1
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Jamerlan AM, Shim KH, Sharma N, An SSA. Multimer Detection System: A Universal Assay System for Differentiating Protein Oligomers from Monomers. Int J Mol Sci 2025; 26:1199. [PMID: 39940966 PMCID: PMC11818661 DOI: 10.3390/ijms26031199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Depositions of protein aggregates are typical pathological hallmarks of various neurodegenerative diseases (NDs). For example, amyloid-beta (Aβ) and tau aggregates are present in the brain and plasma of patients with Alzheimer's disease (AD); α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA); mutant huntingtin protein (Htt) in Huntington's disease (HD); and DNA-binding protein 43 kD (TDP-43) in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). The same misfolded proteins can be present in multiple diseases in the form of mixed proteinopathies. Since there is no cure for all these diseases, understanding the mechanisms of protein aggregation becomes imperative in modern medicine, especially for developing diagnostics and therapeutics. A Multimer Detection System (MDS) was designed to distinguish and quantify the multimeric/oligomeric forms from the monomeric form of aggregated proteins. As the unique epitope of the monomer is already occupied by capturing or detecting antibodies, the aggregated proteins with multiple epitopes would be accessible to both capturing and detecting antibodies simultaneously, and signals will be generated from the oligomers rather than the monomers. Hence, MDS could present a simple solution for measuring various conformations of aggregated proteins with high sensitivity and specificity, which may help to explore diagnostic and treatment strategies for developing anti-aggregation therapeutics.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| |
Collapse
|
3
|
Helbling C, DeMarco ML. Eye Catching Advancement for Creutzfeldt-Jakob Disease Diagnostics. Clin Chem 2024; 70:574-576. [PMID: 38029334 DOI: 10.1093/clinchem/hvad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Cyril Helbling
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St.Paul's Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
4
|
Kicherova OA, Reikhert LI, Ostapchuk ES, Kicherova KP, Kuznetsov VV, Alifirova VM. [Difficulties in lifetime diagnosis of Creutzfeldt-Jakob disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:19-27. [PMID: 39690547 DOI: 10.17116/jnevro202412411119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Creutzfeldt-Jakob disease (CJD) is a classic representative of the group of prion diseases and is characterized by progressive degeneration of the structures of the nervous system with a variety of neurological symptoms, steady progression and inevitable death. The disease is based on a change in the tertiary structure of the protein, which leads to disruption of the normal functioning of cells. Despite the fact that the etiology and pathogenesis of CJD are now well studied, intravital diagnosis of this serious disease remains difficult due to the peculiarities of the pathological process (unusually long incubation period, variety of clinical symptoms), the lack of pathognomonic markers that make it possible to make a diagnosis with a high degree of confidence, and also insufficient awareness of medical workers. At the same time, differential diagnosis of the disease, aimed at excluding potentially curable conditions, remains relevant. In this review, the authors analyze information about CJD, from the description of the first cases of the disease in the first half of the 20th century to modern diagnostic criteria, with an emphasis on intravital diagnosis of CJD with a detailed description of instrumental methods: electroencephalography, magnetic resonance imaging of the brain). A description of our own clinical observation is also provided, which analyzes the possibilities of making a correct diagnosis in the neurological department of a multidisciplinary medical institution. Despite the fact that an effective treatment for CJD has not yet been developed, its correct diagnosis is extremely important, since the unique resistance of prions to traditional methods of processing instruments and the possibility of iatrogenic transmission requires increased attention to the disinfection procedure and determines the need for strict recording of all cases of this disease.
Collapse
Affiliation(s)
| | | | - E S Ostapchuk
- Tyumen State Medical University, Tyumen, Russia
- Regional Clinical Hospital No. 1, Tyumen, Russia
| | | | | | | |
Collapse
|
5
|
Tsirkou A, Kaczorowski F, Verdurand M, Raffoul R, Pansieri J, Quadrio I, Chauveau F, Antoine R. Charge detection mass spectrometry on human-amplified fibrils from different synucleinopathies. Chem Commun (Camb) 2022; 58:7192-7195. [PMID: 35670578 DOI: 10.1039/d2cc00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid fibrils are self-assembled mesoscopic protein aggregates, which can accumulate to form deposits or plaques in the brain. In vitro amplification of fibrils can be achieved with real-time quaking-induced conversion (RT-QuIC). However, this emerging technique would benefit from a complementary method to assess structural properties of the amplification products. This work demonstrates the feasibility of nanospray-charge-detection-mass-spectrometry (CDMS) performed on α-synuclein (αSyn) fibrils amplified from human brains with Parkinson's disease (PD) or Dementia with Lewy bodies (DLB) and its synergistic combination with RT-QuIC.
Collapse
Affiliation(s)
- Aikaterini Tsirkou
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| | - Flora Kaczorowski
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, 69677 BRON Cedex, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France.,Univ Lyon, Centre de Recherche en Neurosciences de Lyon, Equipe BIORAN, Inserm U1028 - CNRS UMR5292, Université Claude Bernard Lyon 1, Groupement Hospitalier Est - CERMEP, 69677 BRON Cedex, France.
| | - Mathieu Verdurand
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, 69677 BRON Cedex, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France.,Univ Lyon, Centre de Recherche en Neurosciences de Lyon, Equipe BIORAN, Inserm U1028 - CNRS UMR5292, Université Claude Bernard Lyon 1, Groupement Hospitalier Est - CERMEP, 69677 BRON Cedex, France.
| | - Rana Raffoul
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| | - Jonathan Pansieri
- Oxford University, Nuffield Department of Clinical Neurosciences, Oxford University, UK
| | - Isabelle Quadrio
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, 69677 BRON Cedex, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France.,Univ Lyon, Centre de Recherche en Neurosciences de Lyon, Equipe BIORAN, Inserm U1028 - CNRS UMR5292, Université Claude Bernard Lyon 1, Groupement Hospitalier Est - CERMEP, 69677 BRON Cedex, France.
| | - Fabien Chauveau
- Univ Lyon, Centre de Recherche en Neurosciences de Lyon, Equipe BIORAN, Inserm U1028 - CNRS UMR5292, Université Claude Bernard Lyon 1, Groupement Hospitalier Est - CERMEP, 69677 BRON Cedex, France.
| | - Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| |
Collapse
|
6
|
Lau D, Magnan C, Hill K, Cooper A, Gambin Y, Sierecki E. Single Molecule Fingerprinting Reveals Different Amplification Properties of α-Synuclein Oligomers and Preformed Fibrils in Seeding Assay. ACS Chem Neurosci 2022; 13:883-896. [PMID: 35286811 PMCID: PMC8990999 DOI: 10.1021/acschemneuro.1c00553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The quantification of α-synuclein aggregates has emerged as a promising biomarker for synucleinopathies. Assays that amplify and detect such aggregates have revealed the presence of seeding-competent species in biosamples of patients diagnosed with Parkinson's disease. However, multiple species, such as oligomers and amyloid fibrils, are formed during the aggregation of α-synuclein; these species are likely to coexist in biological samples, and thus it remains unclear which species(s) are contributing to the signal detected in seeding assays. To identify individual contributions to the amplification process, recombinant oligomers and preformed fibrils were produced and purified to characterize their individual biochemical and seeding potential. Here, we used single molecule spectroscopy to track the formation and purification of oligomers and fibrils at the single particle level and compare their respective seeding potential in an amplification assay. Single molecule detection validates that size-exclusion chromatography efficiently separates oligomers from fibrils. Oligomers were found to be seeding-competent, but our results reveal that their seeding behavior is very different compared to that of preformed fibrils, in our amplification assay. Overall, our data suggest that even a low number of preformed fibrils present in biosamples is likely to dominate the response in seeding assays.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL Australia Node for Single Molecule Sciences and School of Medical Sciences, Faculty of Medicine, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chloé Magnan
- EMBL Australia Node for Single Molecule Sciences and School of Medical Sciences, Faculty of Medicine, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kathryn Hill
- The Australian Parkinson’s Mission, The Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Antony Cooper
- The Australian Parkinson’s Mission, The Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Sciences and School of Medical Sciences, Faculty of Medicine, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences and School of Medical Sciences, Faculty of Medicine, the University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Bhumkar A, Magnan C, Lau D, Jun ESW, Dzamko N, Gambin Y, Sierecki E. Single-Molecule Counting Coupled to Rapid Amplification Enables Detection of α-Synuclein Aggregates in Cerebrospinal Fluid of Parkinson's Disease Patients. Angew Chem Int Ed Engl 2021; 60:11874-11883. [PMID: 33511725 PMCID: PMC8251908 DOI: 10.1002/anie.202014898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/13/2021] [Indexed: 12/16/2022]
Abstract
α-Synuclein aggregation is a hallmark of Parkinson's disease and a promising biomarker for early detection and assessment of disease progression. The prospect of a molecular test for Parkinson's disease is materializing with the recent developments of detection methods based on amplification of synuclein seeds (e.g. RT-QuIC or PMCA). Here we adapted single-molecule counting methods for the detection of α-synuclein aggregates in cerebrospinal fluid (CSF), using a simple 3D printed microscope. Single-molecule methods enable to probe the early events in the amplification process used in RT-QuIC and a precise counting of ThT-positive aggregates. Importantly, the use of single-molecule counting also allows a refined characterization of the samples and fingerprinting of the protein aggregates present in CSF of patients. The fingerprinting of size and reactivity of individual aggregate shows a unique signature for each PD patients compared to controls and may provide new insights on synucleinopathies in the future.
Collapse
Affiliation(s)
- Akshay Bhumkar
- EMBL-Australia node in Single Molecule Science and School of Medical SciencesThe University of New South WalesSydneyNSW2052Australia
| | - Chloe Magnan
- EMBL-Australia node in Single Molecule Science and School of Medical SciencesThe University of New South WalesSydneyNSW2052Australia
| | - Derrick Lau
- EMBL-Australia node in Single Molecule Science and School of Medical SciencesThe University of New South WalesSydneyNSW2052Australia
| | - Eugene Soh Wei Jun
- EMBL-Australia node in Single Molecule Science and School of Medical SciencesThe University of New South WalesSydneyNSW2052Australia
| | - Nicolas Dzamko
- Brain and Mind Centre and the School of Medical SciencesThe University of SydneySydneyNSW2006Australia
| | - Yann Gambin
- EMBL-Australia node in Single Molecule Science and School of Medical SciencesThe University of New South WalesSydneyNSW2052Australia
| | - Emma Sierecki
- EMBL-Australia node in Single Molecule Science and School of Medical SciencesThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
8
|
Bhumkar A, Magnan C, Lau D, Jun ESW, Dzamko N, Gambin Y, Sierecki E. Single‐Molecule Counting Coupled to Rapid Amplification Enables Detection of α‐Synuclein Aggregates in Cerebrospinal Fluid of Parkinson's Disease Patients. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akshay Bhumkar
- EMBL-Australia node in Single Molecule Science and School of Medical Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - Chloe Magnan
- EMBL-Australia node in Single Molecule Science and School of Medical Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - Derrick Lau
- EMBL-Australia node in Single Molecule Science and School of Medical Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - Eugene Soh Wei Jun
- EMBL-Australia node in Single Molecule Science and School of Medical Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - Nicolas Dzamko
- Brain and Mind Centre and the School of Medical Sciences The University of Sydney Sydney NSW 2006 Australia
| | - Yann Gambin
- EMBL-Australia node in Single Molecule Science and School of Medical Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - Emma Sierecki
- EMBL-Australia node in Single Molecule Science and School of Medical Sciences The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
9
|
Asher DM, Belay E, Bigio E, Brandner S, Brubaker SA, Caughey B, Clark B, Damon I, Diamond M, Freund M, Hyman BT, Jucker M, Keene CD, Lieberman AP, Mackiewicz M, Montine TJ, Morgello S, Phelps C, Safar J, Schneider JA, Schonberger LB, Sigurdson C, Silverberg N, Trojanowski JQ, Frosch MP. Risk of Transmissibility From Neurodegenerative Disease-Associated Proteins: Experimental Knowns and Unknowns. J Neuropathol Exp Neurol 2021; 79:1141-1146. [PMID: 33000167 PMCID: PMC7577514 DOI: 10.1093/jnen/nlaa109] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies in animal models demonstrate that certain misfolded proteins associated with neurodegenerative diseases can support templated misfolding of cognate native proteins, to propagate across neural systems, and to therefore have some of the properties of classical prion diseases like Creutzfeldt-Jakob disease. The National Institute of Aging convened a meeting to discuss the implications of these observations for research priorities. A summary of the discussion is presented here, with a focus on limitations of current knowledge, highlighting areas that appear to require further investigation in order to guide scientific practice while minimizing potential exposure or risk in the laboratory setting. The committee concluded that, based on all currently available data, although neurodegenerative disease-associated aggregates of several different non-prion proteins can be propagated from humans to experimental animals, there is currently insufficient evidence to suggest more than a negligible risk, if any, of a direct infectious etiology for the human neurodegenerative disorders defined in part by these proteins. Given the importance of this question, the potential for noninvasive human transmission of proteopathic disorders is deserving of further investigation.
Collapse
Affiliation(s)
- David M Asher
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Ermias Belay
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eileen Bigio
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London
| | - Scott A Brubaker
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Brychan Clark
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marc Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle Freund
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Miroslaw Mackiewicz
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Creighton Phelps
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiri Safar
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina Sigurdson
- Department of Pathology, University of California - San Diego, San Diego, California
| | - Nina Silverberg
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, University of Washington, Seattle, Washington.,C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry 2021; 26:2685-2706. [PMID: 33495544 PMCID: PMC8505258 DOI: 10.1038/s41380-020-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Collapse
|