1
|
Pérez-Cabello JA, Artero-Castro A, Molina-Pinelo S. Small cell lung cancer unveiled: Exploring the untapped resource of circulating tumor cells-derived organoids. Crit Rev Oncol Hematol 2025; 207:104622. [PMID: 39832682 DOI: 10.1016/j.critrevonc.2025.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Small cell lung cancer (SCLC) remains a challenge in oncology due to its aggressive behavior and dismal prognosis. Despite advances in treatments, novel strategies are urgently needed. Enter liquid biopsy-a game-changer in SCLC management. This revolutionary non-invasive approach allows for the analysis of circulating tumor cells (CTCs), offering insights into tumor behavior and treatment responses. Our review focuses on a groundbreaking frontier: harnessing CTCs to create three-dimensional (3D) organoid models. These models, derived from CTCs that break away from the primary tumor or metastatic locations, hold immense potential for revolutionizing cancer research, especially in SCLC. We explore the essential conditions for successfully establishing CTC-derived organoids-a transformative approach with profound implications for personalized medicine. Our evaluation spans diverse isolation techniques, shedding light on their advantages and limitations. Furthermore, we uncover the critical factors governing the cultivation of 3D organoids from CTCs, meticulously mimicking the tumor microenvironment. This review comprehensively elucidates the molecular characterization of these organoids, showcasing their potential in identifying treatment targets and predicting responses. In essence, our review amalgamates cutting-edge methodologies for isolating CTCs, establishing transformative CTC-derived organoids, and characterizing their molecular landscape. This represents a promising frontier for advancing personalized medicine in the complex realm of SCLC management and holds significant implications for translational research.
Collapse
Affiliation(s)
- Jesús A Pérez-Cabello
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain
| | - Ana Artero-Castro
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid 28029, Spain.
| |
Collapse
|
2
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman LT, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. Nat Commun 2025; 16:32. [PMID: 39746954 PMCID: PMC11696112 DOI: 10.1038/s41467-024-55140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from seven patients with metastatic cancer. High CTC yields (mean 10,057 CTCs per patient; range 100 to 58,125) reveal considerable intra-patient heterogeneity. CTC size varies within patients, with 67% overlapping in diameter with WBCs. Paired single-cell DNA and RNA sequencing identifies subclonal patterns of aneuploidy and distinct signaling pathways within CTCs. In prostate cancers, a subpopulation of small aneuploid cells lacking epithelial markers is enriched for neuroendocrine signatures. Pooling of CNV-confirmed CTCs enables whole exome sequencing with high mutant allele fractions. High-throughput CTC enrichment thus enables cell-based liquid biopsy for comprehensive monitoring of cancer.
Collapse
Affiliation(s)
- Avanish Mishra
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shih-Bo Huang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jon F Edd
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ben S Wittner
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Quinn E Cunneely
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Victor R Putaturo
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Akansha Deshpande
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ezgi Antmen
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kaustav A Gopinathan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Keisuke Otani
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoshiyuki Miyazawa
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ji Eun Kwak
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sara Y Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Justin Kelly
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - John Walsh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Isabella Galler
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - PuiYee Chan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ryan J Sullivan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Aditya Bardia
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
- Hematology/Oncology, University of California, Los Angeles, USA
| | - Douglas S Micalizzi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Lecia V Sequist
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Richard J Lee
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Joseph W Franses
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - David T Ting
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Patricia A R Brunker
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - David T Miyamoto
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA.
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA.
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Children's Boston, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Eboshida N, Hamada A, Higaki M, Obayashi F, Ito N, Yamasaki S, Tani R, Shintani T, Koizumi K, Yanamoto S. Potential role of circulating tumor cells and cell-free DNA as biomarkers in oral squamous cell carcinoma: A prospective single-center study. PLoS One 2024; 19:e0309178. [PMID: 39729421 DOI: 10.1371/journal.pone.0309178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 12/29/2024] Open
Abstract
Metastasis in patients with oral squamous cell carcinoma has been associated with a poor prognosis. However, sensitive and reliable tests for monitoring their occurrence are unavailable, with the exception of PET-CT. Circulating tumor cells and cell-free DNA have emerged as promising biomarkers for determining treatment efficacy and as prognostic predictors in solid tumors such as breast cancer and colorectal cancer. Hence, this study aimed to determine the potential role of liquid biopsy, circulating tumor cells, and cell-free DNA as biomarkers of oral squamous cell carcinoma. Thirteen patients with primary oral squamous cell carcinoma who visited our hospital between 2022 and 2023 were recruited, and plasma samples were collected from each patient preoperatively and postoperatively. We examined the relationship between the prognosis, the number of circulating tumor cells per four milliliters of peripheral blood, and the amount of cell-free DNA per milliliter of serum or the gene mutation in cell-free DNA. We observed no correlation between the number of preoperative circulating tumor cells and metastatic events. However, the number of circulating tumor cell clusters or the amount of preoperative cell-free DNA in metastatic cases was higher than that in non-metastatic cases. In oral squamous cell carcinoma, circulating tumor cell clusters or cell-free DNA levels may help inform management decisions regarding metastasis. However, further studies are required to provide a possible window for therapeutic interventions.
Collapse
Affiliation(s)
- Natsuki Eboshida
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuko Hamada
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mirai Higaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumitaka Obayashi
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nanako Ito
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sachiko Yamasaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryouji Tani
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Koichi Koizumi
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Dompé C, Chojnowska A, Ramlau R, Nowicki M, Alix-Panabières C, Budna-Tukan J. Unveiling the dynamics of circulating tumor cells in colorectal cancer: from biology to clinical applications. Front Cell Dev Biol 2024; 12:1498032. [PMID: 39539964 PMCID: PMC11557528 DOI: 10.3389/fcell.2024.1498032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This review delves into the pivotal role of circulating tumor cells (CTCs) in colorectal cancer (CRC) metastasis, focusing on their biological properties, interactions with the immune system, advanced detection techniques, and clinical implications. We explored how metastasis-competent CTCs evade immune surveillance and proliferate, utilizing cutting-edge detection and isolation technologies, such as microfluidic devices and immunological assays, to enhance sensitivity and specificity. The review highlights the significant impact of CTC interactions with immune cells on tumor progression and patient outcomes. It discusses the application of these findings in clinical settings, including non-invasive liquid biopsies for early diagnosis, prognosis, and treatment monitoring. Despite advancements, challenges remain, such as the need for standardized methods to consistently capture and analyze CTCs. Addressing these challenges through further molecular and cellular research on CTCs could lead to improved interventions and outcomes for CRC patients, underscoring the importance of unraveling the complex dynamics of CTCs in cancer progression.
Collapse
Affiliation(s)
- Claudia Dompé
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- Centre de Recherche en Ecologie et Evolution du Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Dévelopement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
5
|
Radić M, Egger M, Kruithof-de Julio M, Seiler R. Patient-derived Organoids in Bladder Cancer: Opportunities and Challenges. Eur Urol Focus 2024:S2405-4569(24)00165-2. [PMID: 39232905 DOI: 10.1016/j.euf.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND OBJECTIVE Bladder cancer (BLCa) remains a prevalent malignancy with high recurrence rates and limited treatment options. In recent years, patient-derived organoids (PDOs) have emerged as a promising platform for studying cancer biology and therapeutic responses in a personalized manner. Using drug screening, PDOs facilitate the identification of novel therapeutic agents and translational treatment strategies. Moreover, their ability to model patient-specific responses to treatments holds promise for predicting clinical outcomes and guiding treatment decisions. This exploratory review aims to investigate the potential of PDOs in advancing BLCa research and treatment, with an emphasis on translational clinical approaches. Furthermore, we analyze the feasibility of deriving PDOs from minimally invasive blood and urine samples. METHODS In addition to exploring hypothetical applications of PDOs for predicting patient outcomes and their ability to model different stages of BLCa, we conducted a comprehensive PubMed search on already published data as well as comprehensive screening of currently ongoing trials implementing PDOs in precision medicine in cancer patients irrespective of the tumor entity. KEY FINDINGS AND LIMITATIONS While the research on BLCa PDOs is advancing rapidly, data on both BLCa PDO research and their clinical application are scarce. Owing to this fact, a narrative review format was chosen for this publication. CONCLUSIONS AND CLINICAL IMPLICATIONS BLCa PDOs have the potential to influence the domain of precision medicine and enhance personalized cancer treatment strategies. However, standardized protocols for PDO generation, their ideal clinical application, as well as their impact on outcomes remain to be determined. PATIENT SUMMARY In this review, we discuss the current state and future needs for the use of patient-derived organoids, small three-dimensional avatars of tumor cells, in bladder cancer. Patient-derived bladder cancer organoids offer a more personalized approach to studying and treating bladder cancer, providing a model that closely resembles the patient's own tumor. These organoids can help researchers identify new treatment options and predict how individual patients may respond to standard therapies. By using minimally invasive samples such as blood and urine, patients can participate in research studies more easily, potentially leading to improved outcomes in bladder cancer treatment.
Collapse
Affiliation(s)
- Martina Radić
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Martin Egger
- Department of Urology, Hospital Center Biel, Spitalzentrum Biel, Biel, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Roland Seiler
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Hospital Center Biel, Spitalzentrum Biel, Biel, Switzerland.
| |
Collapse
|
6
|
Rodriguez-Tirado C, Sosa MS. How much do we know about the metastatic process? Clin Exp Metastasis 2024; 41:275-299. [PMID: 38520475 PMCID: PMC11374507 DOI: 10.1007/s10585-023-10248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2024]
Abstract
Cancer cells can leave their primary sites and travel through the circulation to distant sites, where they lodge as disseminated cancer cells (DCCs), even during the early and asymptomatic stages of tumor progression. In experimental models and clinical samples, DCCs can be detected in a non-proliferative state, defined as cellular dormancy. This state can persist for extended periods until DCCs reawaken, usually in response to niche-derived reactivation signals. Therefore, their clinical detection in sites like lymph nodes and bone marrow is linked to poor survival. Current cancer therapy designs are based on the biology of the primary tumor and do not target the biology of the dormant DCC population and thus fail to eradicate the initial or subsequent waves of metastasis. In this brief review, we discuss the current methods for detecting DCCs and highlight new strategies that aim to target DCCs that constitute minimal residual disease to reduce or prevent metastasis formation. Furthermore, we present current evidence on the relevance of DCCs derived from early stages of tumor progression in metastatic disease and describe the animal models available for their study. We also discuss our current understanding of the dissemination mechanisms utilized by genetically less- and more-advanced cancer cells, which include the functional analysis of intermediate or hybrid states of epithelial-mesenchymal transition (EMT). Finally, we raise some intriguing questions regarding the clinical impact of studying the crosstalk between evolutionary waves of DCCs and the initiation of metastatic disease.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| | - Maria Soledad Sosa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
7
|
Ke H, Kao S, van Zandwijk N, Rasko JEJ, Yeo D. Circulating tumor cell detection may offer earlier diagnosis in patients suspected of asbestos-related lung cancer. Lung Cancer 2024; 192:107829. [PMID: 38810528 DOI: 10.1016/j.lungcan.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Asbestos-Related Lung Cancer (ARLC) presents ongoing diagnostic challenges despite improved imaging technologies. The long latency period, coupled with limited access to occupational and environmental data along with the confounding effects of smoking and other carcinogens adds complexity to the diagnostic process. Compounding these challenges is the absence of a specific histopathologic or mutational signature of ARLC. A correlation between PD-L1 expression and response to immune checkpoint inhibition has not yet been proven. Thus, new biomarkers are needed to allow accurate diagnoses of ARLC, to enable prognostication and to offer personalized treatments. Liquid biopsies, encompassing circulating DNA and circulating tumor cells (CTCs), have gained attention as novel diagnostic methods in lung cancer to screen high-risk populations including those exposed to asbestos. CTCs can be enumerated and molecularly profiled to provide predictive and prognostic information. CTC studies have not been undertaken in populations at risk of ARLC to date. The potential of CTCs to provide real-time molecular insight into ARLC biology may significantly improve the diagnosis and management of ARLC patients.
Collapse
Affiliation(s)
- Helen Ke
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, 2050 NSW, Australia; Precision Oncology Laboratory, Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, 2050 NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Medical Oncology, Chris O'Brien Lifehouse, NSW 2050 Camperdown, Australia
| | - Steven Kao
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Medical Oncology, Chris O'Brien Lifehouse, NSW 2050 Camperdown, Australia; Asbestos Diseases Research Institute, NSW 2139 Concord, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, 2050 NSW, Australia
| | - John E J Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, 2050 NSW, Australia; Precision Oncology Laboratory, Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, 2050 NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, 2050 NSW, Australia.
| | - Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, 2050 NSW, Australia; Precision Oncology Laboratory, Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, 2050 NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, 2050 NSW, Australia.
| |
Collapse
|
8
|
Beninato T, Lo Russo G, Leporati R, Roz L, Bertolini G. Circulating tumor cells in lung cancer: Integrating stemness and heterogeneity to improve clinical utility. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 392:1-66. [PMID: 40287216 DOI: 10.1016/bs.ircmb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Circulating tumor cells (CTC), released by primary tumors into the bloodstream, represent a valuable source to inform on cancer heterogeneity, cancer progression, metastatic disease and therapy efficacy without the need of invasive tumor biopsies. However, the extreme rarity and heterogeneity of CTCs, occurring at genotypic, phenotypic and functional levels, poses a major challenge for the study of this population and explains the lack of standardized strategies of CTC isolation. Lung cancer, the leading causes of cancer-related death worldwide, is a paradigmatic example of how CTC heterogeneity can undermine the clinical utility of this biomarker, since contrasting data have been reported using different isolation technologies. Some evidences suggest that only a fraction of CTC, characterized by stem-like feature and partial epithelial-mesenchymal transition (EMT) phenotype, can sustain metastasis initiation. Cancer stem cells (CSCs) have the potential to maintain primary tumors, initiate metastasis and escape both chemotherapy and immunotherapy treatments. Moreover, a close connection has been reported in several tumor types among hybrid phenotype, characterized by retention of epithelial and mesenchymal traits, acquisition of CSC feature and increased metastatic potential. This review focuses on the phenotypic and functional heterogeneity of CTCs and the resulting implications for their isolation and clinical validation, especially in the setting of non-small cell lung cancer (NSCLC). In particular, we discuss the most relevant studies providing evidence for the presence and prognostic/predictive value of CTC subsets characterized by stem-like and hybrid EMT phenotype. Despite technical and conceptual issues, tracking circulating CSCs has the potential to improve the prognostic/predictive value of CTCs in NSCLC setting and could provide novel insights into the comprehension of the metastatic process and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Teresa Beninato
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Unit of Epigenomics and Biomarkers of Solid Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Bertolini
- Unit of Epigenomics and Biomarkers of Solid Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
9
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman L, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583573. [PMID: 38559183 PMCID: PMC10980012 DOI: 10.1101/2024.03.13.583573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Circulating Tumor Cells (CTCs), interrogated by sampling blood from patients with cancer, contain multiple analytes, including intact RNA, high molecular weight DNA, proteins, and metabolic markers. However, the clinical utility of tumor cell-based liquid biopsy has been limited since CTCs are very rare, and current technologies cannot process the blood volumes required to isolate a sufficient number of tumor cells for in-depth assays. We previously described a high-throughput microfluidic prototype utilizing high-flow channels and amplification of cell sorting forces through magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from patients with metastatic cancer, with a median of 2,799 CTCs purified per patient. Isolation of many CTCs from individual patients enables characterization of their morphological and molecular heterogeneity, including cell and nuclear size and RNA expression. It also allows robust detection of gene copy number variation, a definitive cancer marker with potential diagnostic applications. High-volume microfluidic enrichment of CTCs constitutes a new dimension in liquid biopsies.
Collapse
|
10
|
Murray NP. Biomarkers of minimal residual disease and treatment. Adv Clin Chem 2024; 119:33-70. [PMID: 38514211 DOI: 10.1016/bs.acc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Minimal residual disease (MRD) has been defined as a very small numbers of cancer cells that remain in the body after curative treatment. Its presence or absence will ultimately determine prognosis. With the introduction of new technologies the presence of MRD in patients with solid tumours can be detected and characterized. As MRD predicts future relapse, be it early or late treatment failure, in an otherwise asymptomatic patient its treatment and when to start treatment remains to be determined. Thus the concepts of personalized medicine using different biomarkers to classify the biological properties of MRD maybe come possible. Based on this determinations it may be possible to use targeted therapies rather than all patients with the same type of cancer receiving a standard treatment. However, it is important to understand the limitations of the different technologies, what these techniques are detecting and how they may help in the treatment of patients with cancer. The majority of published studies are in patients with metastatic cancer and there are few reports in patients with MRD. In this chapter the concept of MRD, the methods used to detect it and what treatments may be effective based on the biological characteristics of the tumour cells as determined by different biomarkers is reviewed. MRD depends on the phenotypic properties of the tumour cells to survive in their new environment and the anti-tumour immune response. This is a dynamic process and changes with time in the wake of immunosuppression caused by the tumour cells and/or the effects of treatment to select resistant tumour cells. With the use of biomarkers to typify the characteristics of MRD and the development of new drugs a personalized treatment can be designed rather than all patients given the same treatment. Patients who are initially negative for MRD may not require further treatment with liquid biopsies used to monitor the patients during follow-up in order to detect those patients who may become MRD positive. The liquid biopsy used during the follow up of MRD positive patients can be used to detect changes in the biological properties of the tumour cells and thus may need treatment changes to overcome tumour cell resistance.
Collapse
Affiliation(s)
- Nigel P Murray
- Minimal Residual Disease Laboratory, Faculty of Medicine, University Finis Terrae, Santiago, Chile.
| |
Collapse
|
11
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Malara N, Coluccio ML, Grillo F, Ferrazzo T, Garo NC, Donato G, Lavecchia A, Fulciniti F, Sapino A, Cascardi E, Pellegrini A, Foxi P, Furlanello C, Negri G, Fadda G, Capitanio A, Pullano S, Garo VM, Ferrazzo F, Lowe A, Torsello A, Candeloro P, Gentile F. Multicancer screening test based on the detection of circulating non haematological proliferating atypical cells. Mol Cancer 2024; 23:32. [PMID: 38350884 PMCID: PMC10863189 DOI: 10.1186/s12943-024-01951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND the problem in early diagnosis of sporadic cancer is understanding the individual's risk to develop disease. In response to this need, global scientific research is focusing on developing predictive models based on non-invasive screening tests. A tentative solution to the problem may be a cancer screening blood-based test able to discover those cell requirements triggering subclinical and clinical onset latency, at the stage when the cell disorder, i.e. atypical epithelial hyperplasia, is still in a subclinical stage of proliferative dysregulation. METHODS a well-established procedure to identify proliferating circulating tumor cells was deployed to measure the cell proliferation of circulating non-haematological cells which may suggest tumor pathology. Moreover, the data collected were processed by a supervised machine learning model to make the prediction. RESULTS the developed test combining circulating non-haematological cell proliferation data and artificial intelligence shows 98.8% of accuracy, 100% sensitivity, and 95% specificity. CONCLUSION this proof of concept study demonstrates that integration of innovative non invasive methods and predictive-models can be decisive in assessing the health status of an individual, and achieve cutting-edge results in cancer prevention and management.
Collapse
Affiliation(s)
- Natalia Malara
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy.
| | - Maria Laura Coluccio
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, IT, Italy
| | - Fabiana Grillo
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Teresa Ferrazzo
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Nastassia C Garo
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | | | | | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Turin, Italy
| | - Eliano Cascardi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Turin, Italy
| | - Antonella Pellegrini
- Società Italiana di Citologia (SICi), AO S.Giovanni-Addolorata, President, Roma, IT, Italy
| | - Prassede Foxi
- Cytodiagnostic Pistoia-Pescia Unit, USL Toscana Centro, Pistoia, IT, 51100, Italy
| | | | - Giovanni Negri
- Pathology Unit, Central Hospital Bolzano, via Boehler 5, Bolzano, IT, 39100, Italy
| | - Guido Fadda
- Human Pathology Department, Gaetano Barresi University, Messina, IT, Italy
| | - Arrigo Capitanio
- Linköping University Hospital SE , Linköping University, Linköping, Sweden
| | - Salvatore Pullano
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Virginia M Garo
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Francesca Ferrazzo
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Alarice Lowe
- Department of Pathology, Stanford University Hospital, Stanford, CA, USA
| | | | - Patrizio Candeloro
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, IT, Italy
| | - Francesco Gentile
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, IT, Italy
| |
Collapse
|
13
|
Massimino L, Palmieri O, Facoetti A, Fuggetta D, Spanò S, Lamparelli LA, D'Alessio S, Cagliani S, Furfaro F, D'Amico F, Zilli A, Fiorino G, Parigi TL, Noviello D, Latiano A, Bossa F, Latiano T, Pirola A, Mologni L, Piazza RG, Abbati D, Perri F, Bonini C, Peyrin-Biroulet L, Malesci A, Jairath V, Danese S, Ungaro F. Gut virome-colonising Orthohepadnavirus genus is associated with ulcerative colitis pathogenesis and induces intestinal inflammation in vivo. Gut 2023; 72:1838-1847. [PMID: 36788014 PMCID: PMC10511988 DOI: 10.1136/gutjnl-2022-328375] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown aetiology. Gut virome dysbiosis is fundamental in UC progression, although its role in the early phases of the disease is far from fully understood. Therefore, we sought to investigate the role of a virome-associated protein encoded by the Orthohepadnavirus genus, the hepatitis B virus X protein (HBx), in UC aetiopathogenesis. DESIGN HBx positivity of UC patient-derived blood and gut mucosa was assessed by RT-PCR and Sanger sequencing and correlated with clinical characteristics by multivariate analysis. Transcriptomics was performed on HBx-overexpressing endoscopic biopsies from healthy donors.C57BL/6 mice underwent intramucosal injections of liposome-conjugated HBx-encoding plasmids or the control, with or without antibiotic treatment. Multidimensional flow cytometry analysis was performed on colonic samples from HBx-treated and control animals. Transepithelial electrical resistance measurement, proliferation assay, chromatin immunoprecipitation assay with sequencing and RNA-sequencing were performed on in vitro models of the gut barrier. HBx-silencing experiments were performed in vitro and in vivo. RESULTS HBx was detected in about 45% of patients with UC and found to induce colonic inflammation in mice, while its silencing reverted the colitis phenotype in vivo. HBx acted as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering both innate and adaptive mucosal immunity ex vivo and in vivo. CONCLUSION This study described HBx as a contributor to the UC pathogenesis and provides a new perspective on the virome as a target for tailored treatments.
Collapse
Affiliation(s)
- Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Amanda Facoetti
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Davide Fuggetta
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Salvatore Spanò
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Luigi Antonio Lamparelli
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Stefania Cagliani
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Alessandra Zilli
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Daniele Noviello
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Fabrizio Bossa
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | | | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Rocco Giovanni Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Danilo Abbati
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Chiara Bonini
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Laurent Peyrin-Biroulet
- Inserm NGERE, University of Lorraine, Nancy, France
- Department of Hepato-Gastroenterology, University Hospital Centre Nancy, Nancy, France
| | - Alberto Malesci
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Vipul Jairath
- Department of Medicine, Division of Gastroenterology, Western University, London, Ontario, Canada
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milano, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Università Vita Salute San Raffaele, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
14
|
Skouras P, Markouli M, Kalamatianos T, Stranjalis G, Korkolopoulou P, Piperi C. Advances on Liquid Biopsy Analysis for Glioma Diagnosis. Biomedicines 2023; 11:2371. [PMID: 37760812 PMCID: PMC10525418 DOI: 10.3390/biomedicines11092371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gliomas comprise the most frequent primary central nervous system (CNS) tumors, characterized by remarkable genetic and epigenetic heterogeneity, difficulty in monitoring, and increased relapse and mortality rates. Tissue biopsy is an established method of tumor cell collection and analysis that enables diagnosis, classification of different tumor types, and prediction of prognosis upon confirmation of tumor's location for surgical removal. However, it is an invasive and often challenging procedure that cannot be used for frequent patient screening, detection of mutations, disease monitoring, or resistance to therapy. To this end, the minimally invasive procedure of liquid biopsy has emerged, allowing effortless tumor sampling and enabling continuous monitoring. It is considered a novel preferable way to obtain faster data on potential tumor risk, personalized diagnosis, prognosis, and recurrence evaluation. The purpose of this review is to describe the advances on liquid biopsy for glioma diagnosis and management, indicating several biomarkers that can be utilized to analyze tumor characteristics, such as cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating proteins, circulating tumor cells (CTCs), and exosomes. It further addresses the benefit of combining liquid biopsy with radiogenomics to facilitate early and accurate diagnoses, enable precise prognostic assessments, and facilitate real-time disease monitoring, aiming towards more optimal treatment decisions.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Theodosis Kalamatianos
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - George Stranjalis
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Penelope Korkolopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
15
|
Schreier S, Budchart P, Borwornpinyo S, Arpornwirat W, Lertsithichai P, Chirappapha P, Triampo W. New inflammatory indicators for cell-based liquid biopsy: association of the circulating CD44+/CD24- non-hematopoietic rare cell phenotype with breast cancer residual disease. J Cancer Res Clin Oncol 2023; 149:4347-4358. [PMID: 36100762 PMCID: PMC9470072 DOI: 10.1007/s00432-022-04330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Breast cancer residual disease assessment in early-stage patients has been challenging and lacks routine identification of adjuvant therapy benefit and objective measure of therapy success. Liquid biopsy assays targeting tumor-derived entities are investigated for minimal residual disease detection, yet perform low in clinical sensitivity. We propose the detection of CD44-related systemic inflammation for the assessment of residual cancer. METHODS Circulating CD44+/CD45- rare cells from healthy, noncancer- and cancer-afflicted donors were enriched by CD45 depletion and analyzed by immuno-fluorescence microscopy. CD44+ rare cell subtyping was based on cytological feature analysis and referred to as morphological index. AUC analysis was employed for identification of the most cancer-specific CD44+ subtype. RESULTS The EpCam-/CD44+/CD24-/CD71-/CD45-/DNA+ phenotype alludes to a distinct cell type and was found frequently at concentrations below 5 cells per 5 mL in healthy donors. Marker elevation by at least 5 × on average was observed in all afflicted cohorts. The positive predicted value for the prediction of malignancy-associated systemic inflammation of a CD44+ rare cell subtype with a higher morphological index was 87%. An outlook for the frequency of sustained inflammation in residual cancer may be given to measure 78%. CONCLUSION The CD44+ rare cell and subtype denotes improvement in detection of residual cancer disease and may provide an objective and alternative measure of disease burden in early-stage breast cancer.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand.
- Premise Biosystems Co. Ltd, Bangkok, 10540, Thailand.
| | | | - Suparerk Borwornpinyo
- Premise Biosystems Co. Ltd, Bangkok, 10540, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Wichit Arpornwirat
- Department of Oncology, Bangkok Hospital, 2 Soi Soonvijai 7, New Petchburi Rd, Huaykwang, Bangkok, 10310, Thailand
| | - Panuwat Lertsithichai
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Prakasit Chirappapha
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Wannapong Triampo
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
- Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
16
|
Kemper M, Krekeler C, Menck K, Lenz G, Evers G, Schulze AB, Bleckmann A. Liquid Biopsies in Lung Cancer. Cancers (Basel) 2023; 15:1430. [PMID: 36900221 PMCID: PMC10000706 DOI: 10.3390/cancers15051430] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
As lung cancer has the highest cancer-specific mortality rates worldwide, there is an urgent need for new therapeutic and diagnostic approaches to detect early-stage tumors and to monitor their response to the therapy. In addition to the well-established tissue biopsy analysis, liquid-biopsy-based assays may evolve as an important diagnostic tool. The analysis of circulating tumor DNA (ctDNA) is the most established method, followed by other methods such as the analysis of circulating tumor cells (CTCs), microRNAs (miRNAs), and extracellular vesicles (EVs). Both PCR- and NGS-based assays are used for the mutational assessment of lung cancer, including the most frequent driver mutations. However, ctDNA analysis might also play a role in monitoring the efficacy of immunotherapy and its recent accomplishments in the landscape of state-of-the-art lung cancer therapy. Despite the promising aspects of liquid-biopsy-based assays, there are some limitations regarding their sensitivity (risk of false-negative results) and specificity (interpretation of false-positive results). Hence, further studies are needed to evaluate the usefulness of liquid biopsies for lung cancer. Liquid-biopsy-based assays might be integrated into the diagnostic guidelines for lung cancer as a tool to complement conventional tissue sampling.
Collapse
Affiliation(s)
- Marcel Kemper
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Kerstin Menck
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Evers
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Arik Bernard Schulze
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
17
|
Asante DB, Mohan GRKA, Acheampong E, Ziman M, Calapre L, Meniawy TM, Gray ES, Beasley AB. Genetic analysis of heterogeneous subsets of circulating tumour cells from high grade serous ovarian carcinoma patients. Sci Rep 2023; 13:2552. [PMID: 36781954 PMCID: PMC9925814 DOI: 10.1038/s41598-023-29416-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Circulating tumour cells (CTCs) are heterogenous and contain genetic information from the tumour of origin. They bear specific intra- and extra-cellular protein markers aiding in their detection. However, since these markers may be shared with other rare cells in the blood, only genetic testing can confirm their malignancy. Herein, we analyse different CTC subsets using single cell whole genome DNA sequencing to validate their malignant origin. We randomly selected putative CTCs identified by immunostaining that were isolated from 4 patients with high grade serous ovarian cancer (HGSOC) and one with benign cystadenoma. We specifically targeted CTCs positive for epithelial (CK/EpCAMpos), mesenchymal (vimentinpos), and pseudoendothelial (CK/EpCAMpos plus CD31pos) markers. We isolated these cells and performed whole genome amplification (WGA) and low-pass whole-genome sequencing (LP-WGS) for analysis of copy number alterations (CNA). Of the CK/EpCAMpos cells analysed from the HGSOC patients, 2 of 3 cells showed diverse chromosomal CNAs. However, the 4 pseudoendothelial cells (CK/EpCAMpos plus CD31pos) observed in the HGSOC cases did not carry any CNA. Lastly, two of the clusters of vimentin positive cells sequenced from those found in the benign cystadenoma case had CNA. Despite the low number of cells analysed, our results underscore the importance of genetic analysis of putative CTCs to confirm their neoplastic origin. In particular, it highlights the presence of a population of CK/EpCAMpos cells that are not tumour cells in patients with HGSOC, which otherwise would be counted as CTCs.
Collapse
Affiliation(s)
- Du-Bois Asante
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | | | - Emmanuel Acheampong
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
- School of Biomedical Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Tarek M Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
- School of Medicine, University of Western Australia, Crawley, WA, 6009, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| | - Aaron B Beasley
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| |
Collapse
|
18
|
Expression of Epithelial and Mesenchymal Markers in Plasmatic Extracellular Vesicles as a Diagnostic Tool for Neoplastic Processes. Int J Mol Sci 2023; 24:ijms24043578. [PMID: 36834987 PMCID: PMC9964693 DOI: 10.3390/ijms24043578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor-derived extracellular vesicles (TD-EVs) have active roles as cancer hallmark enablers. EVs RNA of epithelial and stromal cells carry information that facilitates the communication processes that contribute to oncological progression, so the objective of this work was to validate by RT-PCR the presence of epithelial (KRT19; CEA) and stromal (COL1A2; COL11A1) markers in RNA of plasmatic EVs in healthy and diverse-malignancy patients for the development of a non-invasive cancer diagnosis system using liquid biopsy. Ten asymptomatic controls and 20 cancer patients were included in the study, and results showed that the isolated plasmatic EVs by scanning transmission electron microscopy (STEM) andBiomedical Research Institute A Coruña nanoparticle tracking analysis (NTA) contained most exosome structures with also a considerable percentage of microvesicles. No differences were found in concentration and size distribution between the two cohorts of patients, but significant gene expression in epithelial and mesenchymal markers between healthy donors and patients with active oncological disease was shown. Results of quantitative RT-PCR are solid and reliable for KRT19, COL1A2, and COL11A1, so the analysis of RNA extracted from TD-EVs could be a correct approach to develop a diagnostic tool in oncological processes.
Collapse
|
19
|
Xiao J, Pohlmann PR, Schlegel R, Agarwal S. State of the Art in the Propagation of Circulating Tumor Cells. CURRENT CANCER RESEARCH 2023:247-274. [DOI: 10.1007/978-3-031-22903-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
21
|
Detection of Circulating Tumor Cells Using the Attune NxT. Int J Mol Sci 2022; 24:ijms24010021. [PMID: 36613466 PMCID: PMC9820284 DOI: 10.3390/ijms24010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs) have been detected in many patients with different solid malignancies. It has been reported that presence of CTCs correlates with worse survival in patients with multiple types of cancer. Several techniques have been developed to detect CTCs in liquid biopsies. Currently, the only method for CTC detection that is approved by the Food and Drug Administration is CellSearch. Due to low abundance of CTCs in certain cancer types and in early stages of disease, its clinical application is currently limited to metastatic colorectal cancer, breast cancer and prostate cancer. Therefore, we aimed to develop a new method for the detection of CTCs using the Attune NxT-a flow cytometry-based application that was specifically developed to detect rare events in biological samples without the need for enrichment. When healthy donor blood samples were spiked with variable amounts of different EpCAM+EGFR+ tumor cell lines, recovery yield was on average 75%. The detection range was between 1000 and 10 cells per sample. Cell morphology was confirmed with the Attune CytPix. Analysis of blood samples from metastatic colorectal cancer patients, as well as lung cancer patients, demonstrated that increased EpCAM+EGFR+ events were detected in more than half of the patient samples. However, most of these cells showed no (tumor) cell-like morphology. Notably, CellSearch analysis of blood samples from a subset of colorectal cancer patients did not detect CTCs either, suggesting that these blood samples were negative for CTCs. Therefore, we anticipate that the Attune NxT is not superior to CellSearch in detection of low amounts of CTCs, although handling and analysis of samples is easier. Moreover, morphological confirmation is essential to distinguish between CTCs and false positive events.
Collapse
|
22
|
Impact of buffer composition on biochemical, morphological and mechanical parameters: A tare before dielectrophoretic cell separation and isolation. Transl Oncol 2022; 28:101599. [PMID: 36516639 PMCID: PMC9764254 DOI: 10.1016/j.tranon.2022.101599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Dielectrophoresis (DEP) represents an electrokinetic approach for discriminating and separating suspended cells based on their intrinsic dielectric characteristics without the need for labeling procedure. A good practice, beyond the physical and engineering components, is the selection of a buffer that does not hinder cellular and biochemical parameters as well as cell recovery. In the present work the impact of four buffers on biochemical, morphological, and mechanical parameters was evaluated in two different cancer cell lines (Caco-2 and K562). Specifically, MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) assay along with flow cytometry analysis were used to evaluate the occurring changes in terms of cell viability, morphology, and granulocyte stress formation, all factors directly influencing DEP sorting capability. Quantitative real-time PCR (qRT-PCR) was instead employed to evaluate the gene expression levels of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), two well-known markers of inflammation and oxidative stress, respectively. An additional marker representing an index of cellular metabolic status, i.e. the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, was also evaluated. Among the four buffers considered, two resulted satisfactory in terms of cell viability and growth recovery (24 h), with no significant changes in cell morphology for up to 1 h in suspension. Of note, gene expression analysis showed that in both cell lines the apparently non-cytotoxic buffers significantly modulated IL-6, iNOS, and GAPDH markers, underlining the importance to deeply investigate the molecular and biochemical changes occurring during the analysis, even at apparently non-toxic conditions. The selection of a useful buffer for the separation and analysis of cells without labeling procedures, preserving cell status, represents a key factor for DEP analysis, giving the opportunity to further use cells for additional analysis.
Collapse
|
23
|
Payne K, Brooks J, Batis N, Taylor G, Nankivell P, Mehanna H. Characterizing the epithelial-mesenchymal transition status of circulating tumor cells in head and neck squamous cell carcinoma. Head Neck 2022; 44:2545-2554. [PMID: 35932094 PMCID: PMC9804280 DOI: 10.1002/hed.27167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs), in particular those undergoing an epithelial-mesenchymal transition (EMT), are a promising source of biomarkers in head and neck squamous cell carcinoma (HNSCC). Our aim was to validate a protocol using microfluidic enrichment (Parsortix platform) with flow-cytometry CTC characterization. METHOD Blood samples from 20 treatment naïve HNSCC patients underwent Parsortix enrichment and flow cytometry analysis to quantify CTCs and identify epithelial or EMT subgroups-correlated to clinical outcomes and EMT gene-expression in tumor tissue. RESULTS CTCs were detected in 65% of patients (mean count 4 CTCs/ml). CTCs correlated with advanced disease (p = 0.0121), but not T or N classification. Epithelial or EMT CTCs did not correlate with progression-free or overall survival. Tumor mesenchymal gene-expression did not correlate with CTC EMT expression (p = 0.347). DISCUSSION Microfluidic enrichment and flow cytometry successfully characterizes EMT CTCs in HNSCC. The lack of association between tumor and CTC EMT profile suggests CTCs may undergo an adaptive EMT in response to stimuli within the circulation.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Graham Taylor
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
24
|
Gao X, Leow OQY, Chiu CH, Hou MM, Hsieh JCH, Chao YK. Clinical Utility of Circulating Tumor Cells for Predicting Major Histopathological Response after Neoadjuvant Chemoradiotherapy in Patients with Esophageal Cancer. J Pers Med 2022; 12:jpm12091440. [PMID: 36143225 PMCID: PMC9502866 DOI: 10.3390/jpm12091440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: A “surgery as needed” approach may be offered to patients with esophageal cancer (EC) who achieve major histopathological response (MaHR) after neoadjuvant chemoradiotherapy (nCRT). However, the utility of clinical response assessment (CRE) for predicting histopathological response to nCRT remains limited. Circulating tumor cells (CTCs) hold promise as biomarkers of response to nCRT. Methods: We analyzed the clinical utility of post-nCRT CTCs, alone or in combination with CRE, in the prediction of MaHR. We defined MaHR as either the lack or a limited presence (≤10%) of vital residual tumor cells in the resected esophageal specimen in the absence of nodal involvement. Results: Of the 48 study patients, 27 (56%) achieved MaHR. Patients with MaHR had a significantly lower CTCs count compared with those without (3.61 ± 4.53 versus 6.83 ± 5.22 per mL of blood, respectively; P = 0.027). Using a cutoff for positivity of 5 CTCs per mL of blood, the combination of CTCs and CRE allowed achieving a negative predictive value for MaHR of 93% (95% confidence interval [CI] = 70–99%) along with a false negative rate of 5% (95% CI = 1–33%). Conclusion: CTCs count assessed in combination with CRE can potentially help identify patients with EC who achieved MaHR after nCRT.
Collapse
Affiliation(s)
- Xing Gao
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands
| | - Osbert Qi-Yao Leow
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Hung Chiu
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Ming-Mo Hou
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan 333, Taiwan
| | - Jason Chia-Hsun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan 333, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan
- Correspondence: (J.C.-H.H.); (Y.-K.C.); Tel.: +886-3-3281200 (ext. 2118) (J.C.-H.H.); Fax: +886-3-3285818 (J.C.-H.H.)
| | - Yin-Kai Chao
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (J.C.-H.H.); (Y.-K.C.); Tel.: +886-3-3281200 (ext. 2118) (J.C.-H.H.); Fax: +886-3-3285818 (J.C.-H.H.)
| |
Collapse
|
25
|
Rousset X, Maillet D, Grolleau E, Barthelemy D, Calattini S, Brevet M, Balandier J, Raffin M, Geiguer F, Garcia J, Decaussin-Petrucci M, Peron J, Benzerdjeb N, Couraud S, Viallet J, Payen L. Embryonated Chicken Tumor Xenografts Derived from Circulating Tumor Cells as a Relevant Model to Study Metastatic Dissemination: A Proof of Concept. Cancers (Basel) 2022; 14:cancers14174085. [PMID: 36077622 PMCID: PMC9454737 DOI: 10.3390/cancers14174085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Circulating Tumor Cells (CTCs) are heterogeneous and rare in the bloodstream, but responsible for cancer metastasis. Their in vitro or in vivo expansion remains a major challenge. The chicken Chorioallantoic Membrane (CAM) assay has proven to be a reliable alternative to the murine model, notably for tumor xenografts. We have developed a promising model of CTC-derived xenografts in the chicken CAM and demonstrated the feasibility of Next Generation Sequencing (NGS) analysis in this assay, with a genomic concordance between the in ovo tumor and the original patient’s tumor. We also evidenced metastatic dissemination from the xenograft in the chicken embryo’s distant organs. Further characterization of the in ovo tumors and metastases may provide new insights into the mechanisms of tumor dissemination. The development of a xenograft from a given patient’s CTCs, in a time frame compatible with managing the patient’s treatment, could also be a step forward towards personalized medicine. Abstract Patient-Derived Xenografts (PDXs) in the Chorioallantoic Membrane (CAM) are a representative model for studying human tumors. Circulating Tumor Cells (CTCs) are involved in cancer dissemination and treatment resistance mechanisms. To facilitate research and deep analysis of these few cells, significant efforts were made to expand them. We evaluated here whether the isolation of fresh CTCs from patients with metastatic cancers could provide a reliable tumor model after a CAM xenograft. We enrolled 35 patients, with breast, prostate, or lung metastatic cancers. We performed microfluidic-based CTC enrichment. After 48–72 h of culture, the CTCs were engrafted onto the CAM of embryonated chicken eggs at day 9 of embryonic development (EDD9). The tumors were resected 9 days after engraftment and histopathological, immunochemical, and genomic analyses were performed. We obtained in ovo tumors for 61% of the patients. Dedifferentiated small tumors with spindle-shaped cells were observed. The epithelial-to-mesenchymal transition of CTCs could explain this phenotype. Beyond the feasibility of NGS in this model, we have highlighted a genomic concordance between the in ovo tumor and the original patient’s tumor for constitutional polymorphism and somatic alteration in one patient. Alu DNA sequences were detected in the chicken embryo’s distant organs, supporting the idea of dedifferentiated cells with aggressive behavior. To our knowledge, we performed the first chicken CAM CTC-derived xenografts with NGS analysis and evidence of CTC dissemination in the chicken embryo.
Collapse
Affiliation(s)
| | - Denis Maillet
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- Department of Medical Oncology, Lyon Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, 69008 Lyon, France
| | - Emmanuel Grolleau
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- Acute Respiratory Disease and Thoracic Oncology Department, Lyon Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
| | - David Barthelemy
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Sara Calattini
- Clinical Research Plateform, Institut de Cancérologie des Hospices Civils de Lyon, 69002 Lyon, France
| | - Marie Brevet
- Department of Pathology, Lyon Est Hospital, Hospices Civils de Lyon, 69677 Bron, France
| | - Julie Balandier
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Margaux Raffin
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Florence Geiguer
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Jessica Garcia
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Myriam Decaussin-Petrucci
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
- Department of Pathology, Lyon Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Julien Peron
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, CNRS UMR 5558, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Nazim Benzerdjeb
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
- Department of Pathology, Lyon Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Sébastien Couraud
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- Acute Respiratory Disease and Thoracic Oncology Department, Lyon Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
| | | | - Léa Payen
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
- Correspondence:
| |
Collapse
|
26
|
Tanvetthayanont P, Yata T, Boonnil J, Temisak S, Ponglowhapan S. Validation of droplet digital PCR for cytokeratin 19 mRNA detection in canine peripheral blood and mammary gland. Sci Rep 2022; 12:13623. [PMID: 35948591 PMCID: PMC9365843 DOI: 10.1038/s41598-022-17493-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
In humans, peripheral blood cytokeratin 19 (CK19) mRNA-positive circulating tumor cells (CTCs) was utilized to identify early-stage breast cancer patients with micrometastatic disease who are at risk for disease progression and monitor treatment response in patients with advanced disease. To our knowledge, there has been little research regarding CK19 in canine mammary tumors (CMTs) using molecular methods. A droplet digital PCR (ddPCR) is proposed as a precise and sensitive quantification of nucleic acid targets. Hence, this study aimed to validate a newly designed assay for CK19 detection in canine blood and mammary tissue, along with the reference gene HPRT, by ddPCR. All primers and probes showed a precise match with the exon region of target genes. The assay exhibited PCR efficacy of 90.4% and 91.0% for CK19 and HPRT amplifications with linearity, respectively. The annealing temperature (Ta) for duplex ddPCR was 55 °C, providing the highest concentrations of both genes tested by the synthetic plasmid DNA. The limit of detection (LOD) of CK19 and HPRT were 2.16 ± 1.27 and 2.44 ± 1.31 copies/µL, respectively. Finally, the ddPCR assay was validated with canine peripheral blood, non-neoplastic mammary tissues and spiked samples. Our findings provide a new platform for CK19 studies in CMT diagnosis through blood and mammary tissues.
Collapse
Affiliation(s)
- Potsawat Tanvetthayanont
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerapong Yata
- Unit of Biochemistry, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jiranun Boonnil
- National Institute of Metrology (NIMT), Pathumthani, 12120, Thailand
| | - Sasithon Temisak
- National Institute of Metrology (NIMT), Pathumthani, 12120, Thailand.
| | - Suppawiwat Ponglowhapan
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Carmona-Ule N, Gal N, Abuín Redondo C, De La Fuente Freire M, López López R, Dávila-Ibáñez AB. Peptide-Functionalized Nanoemulsions as a Promising Tool for Isolation and Ex Vivo Culture of Circulating Tumor Cells. Bioengineering (Basel) 2022; 9:380. [PMID: 36004905 PMCID: PMC9405120 DOI: 10.3390/bioengineering9080380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Circulating Tumor Cells (CTCs) are shed from primary tumors and travel through the blood, generating metastases. CTCs represents a useful tool to understand the biology of metastasis in cancer disease. However, there is a lack of standardized protocols to isolate and culture them. In our previous work, we presented oil-in-water nanoemulsions (NEs) composed of lipids and fatty acids, which showed a benefit in supporting CTC cultures from metastatic breast cancer patients. Here, we present Peptide-Functionalized Nanoemulsions (Pept-NEs), with the aim of using them as a tool for CTC isolation and culture in situ. Therefore, NEs from our previous work were surface-decorated with the peptides Pep10 and GE11, which act as ligands towards the specific cell membrane proteins EpCAM and EGFR, respectively. We selected the best surface to deposit a layer of these Pept-NEs through a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method. Next, we validated the specific recognition of Pept-NEs for their protein targets EpCAM and EGFR by QCM-D and fluorescence microscopy. Finally, a layer of Pept-NEs was deposited in a culture well-plate, and cells were cultured on for 9 days in order to confirm the feasibility of the Pept-NEs as a cell growth support. This work presents peptide-functionalized nanoemulsions as a basis for the development of devices for the isolation and culture of CTCs in situ due to their ability to specifically interact with membrane proteins expressed in CTCs, and because cells are capable of growing on top of them.
Collapse
Affiliation(s)
- Nuria Carmona-Ule
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Hospital Gil Casares, 15706 Santiago de Compostela, Spain
| | - Noga Gal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Carmen Abuín Redondo
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Hospital Gil Casares, 15706 Santiago de Compostela, Spain
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - María De La Fuente Freire
- Cancer Network Research (CIBERONC), 28029 Madrid, Spain
- Nano-Oncology Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Rafael López López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Hospital Gil Casares, 15706 Santiago de Compostela, Spain
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), 28029 Madrid, Spain
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Ana Belén Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Hospital Gil Casares, 15706 Santiago de Compostela, Spain
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
28
|
Song JW, Suh J, Lee SW, Yoo JK, Lee U, Han JH, Kwak C, Kang M, Kim YR, Jeong CW, Choi JW. Isolation and Genomic Analysis of Single Circulating Tumor Cell Using Human Telomerase Reverse Transcriptase and Desmoglein-2. SMALL METHODS 2022; 6:e2100938. [PMID: 35038250 DOI: 10.1002/smtd.202100938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
As epithelial cells in the circulation are considered to originate from the tumor, the epithelial cell adhesion molecule has been commonly used as a standard marker for circulating tumor cells (CTCs) isolation. However, it seems to disappear after the epithelial-mesenchymal transition that most cancer cells undergo for intravasation. Thus, more advanced techniques for CTC detection are needed to better understand the clinical significance of CTCs. A cancer cell-specifically-infecting or replicating virus that codes a fluorescent monitor gene can be a solution to efficiently detect CTCs. Thus, the authors designed an adenovirus to bind to desmoglein-2, which is highly expressed in most cancer cells. A cancer-specific human telomerase reverse transcriptase promoter is inserted to control a viral E1 region. The adenovirus is utilized to compare the number of CTCs from renal cell carcinoma and prostate cancer patients before and after surgery. The isolated two or three CTCs are eligible for whole genome sequencing. The genomic analysis proves the difference of variants between primary tumors and CTCs. Taken together, it is a fast and exact serial method for CTC isolation and the enriched genome sequencing may be used to determine the prognosis and as a point-of-care system for patients with cancer.
Collapse
Affiliation(s)
- Jae Won Song
- Department of Pharmacy and Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jungyo Suh
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seok Won Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Ki Yoo
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Research Center of Curigin Ltd., Seoul, 04778, Republic of Korea
| | - Uijeong Lee
- Artificial Intelligence Laboratory of Oncocross Ltd., Seoul, 04168, Republic of Korea
| | - Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Health Sciences and Technology SAIHST Sungkyunkwan University
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Yi Rang Kim
- Artificial Intelligence Laboratory of Oncocross Ltd., Seoul, 04168, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Woo Choi
- Department of Pharmacy and Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
29
|
Deciphering Tumour Heterogeneity: From Tissue to Liquid Biopsy. Cancers (Basel) 2022; 14:cancers14061384. [PMID: 35326534 PMCID: PMC8946040 DOI: 10.3390/cancers14061384] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Most malignant tumours are highly heterogeneous at molecular and phenotypic levels. Tumour variability poses challenges for the management of patients, as it arises between patients and even evolves in space and time within a single patient. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of tumour diversity in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate tumour heterogeneity. Abstract Human solid malignancies harbour a heterogeneous set of cells with distinct genotypes and phenotypes. This heterogeneity is installed at multiple levels. A biological diversity is commonly observed between tumours from different patients (inter-tumour heterogeneity) and cannot be fully captured by the current consensus molecular classifications for specific cancers. To extend the complexity in cancer, there are substantial differences from cell to cell within an individual tumour (intra-tumour heterogeneity, ITH) and the features of cancer cells evolve in space and time. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity with an emphasis on ITH and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of ITH in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate ITH.
Collapse
|
30
|
Identification of Key Genes and Pathways Involved in Circulating Tumor Cells in Colorectal Cancer. Anal Cell Pathol 2022; 2022:9943571. [PMID: 35127345 PMCID: PMC8813301 DOI: 10.1155/2022/9943571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/28/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background. Characterization of the features associated with circulating tumor cells (CTCs) is one of major interests for predicting clinical outcome of colorectal cancer (CRC) patients. However, the molecular features of CTCs remain largely unclear. Methods. For identification of key genes and pathways, GSE31023, contained CTCs from six metastatic CRC patients and three controls, was retrieved for differentially expressed gene (DEG) analysis. Protein-protein interaction networks of DEGs were constructed. Hub genes from the network were prognostic analyzed, as well as the association with tumor-infiltrating immune cells. Results. 1353 DEGs were identified between the CTC and control groups, with 403 genes upregulated and 950 downregulated. 32 pathways were significantly enriched in KEGG, with ribosome pathway as top. The top 10 hub genes were included, including eukaryotic translation elongation factor 2 (EEF2), ribosomal protein S2 (RPS2), ribosomal protein S5 (RPS5), ribosomal protein L3 (RPL3), ribosomal protein S3 (RPS3), ribosomal protein S14 (RPS14), ribosomal protein SA (RPSA), eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), ribosomal protein S15a (RPS15A), and ribosomal protein L4 (RPL4). The correlation between CD4+ T cells and RPS14 (
) was the highest in colon cancer while CD8+ T and RPS2 (
) was the highest in rectal cancer. Conclusion. This study identified potential role of ribosome pathway in CTC, providing further insightful therapeutic targets and biomarkers for CRC.
Collapse
|
31
|
|
32
|
Born J, Hendricks A, Hauser C, Egberts JH, Becker T, Röder C, Sebens S. Detection of Marker Associated with CTC in Colorectal Cancer in Mononuclear Cells of Patients with Benign Inflammatory Intestinal Diseases. Cancers (Basel) 2021; 14:cancers14010047. [PMID: 35008210 PMCID: PMC8750406 DOI: 10.3390/cancers14010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Colorectal carcinoma (CRC) is one of the most frequent cancers in western countries, and non-invasive methods for early detection are still needed. Circulating tumor cells (CTC) in blood of CRC patients have been proven as prognostic and predictive biomarker; however, the suitability of CTC-associated markers for early CRC detection and discrimination from benign diseases has not been analyzed. Thus, this study investigated whether CTC-associated markers can also be detected in the blood of patients with benign inflammatory intestinal disease (IID) or whether they are specific for malignancy. The detection rate of CK20 and DEFA5 clearly differed in diseased patients and healthy controls, while LAD1 and PLS3 was found in all samples but with clear qualitative differences in gene expression. No association between inflammation severity and CTC marker expression was found in IID patients. Finally, PLS3 was identified to be a suitable marker for differentiation between malignant and non-malignant intestinal diseases or healthy controls. Abstract Colorectal carcinoma (CRC) belongs to the most common tumor entities in western countries. Circulating tumor cells (CTC) in blood of CRC patients are a powerful prognostic and predictive biomarker. However, whether CTC-associated markers can also be used for early CRC detection and discrimination from benign diseases is not known. This study investigated the presence of CTC-associated markers CK20, PLS3, LAD1, and DEFA5 in blood of patients with benign inflammatory intestinal disease (IID) and their correlation with malignancy. The detection rate of CK20 and DEFA5 significantly differed between diseased patients and healthy controls. LAD1 and PLS3 were detected in all samples with clear differences in gene expression. DEFA5 expression was higher in CRC and IID patients compared to healthy donors, while CK20 and PLS3 were lower in CRC compared to IID patients or healthy controls. Overall, all CTC-associated markers were detectable in blood of IID patients, but not correlating with inflammation severity. Finally, PLS3 emerged as a suitable marker for differentiation between malignant and non-malignant intestinal diseases or healthy controls, however its suitability for early CRC detection needs to be further validated.
Collapse
Affiliation(s)
- Johanna Born
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany; (J.B.); (C.R.)
| | - Alexander Hendricks
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (A.H.); (C.H.); (J.-H.E.); (T.B.)
| | - Charlotte Hauser
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (A.H.); (C.H.); (J.-H.E.); (T.B.)
| | - Jan-Hendrik Egberts
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (A.H.); (C.H.); (J.-H.E.); (T.B.)
| | - Thomas Becker
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (A.H.); (C.H.); (J.-H.E.); (T.B.)
| | - Christian Röder
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany; (J.B.); (C.R.)
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany; (J.B.); (C.R.)
- Correspondence: ; Tel.: +49-431-500-30501
| |
Collapse
|
33
|
Tieng FYF, Abu N, Nasir SN, Lee LH, Ab Mutalib NS. Liquid Biopsy-Based Colorectal Cancer Screening via Surface Markers of Circulating Tumor Cells. Diagnostics (Basel) 2021; 11:2136. [PMID: 34829483 PMCID: PMC8618170 DOI: 10.3390/diagnostics11112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is ranked second for cancer-related deaths worldwide with approximately half of the patients being diagnosed at the late stages. The untimely detection of CRC results in advancement to the metastatic stage and nearly 90% of cancer-related deaths. The early detection of CRC is crucial to decrease its overall incidence and mortality rates. The recent introduction of circulating tumor cells (CTCs) has enabled a less invasive sampling method from liquid biopsies, besides revealing key information toward CRC metastasis. The current gold standard for CTC identification is the CellSearch® system (Veridex). This first-generation instrumentation relies on a single cell surface marker (CSM) to capture and count CTCs. Detection of CTCs allows the identification of patients at risk for metastasis, whereas CTC enumeration could improve risk assessment, monitoring of systemic therapy, and detection of therapy resistance in advanced metastatic CRC. In this review, we compared the pros and cons between single CSM-based CTC enrichment techniques and multi-marker-based systems. We also highlighted the challenges faced in the routine implementation of CSM-dependent CTC detection methods in CRC screening, prediction, prognosis, disease monitoring, and therapy selection toward precision medicine, as well as the dwelling on post-CTC analysis and characterization methods.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
34
|
Volpentesta G, Donato G, Ferraro E, Mignogna C, Radaelli R, Sabatini U, La Torre D, Malara N. Pilocytic Astrocytoma-Derived Cells in Peripheral Blood: A Case Report. Front Oncol 2021; 11:737730. [PMID: 34778052 PMCID: PMC8579051 DOI: 10.3389/fonc.2021.737730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Imaging limitations, invasive tissue biopsies and poor information over the course of treatment to evaluate ‘real-time’ tumor dynamics justify the emerging use of liquid biopsies in the field of brain tumors. Circulating tumor cells (CTCs) from high-grade astrocytomas might reach the circulation by crossing the blood–brain barrier. Here, for the first time, CTCs cytology in a case of pylocitic astrocytoma is described. An obstructive hydrocephalous due to a lateral mesencephalic tectum mass occluding the Silvio Aqueduct was diagnosed in a young, 18 years old, male. Considering the location of the tumor and the rapid deterioration of the neurological status, it has been decided to urgency treat the patient with ventriculoperitoneal shunting. Magnetic resonance imaging showed a nodular shaped lesion localized within the left lateral mesencephalic tectum. Stereotactic biopsy was not approachable due significant risk of neurological consequences. The diagnosis was performed by blood sampling, a non-invasive procedure for the patient, in order to provide tumor information. Cytopathological features on detected circulating atypical GFAP positive cells led to pilocytic diagnosis confirmed by the patient’s 68 months outcome.
Collapse
Affiliation(s)
- Giorgio Volpentesta
- Department of Medical and Surgical Sciences, University "Magna Græcia", Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | | | - Chiara Mignogna
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | - Riccardo Radaelli
- Department of Medical and Surgical Sciences, University "Magna Græcia", Catanzaro, Italy
| | - Umberto Sabatini
- Department of Medical and Surgical Sciences, University Magna Græcia, Catanzaro, Italy
| | - Domenico La Torre
- Department of Medical and Surgical Sciences, University "Magna Græcia", Catanzaro, Italy
| | - Natalia Malara
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
35
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
36
|
Murray NP, Villalon R, Hartmann D, Rodriguez MP, Aedo S. Improvement in immune dysfunction after FOLFOX chemotherapy for Stage III colon cancer is associated with improved minimal residual disease prognostic subtype and outcome. Colorectal Dis 2021; 23:2879-2893. [PMID: 34473913 DOI: 10.1111/codi.15899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022]
Abstract
AIM Minimal residual disease (MRD) is the net result of the biological properties of disseminated tumour cells and the effect of the immune system and treatment to eliminate them. The aim of this work is to report the changes in MRD status and immune function (lymphocyte count) after FOLFOX chemotherapy, and the outcome in Stage III colon cancer patients. METHOD This study is a prospective, single-centre observational study. Lymphocyte counts were determined prior to and 1, 2 and 3 months after the completion of chemotherapy. Circulating tumour cells (CTCs) and bone marrow micrometastases were determined using immunocytochemistry with anticarcinoembryonic antigen prior to and 1 month after chemotherapy. MRD was classified as negative (Group I), micrometastasis positive only (Group II) and CTC positive (Group III). Changes in lymphocyte counts and MRD subtype following chemotherapy and relapse-free progression were analysed. RESULTS Of the total of 185 patients, 83 (44.9%) relapsed. The risk of relapse significantly increased from Groups I to III (p < 0.001) and with decreasing lymphocyte count (p < 0.01). The lymphocyte count significantly decreased from Groups I to III (p < 0.001). Multivariance Cox regression analysis showed hazard ratios of 3.58 (Group II), 17.43 (Group III) and 0.39 (lymphocyte count) in predicting relapse. Following chemotherapy, improved lymphocyte count was associated with improved MRD subtype (p < 0.0001). Neither baseline lymphocyte count nor MRD subtype predicted response to chemotherapy. Five-year relapse-free survival for combined lymphocyte-MRD subtypes was 95%, 57% and 5% for Groups I to III, respectively (p < 0.001). CONCLUSION Following chemotherapy, improvements in immune function were associated with improved MRD subtype and a better relapse-free survival.
Collapse
Affiliation(s)
- Nigel P Murray
- Servicio de Medicina, Hospital de Carabineros de Chile, Santiago, Chile.,Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Ricardo Villalon
- Servicio de Coloproctologia, Hospital de Carabineros de Chile, Santiago, Chile
| | - Dan Hartmann
- Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | | | - Socrates Aedo
- Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
37
|
Eibl RH, Schneemann M. Liquid Biopsy and Primary Brain Tumors. Cancers (Basel) 2021; 13:5429. [PMID: 34771592 PMCID: PMC8582521 DOI: 10.3390/cancers13215429] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Two decades of "promising results" in liquid biopsy have led to both continuing disappointment and hope that the new era of minimally invasive, personalized analysis can be applied for better diagnosis, prognosis, monitoring, and therapy of cancer. Here, we briefly highlight the promises, developments, and challenges related to liquid biopsy of brain tumors, including circulating tumor cells, cell-free nucleic acids, extracellular vesicles, and miRNA; we further discuss the urgent need to establish suitable biomarkers and the right standards to improve modern clinical management of brain tumor patients with the use of liquid biopsy.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
38
|
Smet A, Breugelmans T, Michiels J, Lamote K, Arras W, De Man JG, Heyndrickx L, Hauner A, Huizing M, Malhotra-Kumar S, Lammens M, Hotterbeekx A, Kumar-Singh S, Verstraeten A, Loeys B, Verhoeven V, Jacobs R, Dams K, Coenen S, Ariën KK, Jorens PG, De Winter BY. A dynamic mucin mRNA signature associates with COVID-19 disease presentation and severity. JCI Insight 2021; 6:e151777. [PMID: 34448730 PMCID: PMC8525642 DOI: 10.1172/jci.insight.151777] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUNDSARS-CoV-2 infection induces mucin overexpression, further promoting disease. Given that mucins are critical components of innate immunity, unraveling their expression profiles that dictate the course of disease could greatly enhance our understanding and management of COVID-19.METHODSUsing validated RT-PCR assays, we assessed mucin mRNA expression in the blood of patients with symptomatic COVID-19 compared with symptomatic patients without COVID-19 and healthy controls and correlated the data with clinical outcome parameters. Additionally, we analyzed mucin expression in mucus and lung tissue from patients with COVID-19 and investigated the effect of drugs for COVID-19 treatment on SARS-CoV-2-induced mucin expression in pulmonary epithelial cells.RESULTSWe identified a dynamic blood mucin mRNA signature that clearly distinguished patients with symptomatic COVID-19 from patients without COVID-19 based on expression of MUC1, MUC2, MUC4, MUC6, MUC13, MUC16, and MUC20 (AUCROC of 91.8%; sensitivity and specificity of 90.6% and 93.3%, respectively) and that discriminated between mild and critical COVID-19 based on the expression of MUC16, MUC20, and MUC21 (AUCROC of 89.1%; sensitivity and specificity of 90.0% and 85.7%, respectively). Differences in the transcriptional landscape of mucins in critical cases compared with mild cases identified associations with COVID-19 symptoms, respiratory support, organ failure, secondary infections, and mortality. Furthermore, we identified different mucins in the mucus and lung tissue of critically ill COVID-19 patients and showed the ability of baricitinib, tocilizumab, favipiravir, and remdesivir to suppress expression of SARS-CoV-2-induced mucins.CONCLUSIONThis multifaceted blood mucin mRNA signature showed the potential role of mucin profiling in diagnosing, estimating severity, and guiding treatment options in patients with COVID-19.FUNDINGThe Antwerp University Research and the Research Foundation Flanders COVID-19 funds.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wout Arras
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Anne Hauner
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Manon Huizing
- Biobank Antwerpen, Antwerp University Hospital, Edegem, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Lammens
- Department of Histopathology, Antwerp University Hospital, Edegem, Belgium
| | - An Hotterbeekx
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Samir Kumar-Singh
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Rita Jacobs
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Karolien Dams
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Samuel Coenen
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Kevin K. Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Philippe G. Jorens
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and
- Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
39
|
Application of Primary/Secondary Circulating Tumor Cells for the Prediction of Biochemical Recurrence in Nonmetastatic Prostate Cancer Patients following Radical Prostatectomy or Radiotherapy: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4730970. [PMID: 34595236 PMCID: PMC8478542 DOI: 10.1155/2021/4730970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
Background Circulating tumor cells (CTCs) have been regarded as an independent prognostic marker for metastatic castration-resistant prostate cancer (mCRPC). Its prognostic value, however, in nonmetastatic prostate cancer (NMPC) is still unclear. Purpose To elucidate whether CTCs can predict the biochemical recurrence (BCR) in NMPC patients following radical prostatectomy (RP) or radiotherapy (RT). Methods PubMed, Cochrane Database, and Embase and the references in relevant studies were systematically searched. Studies that investigated the correlation of CTCs and BCR in NMPC patients after RP or RT were identified and reviewed. Overall odds ratio (OR) of BCR in such patients with/without CTCs was pooled. We also calculated and pooled overall prevalence of BCR in such CTC-positive patients. Results In total, 12 studies comprising 1917 participants were eligible for the meta-analysis and showed that the presence of secondary circulating tumor cells (SCTCs) is associated with a higher BCR rate of 59% (95% CI: 22%-88%) in patients with NMPC after RP or RT (OR = 6.12; 95% CI: 2.22-16.85; P < 0.001). However, regardless of the presence of primary circulating tumor cells (PCTCs), it has not been shown to be associated with higher BCR. Conclusions Our research demonstrated that SCTC-positive patients are associated with higher BCR compared to SCTC-negative patients in NMPC. Therefore, it is recommended that NMPC patients undergo CTC surveillance intensively after RP or RT.
Collapse
|
40
|
Han SY, Park SH, Ko HS, Jang A, Seo HI, Lee SJ, Kim GH, Kim DU. Vimentin-Positive Circulating Tumor Cells as Diagnostic and Prognostic Biomarkers in Patients with Biliary Tract Cancer. J Clin Med 2021; 10:4435. [PMID: 34640452 PMCID: PMC8509386 DOI: 10.3390/jcm10194435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Biliary tract cancer (BTC) has poor prognosis; thus, early diagnosis is important to decrease mortality. Although vimentin-positive circulating tumor cells (V-CTCs) are a good candidate for diagnostic and prognostic biomarkers, studies on the topic are limited. We aimed to evaluate the diagnostic efficacy of V-CTCs between BTC and benign biliary disease (BBD) and determine the prognostic value of V-CTCs in BTC patients. We recruited 69 participants who had BTCs and BBDs from a single tertiary referral center. We analyzed CTCs and V-CTCs in peripheral blood using the CD-PRIMETM system. Seven patients were excluded due to a technical failure of CTC detection. CTCs were detected in all 62 patients. CTC count > 40/mL blood (55.8% vs. 20%, p = 0.039), V-CTC count > 15/mL blood (57.7% vs. 10%, p = 0.005), and V-CTC/CTC ratio > 40% (48.1% vs. 10%, p = 0.025) were significantly different between BTCs and BBDs. Two or more of these three parameters (61.5% vs. 10%, p = 0.002) increased the accuracy. A combination of CTC markers with CA19-9 and biopsy increased the accuracy (90.4% vs. 10%, p = 0.000). V-CTC > 50/mL blood was a significant factor affecting survival (140 (66.6-213.3) vs. 253 (163.9-342.1) days, p = 0.008). V-CTC could be a potential biomarker for early diagnosis and predicting prognosis in patients with BTC.
Collapse
Affiliation(s)
- Sung Yong Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan 49241, Korea; (S.Y.H.); (S.H.P.); (H.S.K.); (G.H.K.)
| | - Sung Hee Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan 49241, Korea; (S.Y.H.); (S.H.P.); (H.S.K.); (G.H.K.)
| | - Hyun Suk Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan 49241, Korea; (S.Y.H.); (S.H.P.); (H.S.K.); (G.H.K.)
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan 44610, Korea;
| | - Hyung Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan 49241, Korea;
| | - So Jeong Lee
- Department of Pathology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan 49241, Korea;
| | - Gwang Ha Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan 49241, Korea; (S.Y.H.); (S.H.P.); (H.S.K.); (G.H.K.)
| | - Dong Uk Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University College of Medicine, Busan 49241, Korea; (S.Y.H.); (S.H.P.); (H.S.K.); (G.H.K.)
| |
Collapse
|
41
|
Rossi T, Gallerani G, Martinelli G, Maltoni R, Fabbri F. Circulating Tumor Cells as a Tool to Untangle the Breast Cancer Heterogeneity Issue. Biomedicines 2021; 9:biomedicines9091242. [PMID: 34572427 PMCID: PMC8466266 DOI: 10.3390/biomedicines9091242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is a disease characterized by high degrees of heterogeneity at morphologic, genomic, and genetic levels, even within the same tumor mass or among patients. As a consequence, different subpopulations coexist and less represented clones may have a selective advantage, significantly influencing the outcome of BC patients. Circulating tumor cells (CTCs) represent a rare population of cells with a crucial role in metastatic cascade, and in recent years have represented a fascinating alternative to overcome the heterogeneity issue as a “liquid biopsy”. However, besides the raw enumeration of these cells in advanced epithelial tumors, there are no CTC-based assays applied in the clinical practice to improve personalized medicine. In this review, we report the latest findings in the field of CTCs for intra-tumoral heterogeneity unmasking in BC, supporting the need to deepen their analysis to investigate their role in metastatic process and include the molecular characterization in the clinical practice. In the future, CTCs will be helpful in monitoring patients during treatment, as well as to better address therapeutic strategies.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
- Correspondence: ; Tel.: +39-0549-73-9982
| | - Giulia Gallerani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
| |
Collapse
|
42
|
Circulating Tumor Cells: Technologies and Their Clinical Potential in Cancer Metastasis. Biomedicines 2021; 9:biomedicines9091111. [PMID: 34572297 PMCID: PMC8467892 DOI: 10.3390/biomedicines9091111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are single cells or clusters of cells within the circulatory system of a cancer patient. While most CTCs will perish, a small proportion will proceed to colonize the metastatic niche. The clinical importance of CTCs was reaffirmed by the 2008 FDA approval of CellSearch®, a platform that could extract EpCAM-positive, CD45-negative cells from whole blood samples. Many further studies have demonstrated the presence of CTCs to stratify patients based on overall and progression-free survival, among other clinical indices. Given their unique role in metastasis, CTCs could also offer a glimpse into the genetic drivers of metastasis. Investigation of CTCs has already led to groundbreaking discoveries such as receptor switching between primary tumors and metastatic nodules in breast cancer, which could greatly affect disease management, as well as CTC-immune cell interactions that enhance colonization. In this review, we will highlight the growing variety of isolation techniques for investigating CTCs. Next, we will provide clinically relevant context for CTCs, discussing key clinical trials involving CTCs. Finally, we will provide insight into the future of CTC studies and some questions that CTCs are primed to answer.
Collapse
|
43
|
Si H, Du D, Li W, Li Q, Li J, Zhao D, Li L, Tang B. Sputum-Based Tumor Fluid Biopsy: Isolation and High-Throughput Single-Cell Analysis of Exfoliated Tumor Cells for Lung Cancer Diagnosis. Anal Chem 2021; 93:10477-10486. [PMID: 34292723 DOI: 10.1021/acs.analchem.1c00833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Timely and effective diagnosis is of great significance for improving the survival rate of lung cancer patients. Although histopathology is the main diagnostic tool among the existing methods for lung cancer diagnosis, it is not suitable for high-risk groups, early lung cancer patients, patients with advanced-stage disease, and other situations wherein tumor tissues cannot be obtained. In view of this, we proposed an innovative lung cancer diagnosis method employing for the first time a microfluidic technology for high-efficiency isolation and high-throughput single-cell analysis of exfoliated tumor cells (ETCs) in sputum. This method fully combines the advantages of traditional sputum cytology and microfluidic technology and realizes the diagnosis of lung cancer by using a small amount of repeatable ETCs instead of the tumor tissue. This method is expected to provide a practical strategy for the non-invasive detection of lung cancer patients and lung cancer screening for high-risk groups.
Collapse
Affiliation(s)
- Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wenbo Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Dongbo Zhao
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
44
|
Zhang Y, Warden AR, Ahmad KZ, Liu Y, He X, Zheng M, Huo X, Zhi X, Ke Y, Li H, Yan S, Su W, Cai D, Ding X. Single-Cell Microwell Platform Reveals Circulating Neural Cells as a Clinical Indicator for Patients with Blood-Brain Barrier Breakdown. RESEARCH 2021; 2021:9873545. [PMID: 34327332 PMCID: PMC8285994 DOI: 10.34133/2021/9873545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
Central nervous system diseases commonly occur with the destruction of the blood-brain barrier. As a primary cause of morbidity and mortality, stroke remains unpredictable and lacks cellular biomarkers that accurately quantify its occurrence and development. Here, we identify NeuN+/CD45−/DAPI+ phenotype nonblood cells in the peripheral blood of mice subjected to middle cerebral artery occlusion (MCAO) and stroke patients. Since NeuN is a specific marker of neural cells, we term these newly identified cells as circulating neural cells (CNCs). We find that the enumeration of CNCs in the blood is significantly associated with the severity of brain damage in MCAO mice (p < 0.05). Meanwhile, the number of CNCs is significantly higher in stroke patients than in negative subjects (p < 0.0001). These findings suggest that the amount of CNCs in circulation may serve as a clinical indicator for the real-time prognosis and progression monitor of the occurrence and development of ischemic stroke and other nervous system disease.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Antony R Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Khan Zara Ahmad
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yanlei Liu
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xijun He
- Department of Neurosurgery, Wenling Hospital Affiliated to Wenzhou Medical University, Chuan'an Nan Road, Chengxi Subdistrict, Wenling, 317500 Zhejiang, China
| | - Minqiao Zheng
- Central Laboratory, Wenling Hospital Affiliated to Wenzhou Medical University, Chuan'an Nan Road, Chengxi Subdistrict, Wenling, 317500 Zhejiang, China
| | - Xinlong Huo
- Department of Neurology, Wenling Hospital Affiliated to Wenzhou Medical University, Chuan'an Nan Road, Chengxi Subdistrict, Wenling, 317500 Zhejiang, China
| | - Xiao Zhi
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yuqing Ke
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongxia Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Sijia Yan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Wenqiong Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Deng Cai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
45
|
Gao Y, Fan WH, Duan C, Zhao W, Zhang J, Kang X. Enhancing the Screening Efficiency of Breast Cancer by Combining Conventional Medical Imaging Examinations With Circulating Tumor Cells. Front Oncol 2021; 11:643003. [PMID: 34094929 PMCID: PMC8170472 DOI: 10.3389/fonc.2021.643003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Ultrasound (US) and mammogram (MMG) are the two most common breast cancer (BC) screening tools. This study aimed to assess how the combination of circulating tumor cells (CTC) with US and MMG would improve the diagnostic performance. METHODS CTC detection and imaging examinations, US and MMG, were performed in 238 treatment-naive BC patients, 217 patients with benign breast diseases (BBD), and 20 healthy females. Correlations of CTC, US and MMG with patients' clinicopathological characteristics were evaluated. Diagnostic performances of CTC, US and MMG were estimated by the receiver operating characteristic curves. RESULTS CTC, US and MMG could all distinguish BC patients from the control (p < 0.0001). Area under curve (AUC) of CTC, US and MMG are 0.855, 0.861 and 0.759, respectively. While US has the highest sensitivity of 0.79, CTC and MMG have the same specificity of 0.92. Notably, CTC has the highest accuracy of 0.83. Combination with CTC increases the AUC of US and MMG to 0.922 and 0.899, respectively. Combining MMG with CTC or US increases the sensitivity of MMG to 0.87, however "CTC + MMG" has a higher specificity of 0.85. "CTC + US" performs the best in BC diagnosis, followed by "CTC + MMG" and then "US + MMG". CONCLUSION CTC can be used as a diagnostic aid for BC screening. Combination with CTC increases the diagnostic potency of conventional BC screening imaging examinations, US and MMG, in BC diagnosis, especially for MMG.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Wan-Hung Fan
- Department of Clinical Medical Affairs, Hangzhou Watson Biotech, Hangzhou, China
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenhe Zhao
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xixiong Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
46
|
Alix-Panabieres C, Magliocco A, Cortes-Hernandez LE, Eslami-S Z, Franklin D, Messina JL. Detection of cancer metastasis: past, present and future. Clin Exp Metastasis 2021; 39:21-28. [PMID: 33961169 DOI: 10.1007/s10585-021-10088-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/20/2021] [Indexed: 12/23/2022]
Abstract
The clinical importance of metastatic spread of cancer has been recognized for centuries, and melanoma has loomed large in historical descriptions of metastases, as well as the numerous mechanistic theories espoused. The "fatal black tumor" described by Hippocrates in 5000 BC that was later termed "melanose" by Rene Laennec in 1804 was recognized to have the propensity to metastasize by William Norris in 1820. And while the prognosis of melanoma was uniformly acknowledged to be dire, Samuel Cooper described surgical removal as having the potential to improve prognosis. Subsequent to this, in 1898 Herbert Snow was the first to recognize the potential clinical benefit of removing clinically normal lymph nodes at the time of initial cancer surgery. In describing "anticipatory gland excision," he noted that "it is essential to remove, whenever possible, those lymph glands which first receive the infective protoplasm, and bar its entrance into the blood, before they have undergone increase in bulk". This revolutionary concept marked the beginning of a debate that rages today: are regional lymph nodes the first stop for metastases ("incubator" hypothesis) or does their involvement serve as an indicator of aggressive disease with inherent metastatic potential ("marker" hypothesis). Is there a better way to improve prediction of disease outcome? This article attempts to address some of the resultant questions that were the subject of the session "Novel Frontiers in the Diagnosis of Cancer" at the 8th International Congress on Cancer Metastases, held in San Francisco, CA in October 2019. Some of these questions addressed include the significance of sentinel node metastasis in melanoma, and the optimal method for their pathologic analysis. The finding of circulating tumor cells in the blood may potentially supplant surgical techniques for detection of metastatic disease, and we are beginning to perfect techniques for their detection, understand how to apply the findings clinically, and develop clinical followup treatment algorithms based on these results. Finally, we will discuss the revolutionary field of machine learning and its applications in cancer diagnosis. Computer-based learning algorithms have the potential to improve efficiency and diagnostic accuracy of pathology, and can be used to develop novel predictors of prognosis, but significant challenges remain. This review will thus encompass latest concepts in the detection of cancer metastasis via the lymphatic system, the circulatory system, and the role of computers in enhancing our knowledge in this field.
Collapse
Affiliation(s)
- Catherine Alix-Panabieres
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | | | | | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | | | - Jane L Messina
- Moffitt Cancer Center, Department of Pathology, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
47
|
Jones J, Nguyen H, Drummond K, Morokoff A. Circulating Biomarkers for Glioma: A Review. Neurosurgery 2021; 88:E221-E230. [PMID: 33442748 DOI: 10.1093/neuros/nyaa540] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/10/2020] [Indexed: 12/18/2022] Open
Abstract
Accurate circulating biomarkers have potential clinical applications in population screening, tumor subclassification, monitoring tumor status, and the delivery of individualized treatments resulting from tumor genotyping. Recently, significant progress has been made within this field in several cancer types, but despite the many potential benefits, currently there is no validated circulating biomarker test for patients with glioma. A number of circulating factors have been examined, including circulating tumor cells, cell-free DNA, microRNA, exosomes, and proteins from both peripheral blood and cerebrospinal fluid with variable results. In the following article, we provide a narrative review of the current evidence pertaining to circulating biomarkers in patients with glioma, including discussion of the advantages and challenges encountered with the current methods used for discovery. Additionally, the potential clinical applications are described with reference to the literature.
Collapse
Affiliation(s)
- Jordan Jones
- Department of Surgery, University of Melbourne, Melbourne, Australia.,Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Hong Nguyen
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Katharine Drummond
- Department of Surgery, University of Melbourne, Melbourne, Australia.,Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew Morokoff
- Department of Surgery, University of Melbourne, Melbourne, Australia.,Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
48
|
Jiang SS, Mao CG, Feng YG, Jiang B, Tao SL, Tan QY, Deng B. Circulating tumor cells with epithelial-mesenchymal transition markers as potential biomarkers for the diagnosis of lung cancer. World J Clin Cases 2021; 9:2721-2730. [PMID: 33969055 PMCID: PMC8058682 DOI: 10.12998/wjcc.v9.i12.2721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) can be clustered into three subtypes according to epithelial-mesenchymal transition (EMT) markers: CTCs with epithelial markers (E-CTCs), CTCs with mesenchymal markers (M-CTCs), and CTCs with both markers (E&M-CTCs). CTC detection has clinical implications in the diagnosis of lung cancer (LC). AIM To clarify the diagnostic value of CTCs categorized by EMT markers in LC. METHODS The study included 106 patients with lung adenocarcinoma, including 42 ground-glass opacities (GGO) and 64 solid lesions, who underwent surgery between July 2015 and December 2019. Eleven patients with benign tumors and seventeen healthy controls were included. CTCs in peripheral blood and associated EMT markers were detected preoperatively using the CanPatrolTM technique. The diagnostic power of CTCs for discriminating LC cases from controls was analyzed by the receiver operating characteristic (ROC) curve. The CytoploRare technique was used in 20 cases and 18 controls for validation, and Kappa values were calculated to evaluate consistency between techniques. RESULTS Of the 106 LC cases, 94 (89.6%) had at least one CTC. CTCs were detectable in 35 (83.3%) of 42 GGO cases. Total CTCs and E&M-CTCs were significantly more frequent in LC cases than in benign or healthy controls. The proportion of M-CTCs plus E&M-CTCs increased gradually from healthy controls, to benign controls, to LC cases. The area under the ROC curve of total CTCs and E&M-CTCs was > 0.8 and > 10.75, respectively. The combined sensitivity of total-CTCs and E&M-CTCs was 85.85% for LC patients (80.95% for GGO patients) and the specificity was 78.57%. The Kappa value was 0.415, indicating relative consistency between CanPatrolTM and CytoploRare. CONCLUSION CTC detection is valuable for distinguishing LC from controls, and particularly E&M-CTC detection warrants further study.
Collapse
Affiliation(s)
- Sha-Sha Jiang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chun-Guo Mao
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yong-Geng Feng
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bin Jiang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shao-Lin Tao
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qun-You Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bo Deng
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
49
|
Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov 2021; 11:858-873. [PMID: 33811121 DOI: 10.1158/2159-8290.cd-20-1311] [Citation(s) in RCA: 529] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Over the past 10 years, circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) have received enormous attention as new biomarkers and subjects of translational research. Although both biomarkers are already used in numerous clinical trials, their clinical utility is still under investigation with promising first results. Clinical applications include early cancer detection, improved cancer staging, early detection of relapse, real-time monitoring of therapeutic efficacy, and detection of therapeutic targets and resistance mechanisms. Here, we propose a conceptual framework of CTC and ctDNA assays and point out current challenges of CTC and ctDNA research, which might structure this dynamic field of translational cancer research. SIGNIFICANCE: The analysis of blood for CTCs or cell-free nucleic acids called "liquid biopsy" has opened new avenues for cancer diagnostics, including early detection of tumors, improved risk assessment and staging, as well as early detection of relapse and monitoring of tumor evolution in the context of cancer therapies.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France. .,CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
50
|
Wang H, Wu J, Zhang Q, Hao J, Wang Y, Li Z, Niu H, Zhang H, Zhang S. A Modified Method to Isolate Circulating Tumor Cells and Identify by a Panel of Gene Mutations in Lung Cancer. Technol Cancer Res Treat 2021; 20:1533033821995275. [PMID: 34032165 PMCID: PMC8155778 DOI: 10.1177/1533033821995275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
The CellSearch system is the only FDA approved and successful used detection technology for circulating tumor cells(CTCs). However, the process for identification of CTCs by CellSearch appear to damage the cells, which may adversely affects subsequent molecular biology assays. We aimed to explore and establish a membrane-preserving method for immunofluorescence identification of CTCs that keeping the isolated cells intact. 98 patients with lung cancer were enrolled, and the efficacy of clinical detection of CTCs was examined. Based on the CellSearch principle, we optimized an anti-EpCAM antibody and improved cell membrane rupture. A 5 ml peripheral blood sample was used to enrich CTCs with EpCAM immunomagnetic beads. Fluorescence signals were amplified with secondary antibodies against anti-EpCAM antibody attached on immunomagnetic beads. After identifying CTCs, single CTCs were isolated by micromanipulation. To confirm CTCs, genomic DNA was extracted and amplified at the single cell level to sequence 72 target genes of lung cancer and analyze the mutation copy number variations (CNVs) and gene mutations. A goat anti-mouse polyclonal antibody conjugated with Dylight 488 was selected to stain tumor cells. We identified CTCs based on EpCAM+ and CD45+ cells to exclude white blood cells. In the 98 lung cancer patients, the detection rate of CTCs (≥1 CTC) per 5 ml blood was 87.76%, the number of detections was 1-36, and the median was 2. By sequencing 72 lung cancer-associated genes, we found a high level of CNVs and gene mutations characteristic of tumor cells. We established a new CTCs staining scheme that significantly improves the detection rate and allows further analysis of CTCs characteristics at the genetic level.
Collapse
Affiliation(s)
- Helin Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Jieqing Wu
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Qi Zhang
- Department of Oncology, Beijing Chaoyang Huanxing Cancer Hospital,
Beijing, China
| | - Jianqing Hao
- Department of Respiratory Medicine, Qingyang People’s Hospital,
Gansu, China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Zhuoran Li
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Hongrui Niu
- Department of Oncology, The First Affiliated Hospital of Xinxiang
Medical University, Henan, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital
Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute,
Beijing, China
| | - Shucai Zhang
- Department of Oncology, Beijing Chest Hospital, Capital Medical
University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing,
China
| |
Collapse
|