1
|
Wazahat R. Strategic diagnosis- Unraveling Tuberculosis- A comprehensive approach. Indian J Tuberc 2025; 72:112-132. [PMID: 39890361 DOI: 10.1016/j.ijtb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 02/03/2025]
Abstract
Tuberculosis, an airborne-infectious disease caused by Mycobacterium tuberculosis remains a perpetual threat globally. It claims over 1.4 million lives per year. Various diagnostic strategies including smear microscopy, culture methods, immunochromatographic assays and molecular methods have paved the way for tuberculosis diagnosis. The Government of India has introduced National Strategic Plan (NSP) for TB elimination, aiming to achieve a rapid decline in the incidence, morbidity, and mortality of TB by the year 2030. In its quest for TB elimination, the plan is structured around four strategic pillars: "Detect-Treat-Prevent-Build." To achieve these pillars and progress towards TB elimination, the government encourages adoption of novel point-of- care diagnostics techniques.
Collapse
Affiliation(s)
- Rushna Wazahat
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Bagheri M, Pormohammad A, Fardsanei F, Yadegari A, Arshadi M, Deihim B, Hajikhani B, Turner RJ, Khalili F, Mousavi SMJ, Dadashi M, Goudarzi M, Dabiri H, Goudarzi H, Mirsaeidi M, Nasiri MJ. Diagnostic Accuracy of Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis: A Systematic Review with Meta-Analysis. Microb Drug Resist 2021; 28:87-98. [PMID: 34582723 DOI: 10.1089/mdr.2021.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Pyrazinamide (PZA) susceptibility testing plays a critical role in determining the appropriate treatment regimens for multidrug-resistant tuberculosis. We conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of sequencing PZA susceptibility tests against culture-based susceptibility testing methods as the reference standard. Methods: We searched the MEDLINE/PubMed, Embase, and Web of Science databases for the relevant records. The QUADAS-2 tool was used to assess the quality of the studies. Diagnostic accuracy measures (i.e., sensitivity and specificity) were pooled with a random-effects model. All statistical analyses were performed with Meta-DiSc (version 1.4, Cochrane Colloquium, Barcelona, Spain), STATA (version 14, Stata Corporation, College Station, TX), and RevMan (version 5.3, The Nordic Cochrane Centre, the Cochrane Collaboration, Copenhagen, Denmark) software. Results: A total of 72 articles, published between 2000 and 2019, comprising data for 8,701 isolates of Mycobacterium tuberculosis were included in the final analysis. The pooled sensitivity and specificity of the PZA sequencing test against all reference tests (the combination of BACTEC mycobacteria growth indicator tube 960 (MGIT 960), BACTEC 460, and proportion method) were 87% (95% CI: 85-88) and 94.7% (95% CI: 94-95). The positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the area under the curve estimates were found to be 12.0 (95% CI: 9.0-16.0), 0.17 (95% CI: 0.13-0.21), 106 (95% CI: 71-158), and 96%, respectively. Deek's test result indicated a low likelihood for publication bias (p = 0.01). Conclusions: Our analysis indicated that PZA sequencing may be used in combination with conventional tests due to the advantage of the time to result and in scenarios where culture tests are not feasible. Further work to improve molecular tests would benefit from the availability of standardized reference standards and improvements to the methodology.
Collapse
Affiliation(s)
- Mohammad Bagheri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Fatemeh Fardsanei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Yadegari
- School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnaz Deihim
- Department of Bacteriology and Virology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ray J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Farima Khalili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Anthwal D, Lavania S, Gupta RK, Verma A, Myneedu VP, Sharma PP, Verma H, Malhotra V, Gupta A, Gupta NK, Sarin R, Haldar S, Tyagi JS. Development and evaluation of novel bio-safe filter paper-based kits for sputum microscopy and transport to directly detect Mycobacterium tuberculosis and associated drug resistance. PLoS One 2019; 14:e0220967. [PMID: 31408508 PMCID: PMC6692035 DOI: 10.1371/journal.pone.0220967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022] Open
Abstract
India has the highest burden of Tuberculosis (TB) and multidrug-resistant TB (MDR-TB) worldwide. Innovative technology is the need of the hour to identify these cases that remain either undiagnosed or inadequately diagnosed due to the unavailability of appropriate tools at primary healthcare settings. We developed and evaluated 3 kits, namely ‘TB Detect’ (containing BioFM-Filter device), ‘TB Concentration and Transport’ (containing Trans-Filter device) and ‘TB DNA Extraction’ kits. These kits enable bio-safe equipment-free concentration of sputum on filters and improved fluorescence microscopy at primary healthcare centres, ambient temperature transport of dried inactivated sputum filters to central laboratories and molecular detection of drug resistance by PCR and DNA sequencing (Mol-DST). In a 2-site evaluation (n = 1190 sputum specimens) on presumptive TB patients, BioFM-Filter smear exhibited a significant increase in positivity of 7% and 4% over ZN smear and LED-FM smear (p<0.05), respectively and an increment in smear grade status (1+ or 2+ to 3+) of 16% over ZN smear and 20% over LED-FM smear. The sensitivity of Mol-DST in presumptive MDR-TB and XDR-TB cases (n = 148) was 90% for Rifampicin (95% confidence interval [CI], 78–96%), 84% for Isoniazid (95% CI, 72–92%), 83% for Fluoroquinolones (95% CI, 66–93%) and 75% for Aminoglycosides (95% CI, 35–97%), using phenotypic DST as the reference standard. Test specificity was 88–93% and concordance was ~89–92% (κ value 0.8–0.9). The patient-friendly kits described here address several of the existing challenges and are designed to provide ‘Universal Access’ to rapid TB diagnosis, including drug-resistant disease. Their utility was demonstrated by application to sputum at 2 sites in India. Our findings pave the way for larger studies in different point-of-care settings, including high-density urban areas and remote geographical locations.
Collapse
Affiliation(s)
- Divya Anthwal
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad, India
| | - Surabhi Lavania
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Kumar Gupta
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad, India
| | - Ajoy Verma
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
| | - Vithal Prasad Myneedu
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
| | - Prem Prakash Sharma
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
| | | | | | - Ashawant Gupta
- Advanced Microdevices Pvt Ltd, Industrial Area, Ambala Cantt, India
| | | | - Rohit Sarin
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
- * E-mail: (JST); (SH); (RS)
| | - Sagarika Haldar
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad, India
- * E-mail: (JST); (SH); (RS)
| | - Jaya Sivaswami Tyagi
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad, India
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail: (JST); (SH); (RS)
| |
Collapse
|
4
|
Nurwidya F, Handayani D, Burhan E, Yunus F. Molecular Diagnosis of Tuberculosis. Chonnam Med J 2018; 54:1-9. [PMID: 29399559 PMCID: PMC5794472 DOI: 10.4068/cmj.2018.54.1.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of adult death in the Asia-Pacific Region, including Indonesia. As an infectious disease caused by Mycobacterium tuberculosis (MTB), TB remains a major public health issue especially in developing nations due to the lack of adequate diagnostic testing facilities. Diagnosis of TB has entered an era of molecular detection that provides faster and more cost-effective methods to diagnose and confirm drug resistance in TB cases, meanwhile, diagnosis by conventional culture systems requires several weeks. New advances in the molecular detection of TB, including the faster and simpler nucleic acid amplification test (NAAT) and whole-genome sequencing (WGS), have resulted in a shorter time for diagnosis and, therefore, faster TB treatments. In this review, we explored the current findings on molecular diagnosis of TB and drug-resistant TB to see how this advancement could be integrated into public health systems in order to control TB.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Diah Handayani
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Erlina Burhan
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Faisal Yunus
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| |
Collapse
|
5
|
Chikaonda T, Ketseoglou I, Nguluwe N, Krysiak R, Thengolose I, Nyakwawa F, Rosenberg NE, Stanley C, Mpunga J, Hoffman IF, Papathanasopoulos MA, Hosseinipour M, Scott L, Stevens W. Molecular characterisation of rifampicin-resistant Mycobacterium tuberculosis strains from Malawi. Afr J Lab Med 2017; 6:463. [PMID: 28879159 PMCID: PMC5523914 DOI: 10.4102/ajlm.v6i2.463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/05/2016] [Indexed: 12/02/2022] Open
Abstract
Background Availability and access to the detection of resistance to anti-tuberculosis drugs remains a significant challenge in Malawi due to limited diagnostic services. The Xpert® MTB/RIF can detect Mycobacterium tuberculosis and resistance to rifampicin in a single, rapid assay. Rifampicin-resistant M. tuberculosis has not been well studied in Malawi. Objectives We aimed to determine mutations in the rifampicin resistance determining region (RRDR) of the rpoB gene of M. tuberculosis strains which were defined as resistant to rifampicin by the Xpert MTB/RIF assay. Methods Rifampicin-resistant isolates from 43 adult patients (≥ 18 years) from various districts of Malawi were characterised for mutations in the RRDR (codons 507–533) of the rpoB gene by DNA sequencing. Results Mutations were found in 37/43 (86%) of the resistant isolates in codons 511, 512, 513, 516, 522, 526 and 531. The most common mutations were in codons 526 (38%), 531 (29.7%) and 516 (16.2%). Mutations were not found in 6/43 (14%) of the resistant isolates. No novel rpoB mutations other than those previously described were found among the rifampicin-resistant M. tuberculosis complex strains. Conclusion This study is the first to characterise rifampicin resistance in Malawi. The chain-termination DNA sequencing employed in this study is a standard method for the determination of nucleotide sequences and can be used to confirm rifampicin resistance obtained using other assays, including the Xpert MTB/RIF. Further molecular cluster analysis, such as spoligotyping and DNA finger printing, is still required to determine transmission dynamics and the epidemiological link of the mutated strains.
Collapse
Affiliation(s)
- Tarsizio Chikaonda
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,UNC Project, Lilongwe, Malawi
| | - Irene Ketseoglou
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | - Felix Nyakwawa
- Malawi National Tuberculosis Programme, Lilongwe, Malawi
| | | | | | - James Mpunga
- Malawi National Tuberculosis Programme, Lilongwe, Malawi
| | - Irving F Hoffman
- UNC Project, Lilongwe, Malawi.,University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Maria A Papathanasopoulos
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mina Hosseinipour
- UNC Project, Lilongwe, Malawi.,University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Lesley Scott
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy Stevens
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Theron G, Peter J, Richardson M, Warren R, Dheda K, Steingart KR, Cochrane Infectious Diseases Group. GenoType ® MTBDRsl assay for resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev 2016; 9:CD010705. [PMID: 27605387 PMCID: PMC5034505 DOI: 10.1002/14651858.cd010705.pub3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Genotype® MTBDRsl (MTBDRsl) is a rapid DNA-based test for detecting specific mutations associated with resistance to fluoroquinolones and second-line injectable drugs (SLIDs) in Mycobacterium tuberculosis complex. MTBDRsl version 2.0 (released in 2015) identifies the mutations detected by version 1.0, as well as additional mutations. The test may be performed on a culture isolate or a patient specimen, which eliminates delays associated with culture. Version 1.0 requires a smear-positive specimen, while version 2.0 may use a smear-positive or -negative specimen. We performed this updated review as part of a World Health Organization process to develop updated guidelines for using MTBDRsl. OBJECTIVES To assess and compare the diagnostic accuracy of MTBDRsl for: 1. fluoroquinolone resistance, 2. SLID resistance, and 3. extensively drug-resistant tuberculosis, indirectly on a M. tuberculosis isolate grown from culture or directly on a patient specimen. Participants were people with rifampicin-resistant or multidrug-resistant tuberculosis. The role of MTBDRsl would be as the initial test, replacing culture-based drug susceptibility testing (DST), for detecting second-line drug resistance. SEARCH METHODS We searched the following databases without language restrictions up to 21 September 2015: the Cochrane Infectious Diseases Group Specialized Register; MEDLINE; Embase OVID; Science Citation Index Expanded, Conference Proceedings Citation Index-Science, and BIOSIS Previews (all three from Web of Science); LILACS; and SCOPUS; registers for ongoing trials; and ProQuest Dissertations & Theses A&I. We reviewed references from included studies and contacted specialists in the field. SELECTION CRITERIA We included cross-sectional and case-control studies that determined MTBDRsl accuracy against a defined reference standard (culture-based DST, genetic sequencing, or both). DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed quality using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We synthesized data for versions 1.0 and 2.0 separately. We estimated MTBDRsl sensitivity and specificity for fluoroquinolone resistance, SLID resistance, and extensively drug-resistant tuberculosis when the test was performed indirectly or directly (smear-positive specimen for version 1.0, smear-positive or -negative specimen for version 2.0). We explored the influence on accuracy estimates of individual drugs within a drug class and of different reference standards. We performed most analyses using a bivariate random-effects model with culture-based DST as reference standard. MAIN RESULTS We included 27 studies. Twenty-six studies evaluated version 1.0, and one study version 2.0. Of 26 studies stating specimen country origin, 15 studies (58%) evaluated patients from low- or middle-income countries. Overall, we considered the studies to be of high methodological quality. However, only three studies (11%) had low risk of bias for the reference standard; these studies used World Health Organization (WHO)-recommended critical concentrations for all drugs in the culture-based DST reference standard. MTBDRsl version 1.0 Fluoroquinolone resistance: indirect testing, MTBDRsl pooled sensitivity and specificity (95% confidence interval (CI)) were 85.6% (79.2% to 90.4%) and 98.5% (95.7% to 99.5%), (19 studies, 2223 participants); direct testing (smear-positive specimen), pooled sensitivity and specificity were 86.2% (74.6% to 93.0%) and 98.6% (96.9% to 99.4%), (nine studies, 1771 participants, moderate quality evidence). SLID resistance: indirect testing, MTBDRsl pooled sensitivity and specificity were 76.5% (63.3% to 86.0%) and 99.1% (97.3% to 99.7%), (16 studies, 1921 participants); direct testing (smear-positive specimen), pooled sensitivity and specificity were 87.0% (38.1% to 98.6%) and 99.5% (93.6% to 100.0%), (eight studies, 1639 participants, low quality evidence). Extensively drug-resistant tuberculosis: indirect testing, MTBDRsl pooled sensitivity and specificity were 70.9% (42.9% to 88.8%) and 98.8% (96.1% to 99.6%), (eight studies, 880 participants); direct testing (smear-positive specimen), pooled sensitivity and specificity were 69.4% (38.8% to 89.0%) and 99.4% (95.0% to 99.3%), (six studies, 1420 participants, low quality evidence).Similar to the original Cochrane review, we found no evidence of a significant difference in MTBDRsl version 1.0 accuracy between indirect and direct testing for fluoroquinolone resistance, SLID resistance, and extensively drug-resistant tuberculosis. MTBDRsl version 2.0 Fluoroquinolone resistance: direct testing, MTBDRsl sensitivity and specificity were 97% (83% to 100%) and 98% (93% to 100%), smear-positive specimen; 80% (28% to 99%) and 100% (40% to 100%), smear-negative specimen. SLID resistance: direct testing, MTBDRsl sensitivity and specificity were 89% (72% to 98%) and 90% (84% to 95%), smear-positive specimen; 80% (28% to 99%) and 100% (40% to 100%), smear-negative specimen. Extensively drug-resistant tuberculosis: direct testing, MTBDRsl sensitivity and specificity were 79% (49% to 95%) and 97% (93% to 99%), smear-positive specimen; 50% (1% to 99%) and 100% (59% to 100%), smear-negative specimen.We had insufficient data to estimate summary sensitivity and specificity of version 2.0 (smear-positive and -negative specimens) or to compare accuracy of the two versions.A limitation was that most included studies did not consistently use the World Health Organization (WHO)-recommended concentrations for drugs in the culture-based DST reference standard. AUTHORS' CONCLUSIONS In people with rifampicin-resistant or multidrug-resistant tuberculosis, MTBDRsl performed on a culture isolate or smear-positive specimen may be useful in detecting second-line drug resistance. MTBDRsl (smear-positive specimen) correctly classified around six in seven people as having fluoroquinolone or SLID resistance, although the sensitivity estimates for SLID resistance varied. The test rarely gave a positive result for people without drug resistance. However, when second-line drug resistance is not detected (MTBDRsl result is negative), conventional DST can still be used to evaluate patients for resistance to the fluoroquinolones or SLIDs.We recommend that future work evaluate MTBDRsl version 2.0, in particular on smear-negative specimens and in different settings to account for different resistance-causing mutations that may vary by strain. Researchers should also consider incorporating WHO-recommended critical concentrations into their culture-based reference standards.
Collapse
Affiliation(s)
- Grant Theron
- Stellenbosch UniversityDST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesTygerbergSouth Africa
| | - Jonny Peter
- University of Cape TownDivision of Clinical Immunology and Allergology, Department of MedicineCape TownSouth Africa
| | - Marty Richardson
- Liverpool School of Tropical MedicineCochrane Infectious Diseases GroupPembroke PlaceLiverpoolUKL3 5QA
| | - Rob Warren
- Stellenbosch UniversityDST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesMatielandSouth Africa
| | - Keertan Dheda
- University of Cape TownLung Infection and Immunity Unit, Department of MedicineCape TownSouth Africa
| | - Karen R Steingart
- Liverpool School of Tropical MedicineCochrane Infectious Diseases GroupPembroke PlaceLiverpoolUKL3 5QA
| | | |
Collapse
|
7
|
Drobniewski F, Cooke M, Jordan J, Casali N, Mugwagwa T, Broda A, Townsend C, Sivaramakrishnan A, Green N, Jit M, Lipman M, Lord J, White PJ, Abubakar I. Systematic review, meta-analysis and economic modelling of molecular diagnostic tests for antibiotic resistance in tuberculosis. Health Technol Assess 2016; 19:1-188, vii-viii. [PMID: 25952553 DOI: 10.3310/hta19340] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (TB), especially multidrug-resistant (MDR, resistance to rifampicin and isoniazid) disease, is associated with a worse patient outcome. Drug resistance diagnosed using microbiological culture takes days to weeks, as TB bacteria grow slowly. Rapid molecular tests for drug resistance detection (1 day) are commercially available and may promote faster initiation of appropriate treatment. OBJECTIVES To (1) conduct a systematic review of evidence regarding diagnostic accuracy of molecular genetic tests for drug resistance, (2) conduct a health-economic evaluation of screening and diagnostic strategies, including comparison of alternative models of service provision and assessment of the value of targeting rapid testing at high-risk subgroups, and (3) construct a transmission-dynamic mathematical model that translates the estimates of diagnostic accuracy into estimates of clinical impact. REVIEW METHODS AND DATA SOURCES A standardised search strategy identified relevant studies from EMBASE, PubMed, MEDLINE, Bioscience Information Service (BIOSIS), System for Information on Grey Literature in Europe Social Policy & Practice (SIGLE) and Web of Science, published between 1 January 2000 and 15 August 2013. Additional 'grey' sources were included. Quality was assessed using quality assessment of diagnostic accuracy studies version 2 (QUADAS-2). For each diagnostic strategy and population subgroup, a care pathway was constructed to specify which medical treatments and health services that individuals would receive from presentation to the point where they either did or did not complete TB treatment successfully. A total cost was estimated from a health service perspective for each care pathway, and the health impact was estimated in terms of the mean discounted quality-adjusted life-years (QALYs) lost as a result of disease and treatment. Costs and QALYs were both discounted at 3.5% per year. An integrated transmission-dynamic and economic model was used to evaluate the cost-effectiveness of introducing rapid molecular testing (in addition to culture and drug sensitivity testing). Probabilistic sensitivity analysis was performed to evaluate the impact on cost-effectiveness of diagnostic and treatment time delays, diagnosis and treatment costs, and associated QALYs. RESULTS A total of 8922 titles and abstracts were identified, with 557 papers being potentially eligible. Of these, 56 studies contained sufficient test information for analysis. All three commercial tests performed well when detecting drug resistance in clinical samples, although with evidence of heterogeneity between studies. Pooled sensitivity for GenoType® MTBDRplus (Hain Lifescience, Nehren, Germany) (isoniazid and rifampicin resistance), INNO-LiPA Rif.TB® (Fujirebio Europe, Ghent, Belgium) (rifampicin resistance) and Xpert® MTB/RIF (Cepheid Inc., Sunnyvale, CA, USA) (rifampicin resistance) was 83.4%, 94.6%, 95.4% and 96.8%, respectively; equivalent pooled specificity was 99.6%, 98.2%, 99.7% and 98.4%, respectively. Results of the transmission model suggest that all of the rapid assays considered here, if added to the current diagnostic pathway, would be cost-saving and achieve a reduction in expected QALY loss compared with current practice. GenoType MTBDRplus appeared to be the most cost-effective of the rapid tests in the South Asian population, although results were similar for GeneXpert. In all other scenarios GeneXpert appeared to be the most cost-effective strategy. CONCLUSIONS Rapid molecular tests for rifampicin and isoniazid resistance were sensitive and specific. They may also be cost-effective when added to culture drug susceptibility testing in the UK. There is global interest in point-of-care testing and further work is needed to review the performance of emerging tests and the wider health-economic impact of decentralised testing in clinics and primary care, as well as non-health-care settings, such as shelters and prisons. STUDY REGISTRATION This study is registered as PROSPERO CRD42011001537. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Francis Drobniewski
- Public Health England National Mycobacterium Reference Laboratory, London, UK
| | - Mary Cooke
- Centre for Infectious Disease Epidemiology, Research Department of Infection and Population Health, University College London, London, UK
| | - Jake Jordan
- Health Economics Research Group, Brunel University, Uxbridge, UK
| | - Nicola Casali
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Tendai Mugwagwa
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Agnieszka Broda
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | | | | | - Nathan Green
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Mark Jit
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Marc Lipman
- Division of Medicine, University College London, London, UK
| | - Joanne Lord
- Health Economics Research Group, Brunel University, Uxbridge, UK
| | - Peter J White
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Ibrahim Abubakar
- Centre for Infectious Disease Epidemiology, Research Department of Infection and Population Health, University College London, London, UK
| |
Collapse
|
8
|
|
9
|
Whitfield MG, Soeters HM, Warren RM, York T, Sampson SL, Streicher EM, van Helden PD, van Rie A. A Global Perspective on Pyrazinamide Resistance: Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0133869. [PMID: 26218737 PMCID: PMC4517823 DOI: 10.1371/journal.pone.0133869] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/03/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pyrazinamide (PZA) is crucial for tuberculosis (TB) treatment, given its unique ability to eradicate persister bacilli. The worldwide burden of PZA resistance remains poorly described. METHODS Systematic PubMed, Science Direct and Scopus searches for articles reporting phenotypic (liquid culture drug susceptibility testing or pyrazinamidase activity assays) and/or genotypic (polymerase chain reaction or DNA sequencing) PZA resistance. Global and regional summary estimates were obtained from random-effects meta-analysis, stratified by presence or risk of multidrug resistant TB (MDR-TB). Regional summary estimates were combined with regional WHO TB incidence estimates to determine the annual burden of PZA resistance. Information on single nucleotide polymorphisms (SNPs) in the pncA gene was aggregated to obtain a global summary. RESULTS Pooled PZA resistance prevalence estimate was 16.2% (95% CI 11.2-21.2) among all TB cases, 41.3% (29.0-53.7) among patients at high MDR-TB risk, and 60.5% (52.3-68.6) among MDR-TB cases. The estimated global burden is 1.4 million new PZA resistant TB cases annually, about 270,000 in MDR-TB patients. Among 1,815 phenotypically resistant isolates, 608 unique SNPs occurred at 397 distinct positions throughout the pncA gene. INTERPRETATION PZA resistance is ubiquitous, with an estimated one in six incident TB cases and more than half of all MDR-TB cases resistant to PZA globally. The diversity of SNPs across the pncA gene complicates the development of rapid molecular diagnostics. These findings caution against relying on PZA in current and future TB drug regimens, especially in MDR-TB patients.
Collapse
Affiliation(s)
- Michael G. Whitfield
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Heidi M. Soeters
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robin M. Warren
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Talita York
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Samantha L. Sampson
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Elizabeth M. Streicher
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Paul D. van Helden
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Annelies van Rie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- International Health Unit, Epidemiology and Social Medicine, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerg Microbes Infect 2015; 4:e42. [PMID: 26251830 PMCID: PMC4522615 DOI: 10.1038/emi.2015.42] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/08/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
We report the discovery and confirmation of 23 novel mutations with previously undocumented role in isoniazid (INH) drug resistance, in catalase-peroxidase (katG) gene of Mycobacterium tuberculosis (Mtb) isolates. With these mutations, a synonymous mutation in fabG1g609a, and two canonical mutations, we were able to explain 98% of the phenotypic resistance observed in 366 clinical Mtb isolates collected from four high tuberculosis (TB)-burden countries: India, Moldova, Philippines, and South Africa. We conducted overlapping targeted and whole-genome sequencing for variant discovery in all clinical isolates with a variety of INH-resistant phenotypes. Our analysis showed that just two canonical mutations (katG 315AGC-ACC and inhA promoter-15C-T) identified 89.5% of resistance phenotypes in our collection. Inclusion of the 23 novel mutations reported here, and the previously documented point mutation in fabG1, increased the sensitivity of these mutations as markers of INH resistance to 98%. Only six (2%) of the 332 resistant isolates in our collection did not harbor one or more of these mutations. The third most prevalent substitution, at inhA promoter position -8, present in 39 resistant isolates, was of no diagnostic significance since it always co-occurred with katG 315. 79% of our isolates harboring novel mutations belong to genetic group 1 indicating a higher tendency for this group to go down an uncommon evolutionary path and evade molecular diagnostics. The results of this study contribute to our understanding of the mechanisms of INH resistance in Mtb isolates that lack the canonical mutations and could improve the sensitivity of next generation molecular diagnostics.
Collapse
|
11
|
Miravet Sorribes L, Arnedo Pena A, Bellido Blasco JB, Romeu García MA, Gil Fortuño M, García Sidro P, Cortés Miró P. Outbreak of multidrug-resistant tuberculosis in two secondary schools. Arch Bronconeumol 2015; 52:70-5. [PMID: 25987369 DOI: 10.1016/j.arbres.2015.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To describe an outbreak of multidrug-resistant tuberculosis (MDR-TB) in two schools METHODS This was a prospective, observational study of an outbreak of MDR-TB in 2 schools located in the towns of Onda and Nules, in the Spanish province of Castellon, from the moment of detection in November 2008 until November 2014, including patient follow-up and contact tracing. RESULTS Five cases of MDR-TB were diagnosed. Overall attack rate was 0.9%, and among the contacts traced, 66 had latent tuberculous infection, with an infection rate of 14.4%. Molecular characterization of the 5M. tuberculosis isolates was performed by restriction fragment length polymorphism (RFLP) analysis of the IS6110 sequence. In all 5 patients, cultures were negative at 4-month follow-up, showing the efficacy of the treatment given. No recurrence has been reported to date. CONCLUSIONS In the context of globalization and the increased prevalence of MDR-TB, outbreaks such as the one presented here are only to be expected. Contact tracing, strict follow-up of confirmed cases, the availability of fast diagnostic techniques to avoid treatment delay, and chemoprophylaxis, together with the molecular characterization of strains, are still essential.
Collapse
Affiliation(s)
| | - Alberto Arnedo Pena
- Sección de Epidemiología, Centro de Salud Pública, Castellón, España; CIBER-ESP grupo 41
| | - Juan B Bellido Blasco
- Sección de Epidemiología, Centro de Salud Pública, Castellón, España; CIBER-ESP grupo 41
| | | | - María Gil Fortuño
- Sección de Microbiología, Hospital La Plana, Villarreal, Castellón, España
| | | | | |
Collapse
|
12
|
Gupta A, Nagaraja MR, Kumari P, Singh G, Raman R, Singh SK, Anupurb S. Association of MDR-TB isolates with clinical characteristics of patients from Northern region of India. Indian J Med Microbiol 2015; 32:270-6. [PMID: 25008819 DOI: 10.4103/0255-0857.136561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE We sought to determine the characteristics and relative frequency of transmission of MDR-TB in North India and their association with the clinical and epidemiological characteristics of TB-patients. MATERIALS AND METHODS To achieve the objectives PCR-SSCP, MAS-PCR and direct DNA sequencing were used against 101 Mycobacterium tuberculosis isolates. RESULTS Multidrug-resistant-TB isolates were found to be significantly higher (P=0.000) in previously treated patients in comparison to newly diagnosed patients. Further, significant differences (P=0.003) were observed between different age groups (Mean±SD, 28.6±11.77) of the TB patients and multidrug resistance. Most frequent mutations were observed at codons 531 and 315 of rpoB and katG genes, respectively, in MDR-TB isolates. CONCLUSION Routine surveillance of resistance to anti-TB drugs will improve timely recognition of MDR-TB cases and help prevent further transmission in Northern India.
Collapse
Affiliation(s)
| | | | | | | | | | | | - S Anupurb
- Department of Microbiology, Institute of Medical Sciences, Uttar Pradesh, India
| |
Collapse
|
13
|
Theron G, Peter J, Richardson M, Barnard M, Donegan S, Warren R, Steingart KR, Dheda K. The diagnostic accuracy of the GenoType(®) MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev 2014:CD010705. [PMID: 25353401 PMCID: PMC4448219 DOI: 10.1002/14651858.cd010705.pub2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accurate and rapid tests for tuberculosis (TB) drug resistance are critical for improving patient care and decreasing the transmission of drug-resistant TB. Genotype(®)MTBDRsl (MTBDRsl) is the only commercially-available molecular test for detecting resistance in TB to the fluoroquinolones (FQs; ofloxacin, moxifloxacin and levofloxacin) and the second-line injectable drugs (SLIDs; amikacin, kanamycin and capreomycin), which are used to treat patients with multidrug-resistant (MDR-)TB. OBJECTIVES To obtain summary estimates of the diagnostic accuracy of MTBDRsl for FQ resistance, SLID resistance and extensively drug-resistant TB (XDR-TB; defined as MDR-TB plus resistance to a FQ and a SLID) when performed (1) indirectly (ie on culture isolates confirmed as TB positive) and (2) directly (ie on smear-positive sputum specimens).To compare summary estimates of the diagnostic accuracy of MTBDRsl for FQ resistance, SLID resistance and XDR-TB by type of testing (indirect versus direct testing).The populations of interest were adults with drug-susceptible TB or drug-resistant TB. The settings of interest were intermediate and central laboratories. SEARCH METHODS We searched the following databases without any language restriction up to 30 January 2014: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; ISI Web of Knowledge; MEDION; LILACS; BIOSIS; SCOPUS; the metaRegister of Controlled Trials; the search portal of the World Health Organization International Clinical Trials Registry Platform; and ProQuest Dissertations & Theses A&I. SELECTION CRITERIA We included all studies that determined MTBDRsl accuracy against a defined reference standard (culture-based drug susceptibility testing (DST), genetic testing or both). We included cross-sectional and diagnostic case-control studies. We excluded unpublished data and conference proceedings. DATA COLLECTION AND ANALYSIS For each study, two review authors independently extracted data using a standardized form and assessed study quality using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We performed meta-analyses to estimate the pooled sensitivity and specificity of MTBDRsl for FQ resistance, SLID resistance, and XDR-TB. We explored the influence of different reference standards. We performed the majority of analyses using a bivariate random-effects model against culture-based DST as the reference standard. MAIN RESULTS We included 21 unique studies: 14 studies reported the accuracy of MTBDRsl when done directly, five studies when done indirectly and two studies that did both. Of the 21 studies, 15 studies (71%) were cross-sectional and 11 studies (58%) were located in low-income or middle-income countries. All studies but two were written in English. Nine (43%) of the 21 included studies had a high risk of bias for patient selection. At least half of the studies had low risk of bias for the other QUADAS-2 domains.As a test for FQ resistance measured against culture-based DST, the pooled sensitivity of MTBDRsl when performed indirectly was 83.1% (95% confidence interval (CI) 78.7% to 86.7%) and the pooled specificity was 97.7% (95% CI 94.3% to 99.1%), respectively (16 studies, 1766 participants; 610 confirmed cases of FQ-resistant TB; moderate quality evidence). When performed directly, the pooled sensitivity was 85.1% (95% CI 71.9% to 92.7%) and the pooled specificity was 98.2% (95% CI 96.8% to 99.0%), respectively (seven studies, 1033 participants; 230 confirmed cases of FQ-resistant TB; moderate quality evidence). For indirect testing for FQ resistance, four (0.2%) of 1766 MTBDRsl results were indeterminate, whereas for direct testing 20 (1.9%) of 1033 were MTBDRsl indeterminate (P < 0.001).As a test for SLID resistance measured against culture-based DST, the pooled sensitivity of MTBDRsl when performed indirectly was 76.9% (95% CI 61.1% to 87.6%) and the pooled specificity was 99.5% (95% CI 97.1% to 99.9%), respectively (14 studies, 1637 participants; 414 confirmed cases of SLID-resistant TB; moderate quality evidence). For amikacin resistance, the pooled sensitivity and specificity were 87.9% (95% CI 82.1% to 92.0%) and 99.5% (95% CI 97.5% to 99.9%), respectively. For kanamycin resistance, the pooled sensitivity and specificity were 66.9% (95% CI 44.1% to 83.8%) and 98.6% (95% CI 96.1% to 99.5%), respectively. For capreomycin resistance, the pooled sensitivity and specificity were 79.5% (95% CI 58.3% to 91.4%) and 95.8% (95% CI 93.4% to 97.3%), respectively. When performed directly, the pooled sensitivity for SLID resistance was 94.4% (95% CI 25.2% to 99.9%) and the pooled specificity was 98.2% (95% CI 88.9% to 99.7%), respectively (six studies, 947 participants; 207 confirmed cases of SLID-resistant TB, 740 SLID susceptible cases of TB; very low quality evidence). For indirect testing for SLID resistance, three (0.4%) of 774 MTBDRsl results were indeterminate, whereas for direct testing 53 (6.1%) of 873 were MTBDRsl indeterminate (P < 0.001).As a test for XDR-TB measured against culture-based DST, the pooled sensitivity of MTBDRsl when performed indirectly was 70.9% (95% CI 42.9% to 88.8%) and the pooled specificity was 98.8% (95% CI 96.1% to 99.6%), respectively (eight studies, 880 participants; 173 confirmed cases of XDR-TB; low quality evidence). AUTHORS' CONCLUSIONS In adults with TB, a positive MTBDRsl result for FQ resistance, SLID resistance, or XDR-TB can be treated with confidence. However, MTBDRsl does not detect approximately one in five cases of FQ-resistant TB, and does not detect approximately one in four cases of SLID-resistant TB. Of the three SLIDs, MTBDRsl has the poorest sensitivity for kanamycin resistance. MTBDRsl will miss between one in four and one in three cases of XDR-TB. The diagnostic accuracy of MTBDRsl is similar when done using either culture isolates or smear-positive sputum. As the location of the resistance causing mutations can vary on a strain-by-strain basis, further research is required on test accuracy in different settings and, if genetic sequencing is used as a reference standard, it should examine all resistance-determining regions. Given the confidence one can have in a positive result, and the ability of the test to provide results within a matter of days, MTBDRsl may be used as an initial test for second-line drug resistance. However, when the test reports a negative result, clinicians may still wish to carry out conventional testing.
Collapse
Affiliation(s)
- Grant Theron
- Department ofMedicine, University of Cape Town, Cape TownSouth Africa
- Department of Medicine, University of Cape Town, H47.88, Old Main Building, Groote Schuur Hospital, Cape Town, Western Cape, 7798, South Africa. .
| | - Jonny Peter
- Department ofMedicine, University of Cape Town, Cape TownSouth Africa
| | - Marty Richardson
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpool, UK
| | - Marinus Barnard
- Task Laboratory, Department of Biochemical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, MatielandSouth Africa
| | - Sarah Donegan
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpool, UK
| | - Rob Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityMatieland, South Africa
| | - Karen R Steingart
- Cochrane Infectious Diseases Group, Liverpool School of Tropical MedicineLiverpool, UK
| | - Keertan Dheda
- Division of Pulmonology, Department of Medicine, University of Cape TownCape Town, South Africa
| |
Collapse
|
14
|
A rapid fluorescence polarization-based method for genotypic detection of drug resistance in Mycobacterium tuberculosis. Appl Microbiol Biotechnol 2014; 98:4095-105. [DOI: 10.1007/s00253-013-5356-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 11/24/2022]
|
15
|
Zakham F, Chaoui I, Echchaoui AH, Chetioui F, Elmessaoudi MD, Ennaji MM, Abid M, Mzibri ME. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco. Infect Drug Resist 2013; 6:207-13. [PMID: 24399879 PMCID: PMC3875366 DOI: 10.2147/idr.s47724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major public health problem with high mortality and morbidity rates, especially in low-income countries. Disturbingly, the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) TB cases has worsened the situation, raising concerns of a future epidemic of virtually untreatable TB. Indeed, the rapid diagnosis of MDR TB is a critical issue for TB management. This study is an attempt to establish a rapid diagnosis of MDR TB by sequencing the target fragments of the rpoB gene which linked to resistance against rifampicin and the katG gene and inhA promoter region, which are associated with resistance to isoniazid. METHODS For this purpose, 133 sputum samples of TB patients from Morocco were enrolled in this study. One hundred samples were collected from new cases, and the remaining 33 were from previously treated patients (drug relapse or failure, chronic cases) and did not respond to anti-TB drugs after a sufficient duration of treatment. All samples were subjected to rpoB, katG and pinhA mutation analysis by polymerase chain reaction and DNA sequencing. RESULTS Molecular analysis showed that seven strains were isoniazid-monoresistant and 17 were rifampicin-monoresistant. MDR TB strains were identified in nine cases (6.8%). Among them, eight were traditionally diagnosed as critical cases, comprising four chronic and four drug-relapse cases. The last strain was isolated from a new case. The most recorded mutation in the rpoB gene was the substitution TCG > TTG at codon 531 (Ser531 Leu), accounting for 46.15%. Significantly, the only mutation found in the katG gene was at codon 315 (AGC to ACC) with a Ser315Thr amino acid change. Only one sample harbored mutation in the inhA promoter region and was a point mutation at the -15p position (C > T). CONCLUSION The polymerase chain reaction sequencing approach is an accurate and rapid method for detection of drug-resistant TB in clinical specimens, and could be of great interest in the management of TB in critical cases to adjust the treatment regimen and limit the emergence of MDR and XDR strains.
Collapse
Affiliation(s)
- Fathiah Zakham
- Unité de Biologie et Recherché Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat, Morocco ; Laboratoire de Microbiologie, Hygiène et Virologie, Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Imane Chaoui
- Unité de Biologie et Recherché Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | | | - Fouad Chetioui
- Laboratoire de Tuberculose Institut Pasteur, Casablanca, Morocco
| | | | - My Mustapha Ennaji
- Laboratoire de Microbiologie, Hygiène et Virologie, Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Mohammed Abid
- Laboratoire de Génétique Mycobacterienne, Institut Pasteur, Tangier, Morocco
| | - Mohammed El Mzibri
- Unité de Biologie et Recherché Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat, Morocco
| |
Collapse
|
16
|
Current status and future trends in the diagnosis and treatment of drug-susceptible and multidrug-resistant tuberculosis. J Infect Public Health 2013; 7:75-91. [PMID: 24216518 DOI: 10.1016/j.jiph.2013.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/29/2013] [Accepted: 09/18/2013] [Indexed: 11/21/2022] Open
Abstract
The global burden of tuberculosis (TB) is still large. The increasing incidence of drug-resistant, multidrug-resistant (MDR) (resistant to at least rifampicin and isoniazid), and extensively drug-resistant (XDR) (additionally resistant to a fluoroquinolone and kanamycin/amikacin/capreomycin) strains of Mycobacterium tuberculosis and the association of active disease with human immunodeficiency virus coinfection pose a major threat to TB control efforts. The rapid detection of M. tuberculosis strains and drug susceptibility testing (DST) for anti-TB drugs ensure the provision of effective treatment. Rapid molecular diagnostic and DST methods have been developed recently. Treatment of drug-susceptible TB is effective in ≥95% of disease cases; however, supervised therapy for ≥6 months is challenging. Non-adherence to treatment often results in the evolution of drug-resistant strains of M. tuberculosis due to mutations in the genes encoding drug targets. Sequential accumulation of mutations results in the evolution of MDR and XDR strains of M. tuberculosis. Effective treatment of MDR-TB involves therapy with 5-7 less effective, expensive, and toxic second-line and third-line drugs for ≥24 months and is difficult in most developing countries. XDR-TB is generally an untreatable disease in developing countries. Some currently existing drugs and several new drugs with novel modes of action are in various stages of development to shorten the treatment duration of drug-susceptible TB and to improve the outcome of MDR-TB and XDR-TB.
Collapse
|
17
|
Electrochemical and spectroscopic investigations of isoniazide and its analogs with ds.DNA at physiological pH: Evaluation of biological activities. Eur J Med Chem 2012; 47:452-61. [DOI: 10.1016/j.ejmech.2011.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 10/11/2011] [Accepted: 11/07/2011] [Indexed: 11/22/2022]
|
18
|
Lee J, Yun YJ, Kqueen CY, Lee JH, Kim HY, Kim YR, Kook YH, Lee KH. pncAMutations in the Specimens from Extrapulmonary Tuberculosis. Tuberc Respir Dis (Seoul) 2012; 72:475-80. [PMID: 23101013 PMCID: PMC3475457 DOI: 10.4046/trd.2012.72.6.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/09/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022] Open
Abstract
Background Pyrazinamide (PZA) is an effective antitubercular drug that becomes toxic to Mycobacterium tuberculosis when converted to pyrazinoic acid by pyrazinamidase (PZase), encoded by mycobacterial pncA. A strong association was noted between the loss of PZase activity and PZA resistance. The causative organisms in extrapulmonary tuberculosis are rarely cultured and isolated. To detect pncA mutations in specimens from extrapulmonary tuberculosis as confirmative diagnosis of mycobacterial infection and alternative susceptibility test to PZA. Methods Specimens were collected from clinically proven extrapulmonary tuberculosis. pncA was sequenced and compared with wild-type pncA. Results pncA from 30 specimens from 23 donors were successfully amplified (56.6% in specimens, 59% in donors). Six mutations in pncA were detected (20.0% in amplified specimens, 26.1% in specimen donors) at nucleotide positions of 169, 248 and 419. The mutation at position 169 results in substitution of aspartic acid for histidine, a possible allelic variation of M. bovis that have intrinsic PZA resistance. The mutation at position 248 changes proline into arginine and that at position 419, arginine into histidine. Conclusion DNA-based diagnosis using pncA may be simultaneously useful for the early diagnosis of mycobacterial infection and the rapid susceptibility to PZA in extrapulmonary tuberculosis. A potential implication of pncA allelic variation at 169 might be suggested as a rapid diagnostic test for M. bovis infection or Bacille Calmette-Guérin (BCG) reactivation.
Collapse
Affiliation(s)
- Jaechun Lee
- Jeju National University School of Medicine, Jeju, Korea
| | - Yeo-Jun Yun
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Cheah Yoke Kqueen
- Jeju National University School of Medicine, Jeju, Korea
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Jong Hoo Lee
- Jeju National University School of Medicine, Jeju, Korea
| | - Hee-Youn Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ree Kim
- Jeju National University School of Medicine, Jeju, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Keun Hwa Lee
- Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
19
|
Molecular characterization of drug-resistant and -susceptible Mycobacterium tuberculosis isolated from patients with tuberculosis in Korea. Diagn Microbiol Infect Dis 2012; 72:52-61. [DOI: 10.1016/j.diagmicrobio.2011.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 11/22/2022]
|
20
|
Rapid identification of mycobacteria and drug-resistant Mycobacterium tuberculosis by use of a single multiplex PCR and DNA sequencing. J Clin Microbiol 2011; 50:326-36. [PMID: 22162548 DOI: 10.1128/jcm.05570-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) remains a significant global health problem for which rapid diagnosis is critical to both treatment and control. This report describes a multiplex PCR method, the Mycobacterial IDentification and Drug Resistance Screen (MID-DRS) assay, which allows identification of members of the Mycobacterium tuberculosis complex (MTBC) and the simultaneous amplification of targets for sequencing-based drug resistance screening of rifampin-resistant (rifampin(r)), isoniazid(r), and pyrazinamide(r) TB. Additionally, the same multiplex reaction amplifies a specific 16S rRNA gene target for rapid identification of M. avium complex (MAC) and a region of the heat shock protein 65 gene (hsp65) for further DNA sequencing-based confirmation or identification of other mycobacterial species. Comparison of preliminary results generated with MID-DRS versus culture-based methods for a total of 188 bacterial isolates demonstrated MID-DRS sensitivity and specificity as 100% and 96.8% for MTBC identification; 100% and 98.3% for MAC identification; 97.4% and 98.7% for rifampin(r) TB identification; 60.6% and 100% for isoniazid(r) TB identification; and 75.0% and 98.1% for pyrazinamide(r) TB identification. The performance of the MID-DRS was also tested on acid-fast-bacterium (AFB)-positive clinical specimens, resulting in sensitivity and specificity of 100% and 78.6% for detection of MTBC and 100% and 97.8% for detection of MAC. In conclusion, use of the MID-DRS reduces the time necessary for initial identification and drug resistance screening of TB specimens to as little as 2 days. Since all targets needed for completing the assay are included in a single PCR amplification step, assay costs, preparation time, and risks due to user errors are also reduced.
Collapse
|