1
|
Soverina S, Gilliland HN, Olive AJ. Pathogenicity and virulence of Mycobacterium abscessus. Virulence 2025; 16:2508813. [PMID: 40415550 PMCID: PMC12118445 DOI: 10.1080/21505594.2025.2508813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM), such as Mycobacterium abscessus (Mab) are an increasing cause of human disease. While the majority of immunocompetent hosts control Mab infections, the robust survival of Mab within the environment has shaped survival in human cells to help drive persistence and cause inflammatory damage in susceptible individuals. With high intrinsic resistance to antibiotics, there is an important need to fully understand how Mab causes infection, define protective host pathways that control disease, and develop new strategies to treat those at high risk. This review will examine the existing literature related to host-Mab interactions with a focus on virulence, the host response, and therapy development. The goal is to highlight key gaps in our understanding and describe novel approaches to encourage new research avenues that better define the pathogenesis and host response against this increasingly important human pathogen.
Collapse
Affiliation(s)
- Soledad Soverina
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Haleigh N. Gilliland
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Wang X, Dai Y, Wang X, Li L, Feng Y, Liu S, Kou Z, Wang L, Wang F, Chen Y, Lei X. Mycobacteroides abscessus subspecies: a comparative genomic analysis reveals unique metabolic activities and drug resistance patterns. BMC Microbiol 2025; 25:308. [PMID: 40389879 PMCID: PMC12090666 DOI: 10.1186/s12866-025-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/28/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Mycobacteroides abscessus poses a considerable and growing threat to public health due to its resistance against most antibiotics and low cure rate. For a comprehensive understanding of the genomic characteristics and drug resistance mechanisms of M. abscessus, clinical isolates from diverse sources were collected and analyzed. RESULTS The clinical M. abscessus complex analyzed herein primarily comprised two subspecies: Mycobacteroides abscessus subsp. abscessus and Mycobacteroides abscessus subsp. massiliense. Furthermore, comparative genomic and single nucleotide polymorphism analyses revealed distinct metabolic activities among subspecies. Subsequent examination of core hub gene mutations confirmed the presence of distinct metabolic and biosynthetic pathways between M. abscessus subspecies, which may have contributed to their differential drug resistance and may aid in providing targeted interventions. Understanding this subtle genomic variation is crucial for improving treatment strategies and patient outcomes. Additional analyses identified potential novel amikacin and moxifloxacin resistance genes, offering a promising avenue for investigating M. abscessus drug resistance. CONCLUSIONS Through comparative genomic analysis, we revealed the unique metabolic activities of M. abscessus subsp. abscessus and M. abscessus subsp. massiliense, providing a scientific basis for future diagnostic and personalized management strategies. Identifying possible novel amikacin and moxifloxacin resistance genes within these subspecies offers insights for future drug development efforts and enhances our understanding of the mechanisms underlying M. abscessus drug resistance.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, Daping Hospital, Army Medical University (Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China
| | - Yongdong Dai
- Shanghai Majorbio Bio-Pharm Technology Co. Ltd, Shanghai, 200120, China
| | - Xiao Wang
- Department of Dermatology, Daping Hospital, Army Medical University (Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Army Medical University (Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China
| | - Yanhai Feng
- Department of Dermatology, Daping Hospital, Army Medical University (Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China
- Shigatse Branch of Xinqiao Hospital, Army 953 Hospital, Army Medical University, (Third Military Medical University), Shigatse, 857000, China
| | - Shunying Liu
- Department of Dermatology, Daping Hospital, Army Medical University (Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China
| | - Zhenyu Kou
- Department of Dermatology, Daping Hospital, Army Medical University (Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China
| | - Liang Wang
- Department of Dermatology, Daping Hospital, Army Medical University (Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China
| | - Fangjie Wang
- The First Research Department, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, 109 Baoyu Road, Shapingba District, Chongqing, 400036, China.
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Army Medical University (Third Military Medical University), No.10, Yangtze River Branch Road, Daping, Yuzhong District, Chongqing, 400042, China.
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400042, China.
| |
Collapse
|
3
|
Basher M, Gur M, Meir M. Insights on the Pathogenesis of Mycobacterium abscessus Infection in Patients with Cystic Fibrosis. J Clin Med 2025; 14:3492. [PMID: 40429486 PMCID: PMC12112745 DOI: 10.3390/jcm14103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
People with CF (pwCF) have a significant risk for pulmonary infections with non-tuberculous mycobacteria (NTM), particularly Mycobacterium abscessus (Mab). Mab is an emerging pathogen, which causes pulmonary infections in patients with chronic lung diseases, particularly CF; Mab pulmonary disease leads to progressive pulmonary dysfunction and increased morbidity and mortality. Despite advances in CF care, including CFTR modulators (CFTRm), Mab continues to pose a therapeutic challenge, with significant long-term medical burden. This review provides insights into the complex host-pathogen interplay of Mab infections in pwCF. It provides a detailed overview of Mab bacterial virulence factors, including biofilm formation, secretion systems, the virulence-associated rough morphotype, and antibiotic resistance mechanisms. This review also summarizes features conferring susceptibility of the CF host to Mab infections, alongside the contribution of the CF-host environment to the pathogenesis of Mab infection, such as antibiotic-derived microbial selection, within-host mycobacterial evolution, and interactions with co-pathogens such as Pseudomonas aeruginosa (PA). Finally, the therapeutic implications and novel treatments for Mab are discussed, considering the complex host-pathogen interplay.
Collapse
Affiliation(s)
- Mai Basher
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Clinical Research Institute Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| | - Michal Gur
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Pediatric Pulmonary Institute and CF Center, Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Michal Meir
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Clinical Research Institute Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
- Pediatric Infectious Diseases Unit, Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
4
|
Wu Y, Schnitker F, Liu Y, Keitsch S, Caicci F, Schumacher F, Riehle A, Pollmeier B, Kehrmann J, Kleuser B, Kamler M, Szabo I, Grassmé H, Gulbins E. Sphingosine kills Mycobacteria and suppresses mycobacterial lung infections. J Mol Med (Berl) 2025; 103:547-558. [PMID: 40153002 PMCID: PMC12078450 DOI: 10.1007/s00109-025-02534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
Tuberculous mycobacterial infections pose a substantial global health burden because of their prevalence and multi-drug resistance. The current approach to tackling these infections primarily involves developing new antibiotics or combining existing ones, an approach that often proves ineffective in the specific targeting of mycobacteria. We investigated the effect of sphingosine on tuberculous Mycobacteria in vitro and mycobacterial infections in vivo to test whether sphingosine could potentially be used as a novel drug against tuberculosis. Sphingosine inhibited mycobacterial growth and eradicated mycobacteria in vitro. Mechanistically, sphingosine increased bacterial membrane permeability and induced marked changes on the bacterial plasma membrane evidenced by electron microscopy studies. Administration of sphingosine in a mouse model of pulmonary infection with Bacillus Calmette-Guérin (BCG) greatly reduced the number of bacteria in the lung and prevented pulmonary inflammation. Furthermore, infection of ex vivo human lung tissue samples with BCG and treatment with sphingosine showed that sphingosine also kills BCG in human bronchi. Our findings suggest that sphingosine may be a potential therapeutic intervention against mycobacterial infections. KEY MESSAGES: Sphingosine inhibits mycobacterial growth in vitro. Sphingosine disrupts bacterial membrane integrity. Sphingosine reduces bacterial load in mouse pulmonary infection model. Sphingosine eradicates mycobacteria in human bronchi ex vivo.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Fabian Schnitker
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yongjie Liu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Fabian Schumacher
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Andrea Riehle
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara Pollmeier
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy
| | - Heike Grassmé
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Dept. of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Prata RBDS, Pinheiro RO. Cell Death Mechanisms in Mycobacterium abscessus Infection: A Double-Edged Sword. Pathogens 2025; 14:391. [PMID: 40333197 PMCID: PMC12030298 DOI: 10.3390/pathogens14040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025] Open
Abstract
Infections caused by non-tuberculous mycobacteria (NTM), such as Mycobacterium abscessus, elicit diverse cell death mechanisms including apoptosis, necrosis, and pyroptosis, which play key roles in immunopathogenesis. NTM can manipulate these cell death pathways to evade host immune responses, ensuring their intracellular survival and persistence. Apoptosis may aid in antigen presentation and immune activation, while necrosis and pyroptosis trigger excessive inflammation, leading to tissue damage. Autophagy, a crucial cellular defense mechanism, is often induced in response to NTM infection; however, M. abscessus has evolved mechanisms to inhibit autophagic processes, enhancing its ability to survive within host cells. This manipulation of cell death pathways, particularly the dysregulation of autophagy and ferroptosis, contributes to chronic infection, immune evasion, and tissue damage, complicating disease management. Understanding these mechanisms offers potential therapeutic targets for improving treatment strategies against M. abscessus infections.
Collapse
Affiliation(s)
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| |
Collapse
|
6
|
Moore JE, Millar BC. Clinical Trials involving Mycobacterium abscessus: An update. THE ULSTER MEDICAL JOURNAL 2025; 94:28-30. [PMID: 40313987 PMCID: PMC12042854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- J E. Moore
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast, BT9 7AD, Northern Ireland School of Medicine, Dentistry and Biomedical Sciences, The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, BT9 7BL, Northern Ireland School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland Northern Ireland Regional Adult Cystic Fibrosis Centre, Belfast City Hospital, Belfast, BT9 7AB, Northern Ireland
| | - B C. Millar
- Northern Ireland Public Health Laboratory, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AD, Northern Ireland, United Kingdom
| |
Collapse
|
7
|
Ruedas-López A, Tato M, Lerma L, Esteban J, Muñoz-Egea MC, Toro C, Domingo D, Prados-Rosales R, López-Roa P. Infection model of THP-1 cells, growth dynamics, and antimicrobial susceptibility of clinical Mycobacterium abscessus isolates from cystic fibrosis patients: Results from a multicentre study. PLoS One 2025; 20:e0319710. [PMID: 40163512 PMCID: PMC11957364 DOI: 10.1371/journal.pone.0319710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 04/02/2025] Open
Abstract
Mycobacterium abscessus (MABS) is an emerging pathogen causing severe infections, particularly in cystic fibrosis (CF) patients. A prospective multicentre study included CF patients from four hospitals in Madrid between January 2022 and January 2024. Respiratory samples were collected, and MABS isolates were analysed to determine their antibiotic resistance profiles, growth dynamics, infection kinetics, intracellular behaviour, and pathogenicity. Intracellular bacterial growth and macrophage viability were evaluated through THP-1 cell infection experiments, with and without amikacin. Phenotypic susceptibility testing and genotypic susceptibility testing were also conducted. Among 148 patients, 28 MABS isolates were detected from 16 patients (10.8%), and the first isolate from each patient was analysed. Isolation was more prevalent in younger individuals (median age 24.4 vs. 28.4 years, p = 0.049), and most isolates (81.25%) were identified as M. abscessus subsp. abscessus (MABSa). MABS isolates exhibited high resistance rates (>85%) to doxycycline, tobramycin, ciprofloxacin, moxifloxacin (75%) and cotrimoxazole (56.3%). Amikacin resistance (18.8%) was higher than expected, and inducible (10/16 isolates) or acquired (1/16 isolate) macrolide resistance was found in 68.8% of strains. Phenotypic and genotypic testing results were fully concordant. Tigecycline demonstrated strong in vitro activity, and resistance to imipenem, linezolid, and cefoxitin remained low. Rough strains displayed lower optical density values in later growth stages, probably due to their increased aggregation. In THP-1 cell infection experiments, rough strains showed higher intracellular bacterial loads with statistically significant differences observed at 2 hours (both with and without amikacin) and at 72 hours (with amikacin) post infection. Notably, rough strains also exhibited a higher internalisation index and greater impact on THP-1 cell viability, especially in the absence of amikacin.
Collapse
Affiliation(s)
- Alba Ruedas-López
- Clinical Microbiology and Parasitology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Tato
- Clinical Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Laura Lerma
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jaime Esteban
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- .Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM. Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - María-Carmen Muñoz-Egea
- .Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM. Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Carlos Toro
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Diego Domingo
- Clinical Microbiology and Parasitology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula López-Roa
- Clinical Microbiology and Parasitology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
8
|
Karthikeyan A, Tabassum N, Jeong GJ, Javaid A, Mani AK, Kim TH, Kim YM, Jung WK, Khan F. Alleviation of mycobacterial infection by impairing motility and biofilm formation via natural and synthetic molecules. World J Microbiol Biotechnol 2025; 41:113. [PMID: 40148661 DOI: 10.1007/s11274-025-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Mycobacterium species show distinctive characteristics with significant medical implications. Mycobacteria, including Mycobacterium tuberculosis and non-tuberculous mycobacteria, can form biofilms that facilitate their survival in hostile environments and contribute to development of antibiotic resistance and responses by the host immune system. Mycobacterial biofilm development is a complex process involving multiple genetic determinants, notably mmpL genes, which regulate lipid transport and support cell wall integrity, and the groEL gene, which is essential for biofilm maturation. Sliding motility, a passive form of surface movement observed across various mycobacterial species, is closely associated with biofilm formation and colony morphology. The unique sliding motility and biofilm-forming capabilities of Mycobacterium spp. are pivotal for their pathogenicity and persistence in diverse environments. A comprehensive understanding of the regulatory mechanisms governing these processes is crucial for the development of novel therapeutic strategies against mycobacterial infections. This review provides a detailed examination of our current knowledge regarding mycobacterial biofilm formation and motility, with a focus on regulation of these processes, their impact on pathogenicity, and potential avenues for therapeutic intervention. To this end, the potential of natural and synthetic compounds, including nanomaterials, in combating mycobacterial biofilms and inhibiting sliding motility are discussed as well. These compounds offer new avenues for the treatment of drug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Abirami Karthikeyan
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Aqib Javaid
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Arun Kumar Mani
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed University, Tamil Nadu, Kumbakonam, 612001, India
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea.
- International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Niño-Martínez N, Audreyartha K, Cheung K, Parra SM, Martínez-Castañón G, Bach H. AgNP-Containing Niosomes Functionalized with Fucoidan Potentiated the Intracellular Killing of Mycobacterium abscessus in Macrophages. Int J Mol Sci 2025; 26:1366. [PMID: 39941133 PMCID: PMC11818696 DOI: 10.3390/ijms26031366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Intracellular pathogens represent a challenge for therapy because the antibiotics used need to diffuse into the cytoplasm to target the pathogens. The situation is more complicated in the mycobacteria family because members of this family infect and multiply within macrophages, the cells responsible for clearing microorganisms in the body. In addition, mycobacteria members are enclosed inside pathogen-containing vesicles or phagosomes. The treatments of these pathogens are aggravated when these pathogens acquire resistance to antibiotic molecules. As a result, new antimicrobial alternatives are needed. Niosomes are vesicles composed of cholesterol and nonionic surfactants that can be used for antibiotic encapsulation and delivery. The current study developed a systematic formulation of niosomes to determine the best option for niosome functionalizing for precise delivery to the intracellular pathogen Mycobacterium abscessus. Silver nanoparticles (AgNPs) were synthesized using gallic acid as an antibacterial agent. Then, niosomes were prepared and characterized, following the encapsulation of AgNPs functionalized with a single-chain antibody screened against the cell wall glycopeptidolipid of Mycobacterium abscessus. For a precise delivery of the cargo into macrophages, the niosomes were also functionalized with the polysaccharide fucoidan, taken specifically by the scavenger receptor class A expressed on the surface of macrophages. Results of the study showed a steady decrease in the intracellular pathogen load after 48 h post-infection. In conclusion, this system could be developed into a platform to target other types of intracellular pathogens and as an option for antimicrobial therapy.
Collapse
Affiliation(s)
- Nereyda Niño-Martínez
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H3Z6, Canada; (K.A.); (K.C.)
- Facultad de Ciencias, UASLP, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
| | - Kayla Audreyartha
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H3Z6, Canada; (K.A.); (K.C.)
| | - Kaitlyn Cheung
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H3Z6, Canada; (K.A.); (K.C.)
| | - Sol Melchor Parra
- Escuela de Ciencias, Universidad de las Americas Puebla, Puebla 72810, Mexico;
| | | | - Horacio Bach
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H3Z6, Canada; (K.A.); (K.C.)
| |
Collapse
|
10
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
11
|
Zakhareva EV, Martini BA, Salina EG. Mechanisms of Virulence of Mycobacterium abscessus and Interaction with the Host Immune System. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S214-S232. [PMID: 40164160 DOI: 10.1134/s0006297924603496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 04/02/2025]
Abstract
Mycobacterium abscessus is a non-tuberculosis fast-growing mycobacterium that has recently become a serious concern due to its rapidly increasing prevalence worldwide, mainly in individuals with a high susceptibility to pulmonary infections, for example, patients with cystic fibrosis, bronchiectasis, chronic obstructive pulmonary disease, and previous tuberculosis infection. According to present estimations, at least 20% of patients with cystic fibrosis are infected with M. abscessus. This bacterium is extremely resistant to most drugs, leading to a severe and difficult-to-treat infection. That is why M. abscessus, previously classified as a low-virulent opportunistic pathogen, is now reconsidered as a true pathogenic bacterium. There are no effective drugs for successful M. abscessus infection therapy, as well as no vaccines to prevent its spread. This review focuses on the molecular mechanisms ensuring M. abscessus resistance to immune response and its ability to survive in the aggressive intracellular environment of human immune cells, and describes virulence factors that can serve as potential targets for the development of innovative therapeutic approaches to combat the spread of infections caused by M. abscessus.
Collapse
Affiliation(s)
- Ekaterina V Zakhareva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Science, Moscow, 119071, Russia
| | - Billy A Martini
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Science, Moscow, 119071, Russia
| | - Elena G Salina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Science, Moscow, 119071, Russia.
| |
Collapse
|
12
|
Baker EJ, Allcott G, Cox JAG. Polymicrobial infection in cystic fibrosis and future perspectives for improving Mycobacterium abscessus drug discovery. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:38. [PMID: 39843836 PMCID: PMC11721438 DOI: 10.1038/s44259-024-00060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/03/2024] [Indexed: 01/24/2025]
Abstract
Polymicrobial communities inhabit the cystic fibrosis (CF) airway, whereby microbial interactions can occur. One prominent CF pathogen is Mycobacterium abscessus, whose treatment is largely unsuccessful. This creates a need to discover novel antimicrobial agents to treat M. abscessus, however the methods used within antibiotic discovery are typically monomicrobial. This review will discuss this pathogen whilst considering the CF polymicrobial environment, to highlight future perspectives to improve M. abscessus drug discovery.
Collapse
Affiliation(s)
- Emily J Baker
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Gemma Allcott
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
13
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Pichler V, Dalkilic L, Shoaib G, Shapira T, Rankine-Wilson L, Boudehen YM, Chao JD, Sexton D, Prieto M, Quon BS, Tocheva EI, Kremer L, Hsiao W, Av-Gay Y. The diversity of clinical Mycobacterium abscessus isolates in morphology, glycopeptidolipids and infection rates in a macrophage model. J Med Microbiol 2024; 73. [PMID: 39158416 DOI: 10.1099/jmm.0.001869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Introduction. Mycobacterium abscessus (MABS) is a pathogenic bacterium that can cause severe lung infections, particularly in individuals with cystic fibrosis. MABS colonies can exhibit either a smooth (S) or rough (R) morphotype, influenced by the presence or absence of glycopeptidolipids (GPLs) on their surface, respectively. Despite the clinical significance of these morphotypes, the relationship between GPL levels, morphotype and the pathogenesis of MABS infections remains poorly understood.Gap statement. The mechanisms and implications of GPL production and morphotypes in clinical MABS infections are unclear. There is a gap in understanding their correlation with infectivity and pathogenicity, particularly in patients with underlying lung disease.Aim. This study aimed to investigate the correlation between MABS morphology, GPL and infectivity by analysing strains from cystic fibrosis patients' sputum samples.Methodology. MABS was isolated from patient sputum samples and categorized by morphotype, GPL profile and replication rate in macrophages. A high-content ex vivo infection model using THP-1 cells assessed the infectivity of both clinical and laboratory strains.Results. Our findings revealed that around 50 % of isolates displayed mixed morphologies. GPL analysis confirmed a consistent relationship between GPL content and morphotype that was only found in smooth isolates. Across morphotype groups, no differences were observed in vitro, yet clinical R strains were observed to replicate at higher levels in the THP-1 infection model. Moreover, the proportion of infected macrophages was notably higher among clinical R strains compared to their S counterparts at 72 h post-infection. Clinical variants also infected THP-1 cells at significantly higher rates compared to laboratory strains, highlighting the limited translatability of lab strain infection data to clinical contexts.Conclusion. Our study confirmed the general correlation between morphotype and GPL levels in smooth strains yet unveiled more variability within morphotype groups than previously recognized, particularly during intracellular infection. As the R morphotype is the highest clinical concern, these findings contribute to the expanding knowledge base surrounding MABS infections, offering insights that can steer diagnostic methodologies and treatment approaches.
Collapse
Affiliation(s)
- Virginia Pichler
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- INSERM, IRIM, 34293 Montpellier, France
| | - Lara Dalkilic
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ghazaleh Shoaib
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Leah Rankine-Wilson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - Joseph D Chao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Danielle Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Miguel Prieto
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bradley S Quon
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - William Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Yossef Av-Gay
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Chung CH, Chang DC, Rhoads NM, Shay MR, Srinivasan K, Okezue MA, Brunaugh AD, Chandrasekaran S. Transfer learning predicts species-specific drug interactions in emerging pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597386. [PMID: 38895385 PMCID: PMC11185605 DOI: 10.1101/2024.06.04.597386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Machine learning (ML) algorithms are necessary to efficiently identify potent drug combinations within a large candidate space to combat drug resistance. However, existing ML approaches cannot be applied to emerging and under-studied pathogens with limited training data. To address this, we developed a transfer learning and crowdsourcing framework (TACTIC) to train ML models on data from multiple bacteria. TACTIC was built using 2,965 drug interactions from 12 bacterial strains and outperformed traditional ML models in predicting drug interaction outcomes for species that lack training data. Top TACTIC model features revealed genetic and metabolic factors that influence cross-species and species-specific drug interaction outcomes. Upon analyzing ~600,000 predicted drug interactions across 9 metabolic environments and 18 bacterial strains, we identified a small set of drug interactions that are selectively synergistic against Gram-negative (e.g., A. baumannii) and non-tuberculous mycobacteria (NTM) pathogens. We experimentally validated synergistic drug combinations containing clarithromycin, ampicillin, and mecillinam against M. abscessus, an emerging pathogen with growing levels of antibiotic resistance. Lastly, we leveraged TACTIC to propose selectively synergistic drug combinations to treat bacterial eye infections (endophthalmitis).
Collapse
Affiliation(s)
- Carolina H. Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David C. Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicole M. Rhoads
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline R. Shay
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Karthik Srinivasan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mercy A. Okezue
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, 48109, USA
| | - Ashlee D. Brunaugh
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, 48109, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
16
|
Kaiumov KA, Marchenko VV, Kokorev DA, Borodulina EA, Ismatullin DD, Lyamin AV. Construction of Composite Correlation Index Matrix and Analysis of Cultural Properties of Representatives of Mycobacterium abscessus Complex Isolated from Patients with Cystic Fibrosis. Int J Mycobacteriol 2024; 13:133-139. [PMID: 38916382 DOI: 10.4103/ijmy.ijmy_70_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Microbiological diagnosis of mycobacteriosis is often difficult, as it is necessary to differentiate between transient colonization and active infection. METHODS We studied the cultural properties of Mycobacterium abscessus complex (MABSc) strains obtained from cystic fibrosis patients, and also analyzed composite correlation index (CCI) values in patients with repeated MABSc inoculation and their correlation with the presence of clinical and radiological manifestations of mycobacteriosis. RESULTS As a result, MABSc more often grew in S-form colonies in patients without clinical manifestations of chronic infection, while R-form colonies were characteristic of patients with chronic infection and clinical symptoms. At the same time, in patients examined once, no growth of colonies in the R-form was recorded, and all strains produced growth in the form of either S-colonies or in the S- and R-forms simultaneously. Statistically significant results were obtained for the relationship of the CCI with the clinical and radiological picture. In addition, a heterogeneous MABSc population with low CCI score values correlated with the development of mycobacteriosis in patients. In patients with high CCI score values (homogeneity of isolated strains), on the contrary, there were no radiological or clinical signs of the disease. CONCLUSION These data make it possible to build a strategy for monitoring patients depending on changes in CCI score values. The use of CCI matrix to evaluate microorganisms' identification results is a potentially new method that expands the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
Collapse
Affiliation(s)
- Karim Askerovich Kaiumov
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | - Varvara Vyacheslavovna Marchenko
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | - Daniil Andreevich Kokorev
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | | | - Danir Damirovich Ismatullin
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | - Artem Viktorovich Lyamin
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| |
Collapse
|
17
|
Leon-Icaza SA, Bagayoko S, Vergé R, Iakobachvili N, Ferrand C, Aydogan T, Bernard C, Sanchez Dafun A, Murris-Espin M, Mazières J, Bordignon PJ, Mazères S, Bernes-Lasserre P, Ramé V, Lagarde JM, Marcoux J, Bousquet MP, Chalut C, Guilhot C, Clevers H, Peters PJ, Molle V, Lugo-Villarino G, Cam K, Berry L, Meunier E, Cougoule C. Druggable redox pathways against Mycobacterium abscessus in cystic fibrosis patient-derived airway organoids. PLoS Pathog 2023; 19:e1011559. [PMID: 37619220 PMCID: PMC10449475 DOI: 10.1371/journal.ppat.1011559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.
Collapse
Affiliation(s)
- Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Salimata Bagayoko
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Romain Vergé
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Nino Iakobachvili
- M4i Nanoscopy Division, Maastricht University, Maastricht, Netherlands
| | - Chloé Ferrand
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Talip Aydogan
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Célia Bernard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Marlène Murris-Espin
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Toulouse, France
- Centre de ressource et de compétence pour la mucoviscidose de l’adulte (CRCM adulte), CHU de Toulouse, Toulouse, France
| | - Julien Mazières
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Toulouse, France
| | - Pierre Jean Bordignon
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | | | - Victoria Ramé
- Imactiv-3D SAS, 1 Place Pierre POTIER, Toulouse, France
| | | | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Netherlands
| | - Peter J. Peters
- M4i Nanoscopy Division, Maastricht University, Maastricht, Netherlands
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Kaymeuang Cam
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|