1
|
Munoz Navarrete K, Edwards KM, Mills KHG, Kamanová J, Rodriguez ME, Gorringe A, Preston A, Kampmann B, Gestal MC, Harvill ET, Dubey P, Diavatopoulos DA, Mattoo S, Scanlon KM, Locht C, Sebo P. Highlights of the 14th International Bordetella Symposium. mSphere 2025:e0018925. [PMID: 40377335 DOI: 10.1128/msphere.00189-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Pertussis, or whooping cough, is a highly contagious and acute respiratory illness caused primarily by the gram-negative coccobacillus Bordetella pertussis. Despite near-universal vaccination, pertussis remains one of the least-controlled vaccine-preventable infectious diseases. Since 2023, pertussis incidence has been rising, and widespread pertussis outbreaks have resurged in many countries. In response to these emerging challenges, almost 300 experts from institutions across 24 countries convened at the 14th International Bordetella Symposium in Prague, Czech Republic, from 24 to 28 June 2024 to discuss pertussis epidemiology and research and strategies to mitigate the global pertussis burden. We present here the highlights of the symposium, comprising epidemiological and clinical aspects of Bordetella infections, results of clinical trials of pertussis vaccination in pregnant women and effectiveness of maternal vaccination in protecting newborn infants in Africa and Europe, the controlled human infection model (CHIM), and the latest insights into the biology, immunology, and pathogenesis of B. pertussis infection.
Collapse
Affiliation(s)
| | - Kathryn M Edwards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Leinster, Ireland
| | - Jana Kamanová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - María Eugenia Rodriguez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires Province, Argentina
| | - Andrew Gorringe
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Andrew Preston
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Beate Kampmann
- Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Institute of International Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Monica C Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Eric T Harvill
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Dimitri A Diavatopoulos
- Laboratory of Medical Immunology, Radboud Community of Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Seema Mattoo
- Departments of Biological Sciences and Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Karen M Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Camille Locht
- Université Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019 Unité Mixte de Recherche 8204, Center for Infection and Immunity of Lille, Lille, France
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Parrish KM, Gestal MC. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 2024; 92:e0017524. [PMID: 39007622 PMCID: PMC11385729 DOI: 10.1128/iai.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.
Collapse
Affiliation(s)
- Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
4
|
Carrica MDC, Gorgojo JP, Alvarez-Hayes J, Valdez HA, Lamberti YA, Rodriguez ME. BPP0974 is a Bordetella parapertussis adhesin expressed in the avirulent phase, implicated in biofilm formation and intracellular survival. Microb Pathog 2024; 193:106754. [PMID: 38897361 DOI: 10.1016/j.micpath.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
B. parapertussis is a bacterium that causes whooping cough, a severe respiratory infection disease, that has shown an increased incidence in the population. Upon transmission through aerosol droplets, the initial steps of host colonization critically depend on the bacterial adhesins. We here described BPP0974, a B. parapertussis protein that exhibits the typical domain architecture of the large repetitive RTX adhesin family. BPP0974 was found to be retained in the bacterial membrane and secreted into the culture medium. This protein was found overexpressed in the avirulent phase of B. parapertussis, the phenotype proposed for initial host colonization. Interestingly, BPP0974 was found relevant for the biofilm formation as well as involved in the bacterial attachment to and survival within the respiratory epithelial cells. Taken together, our results suggest a role for BPP0974 in the early host colonization and pathogenesis of B. parapertussis.
Collapse
Affiliation(s)
- Mariela Del Carmen Carrica
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez-Hayes
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Alberto Valdez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Yanina Andrea Lamberti
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
5
|
Zaytsev EM, Britsina MV, Ozeretskovskaya MN, Zaitsev AE. Protective Activity and Safety of Experimental Acellular Pertussis Vaccines Based on Antigenic Complexes Isolated from Biofilm and Planktonic Cultures of Bordetella pertussis. Bull Exp Biol Med 2024; 177:349-352. [PMID: 39126548 DOI: 10.1007/s10517-024-06187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 08/12/2024]
Abstract
Continued circulation of the whooping cough pathogen, even in countries with high vaccine coverage, can be related to persistence of Bordetella pertussis biofilms in the respiratory tract. The films differ from planktonic cells by increased resistance to the host immune system and antibacterial drugs. The available acellular pertussis vaccines (aPV) containing antigens isolated from planktonic cultures of B. pertussis protect from severe forms of whooping cough, but do not effectively influence circulation of virulent strains in the subclinical forms of the disease and asymptomatic carriage. It is promising to create new generation aPV based on antigens isolated from biofilm cultures of B. pertussis capable of more effectively controlling the entire infectious cycle of whooping cough, including colonization, persistence, and transmission of the pathogen. From antigenic complexes isolated from the culture medium of biofilm and planktonic cultures of the strain B. pertussis No. 317 (serotype 1.2.3), experimental aPV were made: aPV-B and aPV-P, respectively. In intracerebral infection of mice with a virulent strain of B. pertussis, aPV-B demonstrated 2.5-fold higher protective activity than aPV-P and also more effectively reduced colonization of the lungs by B. pertussis cells in mice after intranasal infection with a virulent strain. Both vaccine preparations were safe and did not cause death in mice after administration of histamine.
Collapse
Affiliation(s)
- E M Zaytsev
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.
| | - M V Britsina
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | | | - A E Zaitsev
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| |
Collapse
|
6
|
Hall JM, Gutiérrez-Ferman JL, Shamseldin MM, Guo M, Gupta YA, Deora R, Dubey P. Opposing effects of acellular and whole cell pertussis vaccines on Bordetella pertussis biofilm formation, Siglec-F+ neutrophil recruitment and bacterial clearance in mouse nasal tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576795. [PMID: 38328073 PMCID: PMC10849580 DOI: 10.1101/2024.01.23.576795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Despite global vaccination, pertussis caused by Bordetella pertussis (Bp) is resurging. Pertussis resurgence is correlated with the switch from whole cell vaccines (wPV) that elicit TH1/TH17 polarized immune responses to acellular pertussis vaccines (aPV) that elicit primarily TH2 polarized immune responses. One explanation for the increased incidence in aPV-immunized individuals is the lack of bacterial clearance from the nose. To understand the host and bacterial mechanisms that contribute to Bp persistence, we evaluated bacterial localization and the immune response in the nasal associated tissues (NT) of naïve and immunized mice following Bp challenge. Bp resided in the NT of unimmunized and aPV-immunized mice as biofilms. In contrast, Bp biofilms were not observed in wPV-immunized mice. Following infection, Siglec-F+ neutrophils, critical for eliminating Bp from the nose, were recruited to the nose at higher levels in wPV immunized mice compared to aPV immunized mice. Consistent with this observation, the neutrophil chemokine CXCL1 was only detected in the NT of wPV immunized mice. Importantly, the bacteria and immune cells were primarily localized within the NT and were not recovered by nasal lavage (NL). Together, our data suggest that the TH2 polarized immune response generated by aPV vaccination facilitates persistence in the NT by impeding the infiltration of immune effectors and the eradication of biofilms In contrast, the TH1/TH17 immune phenotype generated by wPV, recruits Siglec-F+ neutrophils that rapidly eliminate the bacterial burden and prevent biofilm establishment. Thus, our work shows that aPV and wPV have opposing effects on Bp biofilm formation in the respiratory tract and provides a mechanistic explanation for the inability of aPV vaccination to control bacterial numbers in the nose and prevent transmission.
Collapse
Affiliation(s)
- Jesse M. Hall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | | | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University Ain Helwan, Helwan, 11795, Egypt
| | - Myra Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Yash A. Gupta
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|