689 DOI: 10.1016/j.ijbiomac.2025.142441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/13/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) is the primary cause of citrus Huanglongbing (HLB) and is transmitted by the Asian citrus psyllid, Diaphorina citri. MicroRNAs (miRNAs) are key posttranscriptional regulators involved in various biological processes, yet their role in D. citri's response to CLas infection remains unclear. In this study, we found that autophagy levels were significantly elevated in CLas-infected D. citri compared to non-infected individuals. Modulating autophagy influenced CLas titers, suggesting its role in pathogen suppression. Small RNA sequencing identified differentially expressed miRNAs, with miR-278-3p being significantly downregulated by 72.3%. Functional analyses revealed that miR-278-3p regulates autophagy by targeting ATG16L1. Inhibition of miR-278-3p increased autophagosome formation, whereas its overexpression suppressed autophagy. Dual-luciferase reporter assays confirmed miR-278-3p directly binds to the 3'UTR of ATG16L1, negatively regulating its expression. Notably, miR-278-3p inhibition reduced CLas titers by 48.7%, demonstrating its role in pathogen defense. These findings provide novel insights into the molecular mechanisms underlying insect-pathogen interactions and highlight the potential of miRNA-based strategies for controlling plant diseases transmitted by insect vectors. Understanding these regulatory pathways may lead to innovative pest and disease management approaches in agriculture.
Collapse
Affiliation(s)
- Liuyang Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qin Feng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shimin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Adeel Ghafar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haokun Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenghua Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Chen T, Jia Y, Tang Y, Chen J, Xu H, Qi G. Cotton leaf curl Multan virus activates autophagy in the whitefly AsiaII7, weakening its vectorial capacity for transmission. PEST MANAGEMENT SCIENCE 2025. [PMID: 39871813 DOI: 10.1002/ps.8674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Autophagy plays an important role against pathogen infections in both insects and plants. Insect vectors employ autophagy as an intrinsic antiviral defense mechanism against viral infections, whereas viruses can exploit autophagy to enhance their transmission via insect vectors. The Cotton leaf curl Multan virus (CLCuMuV) is transmitted by the AsiaII7 cryptic species of Bemisia tabaci, however, the role of autophagy is involved in regulating the transmission of this virus remains unclear. RESULT In this study, it was observed that CLCuMuV infection induced autophagy in AsiaII7 whitefly, as evidenced by an elevated in the level of ATG8-II and the upregulation of Atg3, Atg8, Atg9 and Atg12. Both the administration of the autophagy inhibitor bafilomycin A1 and the silencing of Atg9 expression increased the viral load and enhanced CLCuMuV transmission. Conversely, the activation of autophagy via rapamycin feeding significantly reduced the amount of CLCuMuV and inhibited the efficiency of virus transmission. CONCLUSION CLCuMuV infection can activate the autophagy pathway in whiteflies. The activation of autophagy leads to the subsequent degradation of the virus and suppresses CLCuMuV transmission efficiency, whereas suppression of autophagy promotes virus transmission. Our research provides insight into the potential role of autophagy in antiviral defense mechanisms. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Yanbo Jia
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
- Department of Life Sciences, Heibei University, Baoding, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Haiyun Xu
- Department of Life Sciences, Heibei University, Baoding, China
| | - Guojun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| |
Collapse
|
7
|
Wei Y, Yuan Q, Alshaya DS, Waheed A, Attia KA, Fiaz S, Iqbal MS. Characterizing the impact of CPSF30 gene disruption on TuMV infection in Arabidopsis thaliana. GM CROPS & FOOD 2024; 15:1-17. [PMID: 39351907 PMCID: PMC11445912 DOI: 10.1080/21645698.2024.2403776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
CPSF30, a key polyadenylation factor, also serves as an m6A reader, playing a crucial role in determining RNA fate post-transcription. While its homologs mammals are known to be vital for viral replication and immune evasion, the full scope of CPSF30 in plant, particular in viral regulation, remains less explored. Our study demonstrates that CPSF30 significantly facilitates the infection of turnip mosaic virus (TuMV) in Arabidopsis thaliana, as evidenced by infection experiments on the engineered cpsf30 mutant. Among the two isoforms, CPSF30-L, which were characterized with m6A binding activity, emerged as the primary isoform responding to TuMV infection. Analysis of m6A components revealed potential involvement of the m6A machinery in regulating TuMV infection. In contrast, CPSF30-S exhibited distinct subcellular localization, coalescing with P-body markers (AtDCP1 and AtDCP2) in cytoplasmic granules, suggesting divergent regulatory mechanisms between the isoforms. Furthermore, comprehensive mRNA-Seq and miRNA-Seq analysis of Col-0 and cpsf30 mutants revealed global transcriptional reprogramming, highlighting CPSF30's role in selectively modulating gene expression during TuMV infection. In conclusion, this research underscores CPSF30's critical role in the TuMV lifecycle and sets the stage for further exploration of its function in plant viral regulation.
Collapse
Affiliation(s)
- Yanping Wei
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Quan Yuan
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdul Waheed
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Shahid Iqbal
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| |
Collapse
|
8
|
Li L, Chen J, Sun Z. Exploring the shared pathogenic strategies of independently evolved effectors across distinct plant viruses. Trends Microbiol 2024; 32:1021-1033. [PMID: 38521726 DOI: 10.1016/j.tim.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
Plants have developed very diverse strategies to defend themselves against viral pathogens, among which plant hormones play pivotal roles. In response, some viruses have also deployed multifunctional viral effectors that effectively hijack key component hubs to counter or evade plant immune surveillance. Although significant progress has been made toward understanding counter-defense strategies that manipulate plant hormone regulatory molecules, these efforts have often been limited to an individual virus or specific host target/pathway. This review provides new insights into broad-spectrum antiviral responses in rice triggered by key components of phytohormone signaling, and highlights the common features of counter-defense strategies employed by distinct rice-infecting RNA viruses. These strategies involve the secretion of multifunctional virulence effectors that target the sophisticated phytohormone system, dampening immune responses by engaging with the same host targets. Additionally, the review provides an in-depth exploration of various viral effectors, emphasizing tertiary structure-based research and shared host targets. Understanding these conserved characteristics in detail may pave the way for molecular drug design, opening new opportunities to enhance broad-spectrum antiviral trials through precise engineering.
Collapse
Affiliation(s)
- Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Chen S, Zhong X, Wang Z, Chen B, Huang X, Xu S, Yang X, Zhou G, Zhang T. Rice stripe mosaic virus hijacks rice heading-related gene to promote the overwintering of its insect vector. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2000-2016. [PMID: 38923382 DOI: 10.1111/jipb.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Rice stripe mosaic virus (RSMV) is an emerging pathogen which significantly reduces rice yields in the southern region of China. It is transmitted by the leafhopper Recilia dorsalis, which overwinters in rice fields. Our field investigations revealed that RSMV infection causes delayed rice heading, resulting in a large number of green diseased plants remaining in winter rice fields. This creates a favorable environment for leafhoppers and viruses to overwinter, potentially contributing to the rapid spread and epidemic of the disease. Next, we explored the mechanism by which RSMV manipulates the developmental processes of the rice plant. A rice heading-related E3 ubiquitin ligase, Heading date Associated Factor 1 (HAF1), was found to be hijacked by the RSMV-encoded P6. The impairment of HAF1 function affects the ubiquitination and degradation of downstream proteins, HEADING DATE 1 and EARLY FLOWERING3, leading to a delay in rice heading. Our results provide new insights into the development regulation-based molecular interactions between virus and plant, and highlights the importance of understanding virus-vector-plant tripartite interactions for effective disease management strategies.
Collapse
Affiliation(s)
- Siping Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyi Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuqin Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sipei Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Huang DY, Qin JS, Dong RK, Liu SN, Chen N, Yuan DW, Li S, Wang Z, Xia X. Ben-JNK signaling is required for host mortality during Periplaneta fuliginosa densovirus infection. PEST MANAGEMENT SCIENCE 2024; 80:4495-4504. [PMID: 38676657 DOI: 10.1002/ps.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Cockroaches are widely acknowledged as significant vectors of pathogenic microorganisms. The Periplaneta fuliginosa densovirus (PfDNV) infects the smoky-brown cockroach P. fuliginosa and causes host mortality, which identifies the PfDNV as a species-specific and environmentally friendly biopesticide. However, although the biochemical characterization of PfDNV has been extensively studied, the immune response against PfDNV remains largely unclear. RESULTS Here, we investigated the replication of PfDNV and its associated pathological phenotype in the foregut and hindgut. Consequently, we dissected and performed transcriptome sequencing on the foregut, midgut, and hindgut separately. We revealed the up-regulation of immune response signaling pathway c-Jun N-terminal kinase (JNK) and apoptosis in response to viral infection. Furthermore, knockdown of the JNK upstream gene Ben resulted in a decrease in virus titer and delayed host mortality. CONCLUSION Taken together, our findings provide evidence that the Ben-JNK signaling plays a crucial role in PfDNV infection, leading to excessive apoptosis in intestinal tissues and ultimately resulting in the death of the host. Our results indicated that the host response to PfDNV fosters viral infection, thereby increasing host lethality. This underscores the potential of PfDNV as a viable, environmentally friendly biopesticide. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan-Yan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jia-Si Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ren-Ke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Su-Ning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Zhaowei Wang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Xiaoling Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Zheng X, Yuan J, Wan Y, Tang Y, Cao H, Wang J, Qian K, Zhang Y, Chen S, Xu B, Zhang Y, Liang P, Wu Q. Dual Guardians of Immunity: FoRab10 and FoRab29 in Frankliniella occidentalis Confer Resistance to Tomato Spotted Wilt Orthotospovirus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16661-16673. [PMID: 39021284 DOI: 10.1021/acs.jafc.4c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanran Wan
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sirui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Matsukura K, Matsumura M. The Spread of Southern Rice Black-Streaked Dwarf Virus Was Not Caused by Biological Changes in Vector Sogatella furcifera. Microorganisms 2024; 12:1204. [PMID: 38930586 PMCID: PMC11205324 DOI: 10.3390/microorganisms12061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The pandemic of Southern rice black-streaked dwarf virus (SRBSDV) in and after the late 2000s caused serious yield losses in rice in Southeast and East Asia. This virus was first recorded in China in 2001, but its exclusive vector insect, Sogatella furcifera, occurred there before then. To clarify the evolutionary origin of SRBSDV as the first plant virus transmitted by S. furcifera, we tested virus transmission using three chronological strains of S. furcifera, two of which were established before the first report of SRBSDV. When the strains fed on SRBSDV-infected rice plants were transferred to healthy rice plants, those established in 1989 and 1999 transmitted the virus to rice similarly to the strain established in 2010. SRBSDV quantification by RT-qPCR confirmed virus accumulation in the salivary glands of all three strains. Therefore, SRBSDV transmission by S. furcifera was not caused by biological changes in the vector, but probably by the genetic change of the virus from a closely related Fijivirus, Rice black-streaked dwarf virus, as suggested by ecological and molecular biological comparisons between the two viruses. This result will help us to better understand the evolutionary relationship between plant viruses and their vector insects and to better manage viral disease in rice cropping in Asia.
Collapse
Affiliation(s)
- Keiichiro Matsukura
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan
| | - Masaya Matsumura
- Koshi Research Station, Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Koshi 861-1192, Kumamoto, Japan
| |
Collapse
|
13
|
Lin F, Jing D, Zhang J, Sun Y, Du L, Li C, Lan Y, Zhou T. Introgression of OsAP47 by marker-assisted selection enhanced resistance against southern rice black-streaked dwarf virus disease. Virology 2024; 594:110060. [PMID: 38537391 DOI: 10.1016/j.virol.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Southern rice black-streaked dwarf virus disease (SRBSDVD) is the most destructive viral disease in rice. In order to breeding resistant cultivars, Insertion-Deletion (InDel) markers were developed linked to OsAP47, the first isolated major resistance gene against SRBSDVD. Marker-assisted selection (MAS) was conducted to introduce this gene into the commercial variety. A rice line carrying homozygous resistance allele of OsAP47 was selected and named Kanghei No. 201 (KH201). Evaluated by artificial inoculation, KH201 showed significantly higher resistance than the recurrent parent Suxiu No.867 (SX867). And no significant differences were detected for KH201 in the yield-related components, including spikelets per panicle (SPP), ripened grains per panicle (RGPP), 1000-grain weight (TGW) and panicles per square meter (PPSM), leading to stable theoretical yield. The results indicated that introgression of OsAP47 improved rice resistance and can avoid yield losses produced by SRBSDVD. KH201 was demonstrated as a resistance material that could be used in rice breeding.
Collapse
Affiliation(s)
- Feng Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China; College of Food Science, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Dedao Jing
- Zhenjiang Institute of Agricultural Sciences of the Ning-Zhen Hilly District, Zhenjiang, 212400, Jiangsu Province, China
| | - Jiayuan Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China; College of Food Science, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Yue Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China; College of Food Science, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Linlin Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chenyang Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Ying Lan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China; International Joint Center for Japonica Rice Research, Nanjing, 210014, Jiangsu Province, China.
| |
Collapse
|
14
|
Wang H, Chen Q, Wei T. Complex interactions among insect viruses-insect vector-arboviruses. INSECT SCIENCE 2024; 31:683-693. [PMID: 37877630 DOI: 10.1111/1744-7917.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Insects are the host or vector of diverse viruses including those that infect vertebrates, plants, and fungi. Insect viruses reside inside their insect hosts and are vertically transmitted from parent to offspring. The insect virus-host relationship is intricate, as these viruses can impact various aspects of insect biology, such as development, reproduction, sex ratios, and immunity. Arthropod-borne viruses (arboviruses) that cause substantial global health or agricultural problems can also be vertically transmitted to insect vector progeny. Multiple infections with insect viruses and arboviruses are common in nature. Such coinfections involve complex interactions, including synergism, dependence, and antagonism. Recent studies have shed light on the influence of insect viruses on the competence of insect vectors for arboviruses. In this review, we focus on the biological effects of insect viruses on the transmission of arboviruses by insects. We also discuss the potential mechanisms by which insect viruses affect the ability of hosts to transmit arboviruses, as well as potential strategies for disease control through manipulation of insect viruses. Analyses of the interactions among insect vectors, insect viruses and arboviruses will provide new opportunities for development of innovative strategies to control arbovirus transmission.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Yan W, Wang S, Liu J, Zhai D, Lu H, Li J, Bai R, Lei C, Song L, Zhao C, Yan F. Managing Super Pests: Interplay between Pathogens and Symbionts Informs Biocontrol of Whiteflies. Microorganisms 2024; 12:887. [PMID: 38792717 PMCID: PMC11123976 DOI: 10.3390/microorganisms12050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Bemisia tabaci is distributed globally and incurs considerable economic and ecological costs as an agricultural pest and viral vector. The entomopathogenic fungus Metarhizium anisopliae has been known for its insecticidal activity, but its impacts on whiteflies are understudied. We investigated how infection with the semi-persistently transmitted Cucurbit chlorotic yellows virus (CCYV) affects whitefly susceptibility to M. anisopliae exposure. We discovered that viruliferous whiteflies exhibited increased mortality when fungus infection was present compared to non-viruliferous insects. High throughput 16S rRNA sequencing also revealed significant alterations of the whitefly bacterial microbiome diversity and structure due to both CCYV and fungal presence. Specifically, the obligate symbiont Portiera decreased in relative abundance in viruliferous whiteflies exposed to M. anisopliae. Facultative Hamiltonella and Rickettsia symbionts exhibited variability across groups but dominated in fungus-treated non-viruliferous whiteflies. Our results illuminate triangular interplay between pest insects, their pathogens, and symbionts-dynamics which can inform integrated management strategies leveraging biopesticides This work underscores the promise of M. anisopliae for sustainable whitefly control while laying the groundwork for elucidating mechanisms behind microbe-mediated shifts in vector competence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (W.Y.); (S.W.); (J.L.); (D.Z.); (H.L.); (J.L.); (R.B.); (C.L.); (L.S.)
| | - Fengming Yan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (W.Y.); (S.W.); (J.L.); (D.Z.); (H.L.); (J.L.); (R.B.); (C.L.); (L.S.)
| |
Collapse
|
16
|
Tian S, Song Q, Zhou W, Wang J, Wang Y, An W, Wu Y, Zhao L. A viral movement protein targets host catalases for 26S proteasome-mediated degradation to facilitate viral infection and aphid transmission in wheat. MOLECULAR PLANT 2024; 17:614-630. [PMID: 38454602 DOI: 10.1016/j.molp.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
The infection of host plants by many different viruses causes reactive oxygen species (ROS) accumulation and yellowing symptoms, but the mechanisms through which plant viruses counteract ROS-mediated immunity to facilitate infection and symptom development have not been fully elucidated. Most plant viruses are transmitted by insect vectors in the field, but the molecular mechanisms underlying virus‒host-insect interactions are unclear. In this study, we investigated the interactions among wheat, barley yellow dwarf virus (BYDV), and its aphid vector and found that the BYDV movement protein (MP) interacts with both wheat catalases (CATs) and the 26S proteasome ubiquitin receptor non-ATPase regulatory subunit 2 homolog (PSMD2) to facilitate the 26S proteasome-mediated degradation of CATs, promoting viral infection, disease symptom development, and aphid transmission. Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs, which leading to increased accumulation of ROS and thereby enhanced viral infection. Interestingly, transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids. Consistent with this observation, silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids. In contrast, transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV. Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner. Collectively, our study reveals a molecular mechanism by which a plant virus manipulates the ROS production system of host plants to facilitate viral infection and transmission, shedding new light on the sophisticated interactions among viruses, host plants, and insect vectors.
Collapse
Affiliation(s)
- Shuyuan Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingting Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenmei Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingke Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Liu W, Wei T, Wang X. Plant reoviruses hijack autophagy in insect vectors. Trends Microbiol 2023; 31:1251-1261. [PMID: 37453843 DOI: 10.1016/j.tim.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Plant reoviruses, transmitted only by insect vectors, seriously threaten global cereal production. Understanding how insect vectors efficiently transmit the viruses is key to controlling the viral diseases. Autophagy commonly plays important roles in plant host defense against virus infection, but recent studies have shown that plant reoviruses can hijack the autophagy pathway in insect cells to enable their persistence in the insect and continued transmission to plants. Here, we summarize and discuss new insights on viral activation, evasion, regulation, and manipulation of autophagy within the insect vectors and the role of autophagy in virus survival in insect vectors. Deeper knowledge of the functions of autophagy in vectors may lead to novel strategies for blocking transmission of insect-borne plant viruses.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|