1
|
Bhutani MS, Narang AK, Ding K, Casey B, Krishnan K, Koay EJ, Hong TS, Herman JM, Griffin KH, Shin EJ. EUS-guided hydrogel injection to separate pancreatic head carcinoma from duodenum for enhanced radiotherapy: Multi-site feasibility study. Endosc Int Open 2024; 12:E861-E867. [PMID: 38989255 PMCID: PMC11236477 DOI: 10.1055/a-2286-1995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background and study aims The proximity of a pancreas head tumor to the duodenum often limits delivery of an ablative dose of radiation therapy. This study evaluated the feasibility and safety of using an injectable polyethylene glycol (PEG) hydrogel between the head of the pancreas and duodenum. Patients and methods In a multi-site feasibility cohort study of patients with localized pancreatic cancer, PEG hydrogel was injected under endoscopic ultrasound guidance to temporarily position the duodenum away from the pancreas. Procedure characteristics were recorded, including hydrogel volume and space created. Patients were monitored for adverse events (AEs) and radiotherapy toxicity. Results In all six intent-to-treat patients (four with borderline resectable, two with locally advanced disease), the ability to place and visualize PEG hydrogel and create space between the duodenum and the head of the pancreas was successful. There were no procedure-related AEs resulting in radiotherapy delay. There were no device-related AEs and no reports of pancreatitis. Conclusions PEG hydrogel was successfully placed, created space between the duodenum and the head of the pancreas, and was not associated with major toxicity. Enhancing radiotherapy for pancreatic cancer by using PEG hydrogel to create peri-duodenal space could have beneficial implications for treatment and warrants more exploration.
Collapse
Affiliation(s)
- Manoop S. Bhutani
- Department of Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Amol K. Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, United States
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, United States
| | - Brenna Casey
- Interventional Gastroenterology, Massachusetts General Hospital Harvard Medical School, Boston, United States
| | - Kumar Krishnan
- Gastroenterology, Massachusetts General Hospital, Boston, United States
| | - Eugene J. Koay
- Department of GI Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Theodore S. Hong
- Radiation Oncology, Massachusetts General Hospital, Boston, United States
| | - Joseph M. Herman
- Department of Radiation Medicine, Northwell, New Hyde Park, United States
| | | | - Eun Ji Shin
- Internal Medicine, Johns Hopkins Medicine, Baltimore, United States
| |
Collapse
|
2
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
3
|
Dong YC, Nieves LM, Hsu JC, Kumar A, Bouché M, Krishnan U, Mossburg KJ, Saxena D, Uman S, Kambayashi T, Burdick JA, Kim MM, Dorsey JF, Cormode DP. Novel Combination Treatment for Melanoma: FLASH Radiotherapy and Immunotherapy Delivered by a Radiopaque and Radiation Responsive Hydrogel. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9542-9551. [PMID: 38933522 PMCID: PMC11198981 DOI: 10.1021/acs.chemmater.3c01390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Immunotherapies have become the standard treatment for melanoma. To further improve patient responses, combinations of immunotherapies and radiotherapy (RT) are being studied, since radiotherapies can potentially provide additional immune stimulation, in addition to direct antitumor effects. FLASH-RT is a novel, ultrahigh dose rate, radiation delivery approach, with the potential of at least equivalent tumor control efficacy and reduced damage to healthy tissue. However, the effects of combining FLASH-RT and immunotherapy have not been extensively studied in melanoma. Toll-like receptor (TLR) agonists, such as imiquimod (IMQ), are potent immunostimulatory agents, although their utility is limited due to poor solubility and systemic side effects. We therefore developed a novel combination therapy for melanoma consisting of IMQ delivered to the tumor via a radiopaque and radiation responsive hydrogel combined with FLASH-RT. We found that FLASH was able to effectively stimulate IMQ release from the hydrogel. In addition, we found that the combination of FLASH and released IMQ resulted in synergistic melanoma cell killing in vitro. The combination therapy reduced tumor growth compared to controls, enhanced survival, and resulted in remarkable enhancements in certain tumor cytokine levels. CT imaging allowed the hydrogel to be monitored in vivo. In addition, no adverse effects of the treatment were observed. Overall, this IMQ-gel and FLASH-RT combination may have potential as an improved treatment for melanoma and indicates that the interactions of FLASH-RT and TLR agonists merit further study.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lenitza M Nieves
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ananyaa Kumar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Uma Krishnan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine J Mossburg
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deeksha Saxena
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Brown K, Ghita M, Prise KM, Butterworth KT. Feasibility and guidelines for the use of an injectable fiducial marker (BioXmark ®) to improve target delineation in preclinical radiotherapy studies using mouse models. F1000Res 2023; 12:526. [PMID: 38799243 PMCID: PMC11116939 DOI: 10.12688/f1000research.130883.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Preclinical models of radiotherapy (RT) response are vital for the continued success and evolution of RT in the treatment of cancer. The irradiation of tissues in mouse models necessitates high levels of precision and accuracy to recapitulate clinical exposures and limit adverse effects on animal welfare. This requirement has been met by technological advances in preclinical RT platforms established over the past decade. Small animal RT systems use onboard computed tomography (CT) imaging to delineate target volumes and have significantly refined radiobiology experiments with major 3Rs impacts. However, the CT imaging is limited by the differential attenuation of tissues resulting in poor contrast in soft tissues. Clinically, radio-opaque fiducial markers (FMs) are used to establish anatomical reference points during treatment planning to ensure accuracy beam targeting, this approach is yet to translate back preclinical models. METHODS We report on the use of a novel liquid FM BioXmark ® developed by Nanovi A/S (Kongens Lyngby, Denmark) that can be used to improve the visualisation of soft tissue targets during beam targeting and minimise dose to surrounding organs at risk. We present descriptive protocols and methods for the use of BioXmark ® in experimental male and female C57BL/6J mouse models. RESULTS These guidelines outline the optimum needle size for uptake (18-gauge) and injection (25- or 26-gauge) of BioXmark ® for use in mouse models along with recommended injection volumes (10-20 µl) for visualisation on preclinical cone beam CT (CBCT) scans. Injection techniques include subcutaneous, intraperitoneal, intra-tumoral and prostate injections. CONCLUSIONS The use of BioXmark ® can help to standardise targeting methods, improve alignment in preclinical image-guided RT and significantly improve the welfare of experimental animals with the reduction of normal tissue exposure to RT.
Collapse
Affiliation(s)
- Kathryn Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| |
Collapse
|
5
|
Liu H, Miyamoto N, Nguyen MT, Shirato H, Yonezawa T. Injectable Fiducial Marker for Image-Guided Radiation Therapy Based on Gold Nanoparticles and a Body Temperature-Activated Gel-Forming System. ACS APPLIED BIO MATERIALS 2022; 5:4838-4848. [PMID: 36074396 DOI: 10.1021/acsabm.2c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Injectable fiducial markers are crucial in image-guided radiation therapy (IGRT) due to their minimally invasive operations and improved patient compliance. This study presents the development of a ready-to-use injectable fiducial marker utilizing alginate stabilized-gold nanoparticles (alg-Au NPs) and a body temperature-activated in situ gel-forming system. Gram-scale alg-Au NPs were prepared in an hour by a green microwave-induced plasma-in-liquid process (MWPLP). Sodium alginate was introduced in this process to avoid aggregation between Au NPs, which ensured their stability and injectability. The gelation behavior of alginate with divalent cations and a temperature-dependent release of calcium source (glucono-delta-lactone (GDL) and CaCO3) served as the foundation of the body temperature-activated in situ gel-forming system. The injectable fiducial marker GDL/CaCO3/alg-Au NPs could maintain a liquid state at a low temperature for a higher injectability. After injection, on the other hand, Ca2+ would be released due to the body temperature-activated hydrolysis of GDL and the subsequent reaction with CaCO3, which would initiate the gelation of alginate. The injectable fiducial marker can be therefore delivered via injection and form gel at target site to avoid marker movement or Au NPs leakage after injection. Rheological measurements demonstrate the stability and gelation behavior of GDL/CaCO3/alg-Au NPs at different temperatures. Furthermore, the injectability and imaging ability of GDL/CaCO3/alg-Au NPs were also examined. In summary, ready-to-use injectable fiducial marker GDL/CaCO3/alg-Au NPs were developed via a green and facile method for IGRT.
Collapse
Affiliation(s)
- Haoran Liu
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Department of Medical Physics, Hokkaido University Hospital, Kita 14 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
6
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
7
|
Ikeda K, Liu H, Miyamoto N, Nguyen MT, Shirato H, Yonezawa T. Preparation of Biopex-Supported Gold Nanoparticles as Potential Fiducial Markers for Image-Guided Radiation Therapy. ACS APPLIED BIO MATERIALS 2022; 5:1259-1266. [PMID: 35175735 DOI: 10.1021/acsabm.1c01271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Image-guided radiation therapy (IGRT) has emerged as a promising technique for cancer treatment to improve radiation precision and accuracy, thereby reducing the treatment toxicity and optimizing therapeutic efficacy. In IGRT, fiducial markers are required to be inserted near the tumor to get the spatial information of the tumor. Currently used metal fiducial markers with large sizes would be highly invasive; therefore, it is critical to develop minimally invasive alternatives to these markers. In this work, an injectable marker based on Biopex-supported Au NPs with adequate radio-opacity for X-ray visualization was developed. Biopex can function as a substrate for the growth of Au NPs and avoid excessive reaction-induced aggregation and precipitation. The self-curing property of Biopex prevents the leakage and elimination of isolated Au NPs, enabling long-term X-ray observation and radiotherapy. The effect of Biopex amount, gold precursor concentration, and reaction time were evaluated. The visibility of samples prepared by the optimized formula was also examined. The developed Biopex-Au NPs could be injected through a 21 G needle and exhibit great visibility in the X-ray visualization test, showing great potential as a fiducial marker for image-guided radiation therapy.
Collapse
Affiliation(s)
- Kai Ikeda
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Haoran Liu
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Naoki Miyamoto
- Division of Applied Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Kita 14 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hiroki Shirato
- Global Station of Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
8
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021; 21:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Hydrogel is a kind of 3D polymer network with strong swelling ability in water and appropriate mechanical and biological properties, which make it feasible to maintain bioactive substances and has promising applications in the fields of biomaterials, soft machines, and artificial tissues. Unfortunately, traditional hydrogels prepared by chemical crosslinking have poor mechanical properties and limited functions, which limit their further application. In recent years, with the continuous development of nanoparticle research, more and more studies have combined nanoparticles with hydrogels to make up for the shortcomings of traditional hydrogels. In this article, the types and functions of hydrogels and nanomaterials are introduced first, as well as the functions and applications of injectable nanocomposite hydrogels (INHs), then the latest progress of INHs for cancer treatment is reviewed, some existing problems are summarized, and the application prospect of NHs is prospected.
Collapse
Affiliation(s)
- Wenzhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qida Zong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
10
|
Kim SH, Shin EJ. Endoscopic Ultrasound-Guided Fiducial Placement for Stereotactic Body Radiation Therapy in Pancreatic Malignancy. Clin Endosc 2021; 54:314-323. [PMID: 34082487 PMCID: PMC8182253 DOI: 10.5946/ce.2021.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) is an important treatment option for pancreatic cancer, which is known to be one of the malignancies with the worst prognosis. However, the high radiation doses delivered during SBRT may cause damage to adjacent radiosensitive organs. To minimize such damage, fiducial markers are used for localization during SBRT for pancreatic cancer. The development of endoscopic ultrasound (EUS) has enabled fiducial markers to be inserted into the pancreas using an EUS fine-needle aspiration (FNA) needle, unlike in the past when percutaneous placement was generally performed. For successful EUS-guided fiducial marker placement, it is necessary for the fiducial markers to be loaded within the EUS-FNA needles to have a low probability of complications and a low migration risk, and to be stably observed in SBRT imaging. A systematic review has shown that the technical success rate of EUS-guided fiducial marker placement is 96.27%, whereas the fiducial marker migration and adverse event rates are 4.33% and 4.85%, respectively. Nonetheless, standardized techniques for fiducial marker placement and the characteristics of optimal fiducial markers have not yet been established. This review will introduce the characteristics (e.g., materials and shapes) of fiducial markers used in fiducial marker placement for pancreatic cancer and will discuss conventional techniques along with their success rates, difficulties, and adverse events.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Eun Ji Shin
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Kim SH, Ding K, Rao A, He J, Bhutani MS, Herman JM, Narang A, Shin EJ. EUS-guided hydrogel microparticle injection in a cadaveric model. J Appl Clin Med Phys 2021; 22:83-91. [PMID: 34028956 PMCID: PMC8200447 DOI: 10.1002/acm2.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND AIMS A potential method to reduce gastrointestinal toxicity during radiation therapy in pancreatic head cancer is to create a physical space between the head of the pancreas (HOP) and the duodenum. To date, there have been early reports on the feasibility of endoscopic ultrasound (EUS)-guided hydrogel injection into the interface between the HOP and the duodenum to increase the peri-pancreatic space for radiotherapy. We aimed to evaluate the technical feasibility of EUS-guided hydrogel injection for the creation of space at the peri-pancreatic interface in a cadaveric model. METHODS Baseline abdominal computerized tomography (CT) was performed on three unfixed cadaveric specimens. The hydrogel was injected transduodenally into the interface between the HOP and duodenum using linear-array EUS and a 19G needle for fine needle aspiration (FNA). This procedure was repeated along the length of the HOP. CT imaging and gross dissection were performed after the procedure to confirm the localization of the hydrogel and to measure the distance between the HOP and the duodenum. RESULTS All cadavers underwent successful EUS-guided injection of the hydrogel. Cadavers 1, 2, and 3 were injected with 9.5, 27, and 10 cc of hydrogel, respectively; along the HOP, the formation of the peri-pancreatic space was a maximum size of 11.77, 13.20, and 12.89 mm, respectively. The hydrogel injections were clearly visualized as hyperechoic bullae during EUS and on post-procedure CT images without any artifacts in all cases. CONCLUSIONS We demonstrated that EUS-guided delivery of hydrogel is feasible, and that it increases the peri-pancreatic space in a cadaveric model. The polyethylene glycol (PEG) hydrogel was clearly visible on EUS and CT, without significant artifacts. This may lead to new treatment approaches for pancreatic carcinomas.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Avani Rao
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph M Herman
- Radiation Oncology, Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Eun Ji Shin
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Shi S, Vissapragada R, Abi Jaoude J, Huang C, Mittal A, Liu E, Zhong J, Kumar V. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact Mater 2020; 5:233-240. [PMID: 32123777 PMCID: PMC7036731 DOI: 10.1016/j.bioactmat.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/11/2023] Open
Abstract
Radiation therapy to treat cancer has evolved significantly since the discovery of x-rays. Yet, radiation therapy still has room for improvement in reducing side effects and improving control of cancer. Safer and more effective delivery of radiation has led us to novel techniques and use of biomaterials. Biomaterials in combination with radiation and chemotherapy have started to appear in pre-clinical explorations and clinical applications, with many more on the horizon. Biomaterials have revolutionized the field of diagnostic imaging, and now are being cultivated into the field of theranostics, combination therapy, and tissue protection. This review summarizes recent development of biomaterials in radiation therapy in several application areas.
Collapse
Affiliation(s)
- Siyu Shi
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ravi Vissapragada
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | | | - Caroline Huang
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Anmol Mittal
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07102, USA
| | - Elisa Liu
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jim Zhong
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30332, USA
| | - Vivek Kumar
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, 07102, USA
| |
Collapse
|
13
|
The Feasibility and Utility of Cystoscopy-Guided Hydrogel Marker Placement in Patients With Muscle-Invasive Bladder Cancer. Pract Radiat Oncol 2020; 10:195-201. [DOI: 10.1016/j.prro.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022]
|
14
|
Rigter LS, Rijkmans EC, Inderson A, van den Ende RP, Kerkhof EM, Ketelaars M, van Dieren J, Veenendaal RA, van Triest B, Marijnen CA, van der Heide UA, van Leerdam ME. EUS-guided fiducial marker placement for radiotherapy in rectal cancer: feasibility of two placement strategies and four fiducial types. Endosc Int Open 2019; 7:E1357-E1364. [PMID: 31673605 PMCID: PMC6805181 DOI: 10.1055/a-0958-2148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Background and study aims To facilitate image guidance during radiotherapy of rectal cancer, we investigated the feasibility of fiducial marker placement. This study aimed to evaluate technical success rate and safety of two endoscopic ultrasound (EUS)-guided placement strategies and four fiducial types for rectal cancer patients. Patients and methods This prospective multicenter study included 20 participants who were scheduled to undergo rectal cancer treatment with neoadjuvant short-course radiotherapy or chemoradiation. EUS-guided endoscopy was used for fiducial placement at the tumor site (n = 10) or in the mesorectal fat and in the tumor (n = 10). Four fiducial types were used (Visicoil 0.75 mm, Visicoil 0.50 mm, Cook, Gold Anchor). The endpoints were technical success rate and retention of fiducials, the latter of which was evaluated on cone-beam computed tomography scans during the first five radiotherapy fractions. Results A total of 64 fiducials were placed in 20 patients. For each fiducial type, at least three fiducials were successfully placed in all patients. Technical failure consisted of fiducial blockage within the needle (n = 2) and ejection of two preloaded fiducials at once (n = 4). No serious adverse events were reported. In three patients, one of the fiducials was misplaced without clinical consequences; two in the prostate and one in the intraperitoneal cavity. After a median time of 17 days after placement (range 7 - 47 days), a total of 42/64 (66 %) fiducials were still present (24/44 intratumoral vs. 18/20 mesorectal fiducials, P = 0.009). Conclusions Placement of fiducials in rectal cancer patients is feasible, however, retention rates for intratumoral fiducials were lower (55 %) than for mesorectal fiducials (90 %).
Collapse
Affiliation(s)
- Lisanne S. Rigter
- Department of Gastroenterology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eva C. Rijkmans
- Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Akin Inderson
- Leiden Center for Interventional Endoscopy, Department of Gastroenterology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roy P.J. van den Ende
- Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen M. Kerkhof
- Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn Ketelaars
- Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van Dieren
- Department of Gastroenterology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roeland A. Veenendaal
- Leiden Center for Interventional Endoscopy, Department of Gastroenterology, Leiden University Medical Center, Leiden, The Netherlands
| | - Baukelien van Triest
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Corrie A.M. Marijnen
- Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Uulke A. van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Monique E. van Leerdam
- Department of Gastroenterology, the Netherlands Cancer Institute, Amsterdam, The Netherlands,Corresponding author Dr. M. E. van Leerdam Department of GastroenterologyNetherlands Cancer InstitutePlesmanlaan 1211066 CX Amsterdam+31 20 5122566
| |
Collapse
|
15
|
de Blanck SR, Rydhög JS, Larsen KR, Clementsen PF, Josipovic M, Aznar MC, Af Rosenschöld PM, Jølck RI, Specht L, Andresen TL, Persson GF. Long term safety and visibility of a novel liquid fiducial marker for use in image guided radiotherapy of non-small cell lung cancer. Clin Transl Radiat Oncol 2018; 13:24-28. [PMID: 30258990 PMCID: PMC6154396 DOI: 10.1016/j.ctro.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
Safety and clinical feasibility of injecting a novel liquid fiducial marker for use in image guided radiotherapy in 15 patients with non-small cell lung cancer are reported. No major safety or toxicity issues were encountered. Markers present at start of radiotherapy remained visible in cone beam computed tomography and fluoroscopy images throughout the treatment course and on computed tomography images during follow-up (0-38 months). Marker volume reduction was seen until 9 months after treatment, after which no further marker breakdown was found. No post-treatment migration or marker related complications were found.
Collapse
Affiliation(s)
- Steen Riisgaard de Blanck
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jonas Scherman Rydhög
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Klaus Richter Larsen
- Department of Respiratory Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, 2400 København, NV, Denmark
| | - Paul Frost Clementsen
- Department of Respiratory Medicine, Gentofte University Hospital and Copenhagen Academy for Medical Education and Simulation (CAMES), Rigshospitalet, Copenhagen, Denmark
| | - Mirjana Josipovic
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Marianne Camille Aznar
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Per Munck Af Rosenschöld
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Rasmus Irming Jølck
- DTU Nanotech, Department of Micro-and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Building 345E, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark.,Nanovi Radiotherapy A/S, Diplomvej 373N, 2800 Kgs. Lyngby, Denmark
| | - Lena Specht
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Lars Andresen
- DTU Nanotech, Department of Micro-and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Building 345E, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Gitte Fredberg Persson
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
16
|
de Blanck SR, Scherman-Rydhög J, Siemsen M, Christensen M, Baeksgaard L, Irming Jølck R, Specht L, Andresen TL, Persson GF. Feasibility of a novel liquid fiducial marker for use in image guided radiotherapy of oesophageal cancer. Br J Radiol 2018; 91:20180236. [PMID: 29975152 DOI: 10.1259/bjr.20180236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE: To evaluate the feasibility of a new liquid fiducial marker for use in image-guided radiotherapy for oesophageal cancer. METHODS: Liquid fiducial markers were implanted in patients with metastatic or inoperable locally advanced oesophageal or gastro-oesophageal junction cancer receiving radiotherapy. Markers were implanted using a conventional gastroscope equipped with a 22 G Wang needle. Marker visibility was evaluated on fluoroscopy, CT, MRI and cone beam CT scans. RESULTS: Liquid markers (n = 16) were injected in four patients. No Grade 2 or worse adverse events were observed in relation to the implantation procedure, during treatment or in the follow-up period. 12/16 (75%) markers were available at the planning CT-scan and throughout the treatment- and follow-up period. The implanted markers were adequately visible in CT and cone beam CT but were difficult to distinguish in fluoroscopy and MRI without information from the corresponding CT image. CONCLUSION: Liquid fiducial marker placement in the oesophagus proved safe and clinically feasible. ADVANCES IN KNOWLEDGE: This paper presents the first clinical use of a new liquid fiducial marker in patients with oesophageal cancer and demonstrates that marker implantation using standard gastroscopic equipment and subsequent use in three-dimensional image-guided radiation therapy is safe and clinically feasible.
Collapse
Affiliation(s)
- Steen Riisgaard de Blanck
- 1Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Jonas Scherman-Rydhög
- 2Department of Physics, Niels Bohr Institute, University of Copenhagen , Copenhagen , Denmark.,3 Department of Radiation Physics, Skane University Hospital , Lund , Sweden
| | - Mette Siemsen
- 4 Department of Thoracic Surgery, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Merete Christensen
- 4 Department of Thoracic Surgery, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Lene Baeksgaard
- 1Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Rasmus Irming Jølck
- 5 DTU Nanotech, Department of Micro-and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark , Kongens Lyngby , Denmark.,6 Nanovi A/S, DTU Scion , Kongens Lyngby , Denmark
| | - Lena Specht
- 1Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Thomas Lars Andresen
- 5 DTU Nanotech, Department of Micro-and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark , Kongens Lyngby , Denmark
| | - Gitte Fredberg Persson
- 1Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
17
|
Jelvehgaran P, Alderliesten T, Weda JJA, de Bruin M, Faber DJ, Hulshof MCCM, van Leeuwen TG, van Herk M, de Boer JF. Visibility of fiducial markers used for image-guided radiation therapy on optical coherence tomography for registration with CT: An esophageal phantom study. Med Phys 2017; 44:6570-6582. [DOI: 10.1002/mp.12624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Pouya Jelvehgaran
- Department of Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
- Department of Radiation Oncology; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
- Institute for Laser Life and Biophotonics Amsterdam; Physics and Astronomy; VU University Amsterdam; Amsterdam HV 1081 The Netherlands
| | - Tanja Alderliesten
- Department of Radiation Oncology; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
| | - Jelmer J. A. Weda
- Institute for Laser Life and Biophotonics Amsterdam; Physics and Astronomy; VU University Amsterdam; Amsterdam HV 1081 The Netherlands
| | - Martijn de Bruin
- Department of Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
- Department of Urology; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
| | - Dirk J. Faber
- Department of Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
| | - Maarten C. C. M. Hulshof
- Department of Radiation Oncology; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
| | - Ton G. van Leeuwen
- Department of Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
| | - Marcel van Herk
- Department of Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Amsterdam AZ 1105 The Netherlands
- Institute of Cancer Sciences; University of Manchester; Manchester UK
| | - Johannes F. de Boer
- Institute for Laser Life and Biophotonics Amsterdam; Physics and Astronomy; VU University Amsterdam; Amsterdam HV 1081 The Netherlands
| |
Collapse
|
18
|
O'Shea C, Ali Khan K, Nardelli P, Jaeger HA, Kennedy MP, Cantillon-Murphy P. Evaluation of Endoscopically Deployed Radiopaque Tumor Models in Bronchoscopy. J Bronchology Interv Pulmonol 2016; 23:112-22. [PMID: 27058713 DOI: 10.1097/lbr.0000000000000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Radiopaque markers and soft tissue models have been used extensively in clinical applications to target cancerous lesions and to calibrate and characterize imaging systems. However, the development of radiopaque, soft tissue models for pulmonary lesions is yet to be optimized. Such a material may improve endoscopic training techniques and also be useful to evaluate bronchoscopy navigation systems by the targeting and sampling of tumor models with computed tomography. METHODS This study investigates a modified agarose-based model and a novel contrast-infused tripe model to create clinically relevant pulmonary tumor models. An iodine-enhanced agarose model presents an injectable solution with high image contrast under computed tomography capable of reaching distal bronchial airways. The tripe solution presents a cheap and easily deployed method to quickly establish a fiducial marker that may be used during bronchial imaging system training and evaluation. RESULTS The iodine-enriched agarose model demonstrates desirable mechanical characteristics ex vivo, but has a number of limitations when administered in a live setting. The tripe solution presents a far more effective in vivo pulmonary tumor model and offers an effective radiopaque marker. However, the size of the tripe tumor samples required for effective insertion limits its ability to reach more distal airways. An iterative testing process was used to optimize the model composition, culminating in live animal investigations (n=3). CONCLUSION Both contrast-infused agarose and tripe models present a promising analog to a pulmonary lesion and may act as a radiopaque marker for bronchoscopic training and biopsy evaluation.
Collapse
Affiliation(s)
- Conor O'Shea
- *School of Engineering, University College Cork †Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
19
|
Cho J, Campbell P, Wang M, Alqathami M, Mawlawi O, Kerr M, Cho SH. Feasibility of hydrogel fiducial markers forin vivoproton range verification using PET. Phys Med Biol 2016; 61:2162-76. [DOI: 10.1088/0031-9155/61/5/2162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Hong S, Carlson J, Lee H, Weissleder R. Bioorthogonal Radiopaque Hydrogel for Endoscopic Delivery and Universal Tissue Marking. Adv Healthc Mater 2016; 5:421-6. [PMID: 26688173 PMCID: PMC4811597 DOI: 10.1002/adhm.201500780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/19/2015] [Indexed: 11/07/2022]
Abstract
A novel dual marking hydrogel system is reported for radiological and laparoscopic localization of lesions. Bioorthogonally crosslinked hydrogel containing both tantalum and India ink can be rapidly formed inside the body after injecting precursors, and stably located for several days as a long-term biocompatible carrier for markers.
Collapse
Affiliation(s)
- Seonki Hong
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jonathan Carlson
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
21
|
Bair RJ, Bair E, Viswanathan AN. A radiopaque polymer hydrogel used as a fiducial marker in gynecologic-cancer patients receiving brachytherapy. Brachytherapy 2015; 14:876-80. [PMID: 26481393 DOI: 10.1016/j.brachy.2015.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/12/2015] [Accepted: 08/27/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE We assessed a novel Food and Drug Administration-approved hydrogel, synthesized as absorbable iodinated particles, in gynecologic-cancer patients undergoing computed tomography (CT) or magnetic resonance (MR) based brachytherapy after external beam radiation. METHODS AND MATERIALS Nineteen patients underwent CT-guided (n = 13) or MR-guided (n = 6) brachytherapy for gynecologic cancers. Seventy-seven hydrogel injections were placed. The hydrogel material was injected into gross residual disease and/or key anatomic landmarks in amounts ranging from 0.1 to 0.4 mL. The visibility of the tracer was scored on CT and on MR images using a 5-point scoring scale. A Cohen's kappa statistic was calculated to assess interobserver agreement. To assess the unadjusted effects of baseline parameters on hydrogel visibility, we modeled visibility using a linear mixed-effect model. RESULTS Injections were without complication. The kappa statistic was 0.77 (95% confidence interval [CI], 0.68-0.87). The volume of hydrogel injected was significantly associated with visibility on both CT (p = 0.032) and magnetic resonance imaging (p = 0.016). We analyzed visibility by location, controlling for amount. A 0.1-cc increase in volume injected was associated with increases of 0.54 (95% CI = 0.05-1.03) in the CT visibility score and 0.83 (95% CI = 0.17-1.49) in the MR visibility score. Injection of 0.4 cc or more was required for unequivocal visibility on CT or MR. No statistically significant correlation was found between tumor type, tumor location, or anatomical location of injection and visibility on either CT or magnetic resonance imaging. CONCLUSIONS In this first report of an injectable radiopaque hydrogel, targets were visualized to assist with three-dimensional-based brachytherapy in gynecologic malignancies. This marker has potential for several applications, is easy to inject and visualize, and caused no acute complications.
Collapse
Affiliation(s)
- Ryan J Bair
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA
| | - Eric Bair
- Department of Endodontics, University of North Carolina, Chapel Hill, NC; Department of Biostatistics, University of North Carolina, Chapel Hill, NC
| | - Akila N Viswanathan
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA.
| |
Collapse
|
22
|
Machiels M, van Hooft J, Jin P, van Berge Henegouwen MI, van Laarhoven HM, Alderliesten T, Hulshof MC. Endoscopy/EUS-guided fiducial marker placement in patients with esophageal cancer: a comparative analysis of 3 types of markers. Gastrointest Endosc 2015; 82:641-9. [PMID: 25957478 DOI: 10.1016/j.gie.2015.03.1972] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/20/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Markers placed at the borders of esophageal tumors are potentially useful to facilitate radiotherapy (RT) target delineation, which offers the possibility of image-guided RT. OBJECTIVE To evaluate and compare the feasibility and technical benefit of endoscopy/EUS-guided marker placement of 3 different types of markers in patients with esophageal cancer referred for RT. DESIGN Prospective, single-center, feasibility and comparative study. SETTING Tertiary-care medical center. PATIENTS Thirty patients with esophageal cancer who were referred for RT. INTERVENTIONS Patients underwent endoscopy/EUS-guided implantation of 1 type of marker. A solid gold marker (SM) with fixed dimensions, a flexible coil-shaped gold marker (FM) with hand-cut length (2-10 mm), and a radiopaque hydrogel marker (HG) were used. Technical feasibility and adverse events were registered. CT scans and cone-beam CT scans (CBCT) acquired during RT were analyzed to determine and compare the visibility and continuous clear visibility of the implanted markers. MAIN OUTCOME MEASUREMENTS Technical feasibility, technical benefit, and adverse events of 3 types of markers. RESULTS A total of 101 markers were placed in 30 patients. Implantation was technically feasible in all patients without grade 3 to 4 adverse events. Two patients with asymptomatic mediastinitis and one with asymptomatic pneumothorax were seen. Visibility on CT scan of all 3 types of implanted markers was adequate for target delineation. Eighty percent of FMs remained continuously visible over the treatment period on CBCT, significantly better than SMs (63%) and HGs (11%) (P = .015). When we selected FMs ≥5 mm, 90.5% remained visible on CBCT between implantation and the end of RT. LIMITATIONS Single-center, nonrandomized design. CONCLUSION Endoscopy/EUS-guided fiducial marker placement for esophageal cancer is both safe and feasible and can be used for target volume delineation purposes on CT. Our results imply a significant advantage of FMs over SMs and HGs, regarding visibility and continuous clear visibility over the treatment period. ( CLINICAL TRIAL REGISTRATION NUMBER NTR4724.).
Collapse
Affiliation(s)
- Melanie Machiels
- Department of Radiation Oncology, Academic Medical Center, Amsterdam, the Netherlands
| | - Jeanin van Hooft
- Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Peng Jin
- Department of Radiation Oncology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | - Tanja Alderliesten
- Department of Radiation Oncology, Academic Medical Center, Amsterdam, the Netherlands
| | - Maarten C Hulshof
- Department of Radiation Oncology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Patel H, Goyal S, Kim L. Using injectable hydrogel markers to assess resimulation for boost target volume definition in a patient undergoing whole-breast radiotherapy. Med Dosim 2015; 40:352-4. [PMID: 26051069 DOI: 10.1016/j.meddos.2015.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 11/27/2022]
Abstract
Several publications have recommended that patients undergoing whole-breast radiotherapy be resimulated for boost planning. The rationale for this is that the seroma may be smaller when compared with the initial simulation. However, the decision remains whether to use the earlier or later images to define an appropriate boost target volume. A patient undergoing whole-breast radiotherapy had new, injectable, temporary hydrogel fiducial markers placed 1 to 3cm from the seroma at the time of initial simulation. The patient was resimulated 4.5 weeks later for conformal photon boost planning. Computed tomography (CT) scans acquired at the beginning and the end of whole-breast radiotherapy showed that shrinkage of the lumpectomy cavity was not matched by a corresponding reduction in the surrounding tissue volume, as demarcated by hydrogel markers. This observation called into question the usual interpretation of cavity shrinkage for boost target definition. For this patient, it was decided to define the boost target volume on the initial planning CT instead of the new CT.
Collapse
Affiliation(s)
- Henal Patel
- Rutgers Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Sharad Goyal
- Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ
| | - Leonard Kim
- Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ.
| |
Collapse
|
24
|
Scherman Rydhög J, Irming Jølck R, Andresen TL, Munck af Rosenschöld P. Quantification and comparison of visibility and image artifacts of a new liquid fiducial marker in a lung phantom for image-guided radiation therapy. Med Phys 2015; 42:2818-26. [DOI: 10.1118/1.4919616] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Gurney-Champion OJ, Lens E, van der Horst A, Houweling AC, Klaassen R, van Hooft JE, Stoker J, van Tienhoven G, Nederveen AJ, Bel A. Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Med Phys 2015; 42:2638-47. [DOI: 10.1118/1.4918753] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Zhang M, Reyhan M, Kim LH. Depth dose perturbation by a hydrogel fiducial marker in a proton beam. J Appl Clin Med Phys 2015; 16:5090. [PMID: 25679167 PMCID: PMC5689967 DOI: 10.1120/jacmp.v16i1.5090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/29/2014] [Accepted: 09/12/2014] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to evaluate proton depth dose perturbation caused by a radio‐opaque hydrogel fiducial marker. Electronic proton stopping powers in the hydrogel were calculated for energies 0.5–250 MeV, and Monte Carlo simulations were generated of hydrogel vs. gold markers placed at various water phantom depths in a generic proton beam. Across the studied energy range, the gel/water stopping power ratio was 1.0146 to 1.0160. In the Monte Carlo simulation, the hydrogel marker caused no discernible perturbation of the proton percent depth‐dose (PDD) curve. In contrast, the gold marker caused dose reductions of as much as 20% and dose shadowing regions as long as 6.5 cm. In contrast to gold markers, the radio‐opaque hydrogel marker causes negligible proton depth dose perturbation. This factor may be taken into consideration for image‐guided proton therapy at facilities with suitable imaging modalities. PACS number: 87.55.Qr
Collapse
|
27
|
Bronchoscopic Delivery of Lipiodol as a Fiducial Marker in Lung Tumors Before Radiotherapy. J Thorac Oncol 2014; 9:1579-83. [DOI: 10.1097/jto.0000000000000268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Solid MRI contrast agents for long-term, quantitative in vivo oxygen sensing. Proc Natl Acad Sci U S A 2014; 111:6588-93. [PMID: 24753603 DOI: 10.1073/pnas.1400015111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Targeted MRI contrast agents have proven useful in research and clinical studies for highlighting specific metabolites and biomarkers [Davies GL, et al. (2013) Chem Commun (Camb) 49(84):9704-9721] but their applicability in serial imaging is limited owing to a changing concentration postinjection. Solid enclosures have previously been used to keep the local concentration of contrast agent constant, but the need to surgically implant these devices limits their use [Daniel K, et al. (2009) Biosens Bioelectron 24(11):3252-3257]. This paper describes a novel class of contrast agent that comprises a responsive material for contrast generation and an injectable polymeric matrix for structural support. Using this principle, we have designed a contrast agent sensitive to oxygen, which is composed of dodecamethylpentasiloxane as the responsive material and polydimethylsiloxane as the matrix material. A rodent inspired-gas model demonstrated that these materials are functionally stable in vivo for at least 1 mo, which represents an order of magnitude improvement over an injection of liquid siloxane [Kodibagkar VD, et al. (2006) Magn Reson Med 55(4):743-748]. We also observed minimal adverse tissue reactions or migration of contrast agents from the initial injection site. This class of contrast agents, thus, represented a new and complementary method to monitor chronic diseases by MRI.
Collapse
|
29
|
Kim Y, Seol DR, Mohapatra S, Sunderland JJ, Schultz MK, Domann FE, Lim TH. Locally targeted delivery of a micron-size radiation therapy source using temperature-sensitive hydrogel. Int J Radiat Oncol Biol Phys 2014; 88:1142-7. [PMID: 24495593 DOI: 10.1016/j.ijrobp.2013.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 11/16/2022]
Abstract
PURPOSE To propose a novel radiation therapy (RT) delivery modality: locally targeted delivery of micron-size RT sources by using temperature-sensitive hydrogel (RT-GEL) as an injectable vehicle. METHODS AND MATERIALS Hydrogel is a water-like liquid at room temperature but gels at body temperature. Two US Food and Drug Administration-approved polymers were synthesized. Indium-111 (In-111) was used as the radioactive RT-GEL source. The release characteristics of In-111 from polymerized RT-GEL were evaluated. The injectability and efficacy of RT-GEL delivery to human breast tumor were tested using animal models with control datasets of RT-saline injection. As proof-of-concept studies, a total of 6 nude mice were tested by injecting 4 million tumor cells into their upper backs after a week of acclimatization. Three mice were injected with RT-GEL and 3 with RT-saline. Single-photon emission computed tomography (SPECT) and CT scans were performed on each mouse at 0, 24, and 48 h after injection. The efficacy of RT-GEL was determined by comparison with that of the control datasets by measuring kidney In-111 accumulation (mean nCi/cc), representing the distant diffusion of In-111. RESULTS RT-GEL was successfully injected into the tumor by using a 30-gauge needle. No difficulties due to polymerization of hydrogel during injection and intratumoral pressure were observed during RT-GEL injection. No back flow occurred for either RT-GEL or RT-saline. The residual tumor activities of In-111 were 49% at 24 h (44% at 48 h, respectively) for RT-GEL and 29% (22%, respectively) for RT-saline. Fused SPECT-CT images of RT-saline showed considerable kidney accumulation of In-111 (2886%, 261%, and 262% of RT-GEL at 0, 24, and 48 h, respectively). CONCLUSIONS RT-GEL was successfully injected and showed much higher residual tumor activity: 170% (200%, respectively), than that of RT-saline at 24 h (48 h, respectively) after injection with a minimal accumulation of In-111 to the kidneys. Preliminary data of RT-GEL as a delivery modality of a radiation source to a local tumor are promising.
Collapse
Affiliation(s)
- Yusung Kim
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa.
| | - Dong Rim Seol
- Department of Orthopaedic Surgery, The University of Iowa, Iowa City, Iowa
| | - Sucheta Mohapatra
- Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa
| | | | - Michael K Schultz
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa; Department of Radiology, The University of Iowa, Iowa City, Iowa
| | - Frederick E Domann
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa; Department of Surgery, The University of Iowa, Iowa City, Iowa
| | - Tae-Hong Lim
- Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa
| |
Collapse
|