1
|
Lohia GK, Riquelme SA. Influence of cell bioenergetics on host-pathogen interaction in the lung. Front Immunol 2025; 16:1549293. [PMID: 40248701 PMCID: PMC12003392 DOI: 10.3389/fimmu.2025.1549293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Pulmonary diseases, arising from infections caused by bacteria, fungi, and viruses, or stemming from underlying genetic factors are one of the leading causes of mortality in humans, accounting for millions of deaths every year. At the onset of pulmonary diseases, crucial roles are played by phagocytic immune cells, particularly tissue-resident macrophages, in regulating the immune response at the mucosal barrier. Recent strides have illuminated the pivotal role of host bioenergetics modulated by metabolites derived from both pathogens and hosts in influencing the pathophysiology of major organs. Their influence extends to processes such as the infiltration of immune cells, activation of macrophages, and the polarization phenomenon. Furthermore, host-derived metabolites, such as itaconate, contribute to the promotion of anti-inflammatory responses, thereby preventing immunopathology and facilitating the preservation of mucosal niches to thrive for the long-term. This review explores recent advancements in the field of immunometabolism, with a particular emphasis on the intricacies of disease progression in pulmonary infections caused by bacteria such as P. aeruginosa, M. tuberculosis and S. aureus and fungi like C. albicans.
Collapse
|
2
|
Hajra D, Chakravortty D. Sirtuins as modulators of infection outcomes in the battle of host-pathogen dynamics. Phys Life Rev 2025; 53:225-235. [PMID: 40147071 DOI: 10.1016/j.plrev.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sirtuins's central role in governing metabolic processes has been known for decades. However, over the past two decades, sirtuin functions have been linked to immune regulation and immunity. Sirtuins are NAD+ dependent protein deacylases involved in the regulation of several important biological processes ranging from energy homeostasis, metabolism, aging, apoptosis, autophagy, immunity, adipocyte, and muscle differentiation. Here, in this review, we discuss the role of sirtuins in several infectious diseases including viral, bacterial, and protozoan infections with detailed emphasis on bacterial-host interactions. We have aimed to explore both host and bacterial sirtuin functions contributing to the infection progression, host responses and their influence on the everlasting host-pathogen tug-of-war. In order to manipulate host pathways, pathogens such as intracellular bacteria have evolved parallelly and harbor bacterial sirtuins. The recent discoveries of bacterial sirtuins influencing the host-pathogen interaction outcomes pave the way for the discovery of potential therapeutic targets.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science
| | | |
Collapse
|
3
|
Chen YC, Fang YT, Wu CC, Chao TY, Wang YH, Tseng CC, Leung SY, Lee CP, Wang TY, Hsu PY, Chang JC, Lin MC, Hsiao CC. Increased autophagy activity regulated by LC3B gene promoter DNA methylation is associated with progression to active pulmonary tuberculosis disease. Respir Res 2025; 26:86. [PMID: 40045290 PMCID: PMC11884087 DOI: 10.1186/s12931-025-03149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND This study aims to explore the role of autophagy-associated genes (ATG) and their epigenetic markers in the progression of mycobacterium tuberculosis (M. tb) infection, and to test the effects of de-methylation agents on macrophage functions against TB. METHODS ATG expressions and their gene promoter DNA methylation levels of blood immune cells were measured in 60 patients with active pulmonary TB disease, 31 subjects with latent TB infection (LTBI), and 15 non-infected healthy subjects (NIHS). An in vitro monocytic THP-1 cell culture model under M. tb-specific antigen stimuli was applied. RESULTS LC3B protein expression of blood M1/M2a monocyte, ATG5 protein expression of M2a, and mean DNA methylation levels of the LC3B gene promoter region of peripheral blood mononuclear cells were all increased in active TB patients versus either LTBI or NIHS group. The LC3B methylation levels were negatively correlated with its protein expressions. The discrimination of active TB disease from LTBI or NIHS was optimally captured by prediction scores, which combined LC3B (+) percentage of blood M1/M2a monocyte, LC3B gene promoter DNA methylation level, male gender, and body mass index. LC3B and ATG5 expressions of both blood M2a and neutrophil were decreased after 6-month anti-TB therapy, but hypermethylated LC3B gene promoter persisted. In vitro 5-Aza-2'-deoxycytidine treatment improved bactericidal, apoptosis and phagocytosis functions through augmenting autophagy flux via mechanisms other than demethylation of the LC3B gene promoter in THP-1 cells. CONCLUSIONS Increased LC3B expression and LC3B gene promoter hypermethylation may serve as biomarkers for progression of M. tb infection, while use of de-methylation agent may be a potential approach to host-directed immunotherapy in active TB disease.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Graduate Institute of Clinical Medical Sciences, Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| | - Ying-Tang Fang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Hsi Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chia-Cheng Tseng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Jen-Chieh Chang
- Genomics and Proteomics Core Lab, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Graduate Institute of Clinical Medical Sciences, Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
4
|
Li H, Yin Y, Cao W, Chen S, Chen J, Xing Y, Yang H. Enhanced autophagy and cholesterol efflux in mouse mesenchymal stem cells infected with H37Rv compared to H37Ra. Microb Pathog 2025; 199:107199. [PMID: 39653283 DOI: 10.1016/j.micpath.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Autophagy, metabolism, and associated signaling pathways play critical roles in bacterial survival within mammalian cells and influence the immunopathogenesis of infections. Mesenchymal stem cells (MSCs) are important host cells during Mycobacterium tuberculosis (Mtb) infection, yet how autophagy, metabolism, and related pathways are modulated in MSCs infected with the virulent H37Rv or the attenuated H37Ra strain of Mtb remains poorly understood. In this study, we utilized RNA-Seq screening, qRT-PCR, and Western Blotting to investigate the differences in these processes between H37Rv and H37Ra infections. Our results show that, at early time points (no more than 24h), infection with H37Rv significantly increased the expression of TlLR2, Prkaa2, and Prkaa2 phosphorylation in MSCs compared with H37Ra infection. Further analysis revealed that H37Rv infection induced a stronger autophagic response (evidenced by increased Atg9b and LC3II/LC3I) through the TLR2-AMP-AMPK pathway than H37Ra infection. Despite these differences in autophagy, there was no statistically significant difference in bacillary loads, suggesting that, in addition to autophagy, other factors such as apoptosis and immune-inflammatory responses may also regulate Mtb growth in MSCs. Additionally, the metabolic analysis showed that H37Rv infection led to increased expression of SLC2A3, PFKFB3, HK1, and ABCA1 in MSCs compared to H37Ra infection. These findings confirm that, during the early stages of infection, H37Rv induces enhanced autophagy, glucose metabolism, and cholesterol efflux through a more active TLR2-AMP-AMPK pathway than H37Ra. Therefore, MSCs may represent a novel target for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Heng Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yan Yin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wei Cao
- Institute of Health, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shichao Chen
- College of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianxia Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanchun Xing
- Department of Medicine, Anhui Huangshan Vocational and Technical College, Huangshan, Anhui, 245000, China.
| | - Hong Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
5
|
Chen Z, Kong X, Ma Q, Chen J, Zeng Y, Liu H, Wang X, Lu S. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway. Front Immunol 2024; 15:1402024. [PMID: 38873598 PMCID: PMC11169584 DOI: 10.3389/fimmu.2024.1402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Park HE, Kim KM, Trinh MP, Yoo JW, Shin SJ, Shin MK. Bigger problems from smaller colonies: emergence of antibiotic-tolerant small colony variants of Mycobacterium avium complex in MAC-pulmonary disease patients. Ann Clin Microbiol Antimicrob 2024; 23:25. [PMID: 38500139 PMCID: PMC10949641 DOI: 10.1186/s12941-024-00683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Mycobacterium avium complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. MAC pulmonary disease (MAC-PD) poses a threat to immunocompromised individuals and those with structural pulmonary diseases worldwide. The standard treatment regimen for MAC-PD includes a macrolide in combination with rifampicin and ethambutol. However, the treatment failure and disease recurrence rates after successful treatment remain high. RESULTS In the present study, we investigated the unique characteristics of small colony variants (SCVs) isolated from patients with MAC-PD. Furthermore, revertant (RVT) phenotype, emerged from the SCVs after prolonged incubation on 7H10 agar. We observed that SCVs exhibited slower growth rates than wild-type (WT) strains but had higher minimum inhibitory concentrations (MICs) against multiple antibiotics. However, some antibiotics showed low MICs for the WT, SCVs, and RVT phenotypes. Additionally, the genotypes were identical among SCVs, WT, and RVT. Based on the MIC data, we conducted time-kill kinetic experiments using various antibiotic combinations. The response to antibiotics varied among the phenotypes, with RVT being the most susceptible, WT showing intermediate susceptibility, and SCVs displaying the lowest susceptibility. CONCLUSIONS In conclusion, the emergence of the SCVs phenotype represents a survival strategy adopted by MAC to adapt to hostile environments and persist during infection within the host. Additionally, combining the current drugs in the treatment regimen with additional drugs that promote the conversion of SCVs to RVT may offer a promising strategy to improve the clinical outcomes of patients with refractory MAC-PD.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|