1
|
Agache I, Adcock IM, Akdis CA, Akdis M, Bentabol-Ramos G, van den Berge M, Boccabella C, Canonica WG, Caruso C, Couto M, Davila I, Drummond D, Fonseca J, Gherasim A, Del Giacco S, Jackson DJ, Jutel M, Licari A, Loukides S, Moreira A, Mukherjee M, Ojanguren I, Palomares O, Papi A, Perez de Llano L, Price OJ, Rukhazde M, Shamji MH, Shaw D, Sanchez-Garcia S, Testera-Montes A, Torres MJ, Eguiluz-Gracia I. The Bronchodilator and Anti-Inflammatory Effect of Long-Acting Muscarinic Antagonists in Asthma: An EAACI Position Paper. Allergy 2025; 80:380-394. [PMID: 39676750 DOI: 10.1111/all.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
As cholinergic innervation is a major contributor to increased vagal tone and mucus secretion, inhaled long-acting muscarinic antagonists (LAMA) are a pillar for the treatment of chronic obstructive pulmonary disease and asthma. By blocking the muscarinic receptors expressed in the lung, LAMA improve lung function and reduce exacerbations in asthma patients who remained poorly controlled despite treatment with inhaled corticosteroids and long-acting β2 agonists. Asthma guidelines recommend LAMA as a third controller to be added on before the initiation of biologicals. In addition to bronchodilation, LAMA also exert anti-inflammatory and anti-fibrotic effects by inhibiting muscarinic receptors present in neutrophils, macrophages, fibroblasts and airway smooth muscle cells. Thus, besides bronchodilation, LAMA might provide additional therapeutic effects, thereby supporting an endotype-driven approach to asthma management. The Position Paper, developed by the Asthma Section of the European Academy of Allergy and Clinical Immunology, discusses the main cholinergic pathways in the lung, reviews the findings of significant clinical trials and real-life studies on LAMA use in asthma, examines the placement of these drugs in asthma clinical guidelines, and considers the potential for personalised medicine with LAMA in both adult and paediatric asthma patients.
Collapse
Affiliation(s)
- I Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - I M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - C A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - M Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - G Bentabol-Ramos
- Pulmonology Unit, Hospital Regional Universitario de Malaga and IBIMA-Plataforma BIONAND, Malaga, Spain
| | - M van den Berge
- Department of Pulmonary Diseases, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C Boccabella
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - W G Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical & Research Center, IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - C Caruso
- UOSD DH Internal Medicine and Digestive Disease, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - M Couto
- Immunoallergology, Hospital CUF Trindade, Porto, Portugal
| | - I Davila
- Allergy Service, Salamanca University Hospital, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - D Drummond
- Department of Pediatric Pulmonology and Allergology, University Hospital Necker-Enfants Malades, AP-HP, Faculté de Médecine, Université Paris Cité, Inserm UMR 1138, HeKAteam, Centre de Recherche dês Cordeliers, Paris, France
| | - J Fonseca
- MEDCIDS-Department of Community Medicine, Information and Health Decision Sciences, Centre for Health Technology and Services Research, Health Research Network (CINTESIS@RISE), Faculty of Medicine, University of Porto, Porto, Portugal
| | - A Gherasim
- ALYATEC Clinical Research Center, Strasbourg University Hospital, Strasbourg, France
| | - S Del Giacco
- Unit of Allergy and Clinical Immunology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - D J Jackson
- Guy's Severe Asthma Centre, School of Immunology & Microbial Sciences, Guy's Hospital, King's College London, London, UK
| | - M Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - A Licari
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - S Loukides
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - A Moreira
- Department of Allergy and Clinical Immunology, Centro Hospitalar Universitário de São João, Porto, Portugal
- EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - M Mukherjee
- Department of Medicine, McMaster University & St Joseph's Healthcare, Hamilton, Ontario, Canada
| | - I Ojanguren
- Pneumology Service, University Hospital Vall d'Hebron, VHIR, CIBERES, Autonomous University of Barcelona, Barcelona, Spain
| | - O Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - A Papi
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - L Perez de Llano
- Pneumology Service, Lucus Augusti University Hospital, EOXI Lugo, Monforte, Cervo, Psychiatry, Radiology, Public Health, Nursing and Medicine Department of the Santiago de Compostela University, Santiago de Compostela, Spain
| | - O J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - M Rukhazde
- Center Allergy&Immunology, Tbilisi, Georgia
- Faculty of Medicine, Geomedi Teaching University, Tbilisi, Georgia
| | - M H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - D Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - S Sanchez-Garcia
- Allergy Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - A Testera-Montes
- Allergy Unit, Hospital Regional Universitario de Malaga, IBIMA-Plataforma BIONAND, RICORS Inflammatory Diseases, Department of Medicine and Dermatology, Universidad de Malaga, Malaga, Spain
| | - M J Torres
- Allergy Unit, Hospital Regional Universitario de Malaga, IBIMA-Plataforma BIONAND, RICORS Inflammatory Diseases, Department of Medicine and Dermatology, Universidad de Malaga, Malaga, Spain
| | - I Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malaga, IBIMA-Plataforma BIONAND, RICORS Inflammatory Diseases, Department of Medicine and Dermatology, Universidad de Malaga, Malaga, Spain
| |
Collapse
|
2
|
El Amrousy D, Hassan S, El Ashry H. Chronic Hepatitis B Infection in Children and Its Relation to Pulmonary Function Tests: A Case-control Study. Pediatr Infect Dis J 2020; 39:192-196. [PMID: 31764377 DOI: 10.1097/inf.0000000000002543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the pulmonary function test (PFT) abnormalities, if any, in children with newly diagnosed chronic hepatitis B (CHB) infection over 3 years. METHODS This is an observational case-control study. One hundred children and adolescents with newly diagnosed CHB were enrolled as the patient group that was further subdivided into 2 groups (50 patients each): inactive carriers (group I) and patients in immunotolerant phase (group II). Only 90 patients completed the study. Fifty healthy children of matched age, sex and height served as a control group, only 45 of them completed the study. PFTs in the form of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, residual volume, total lung capacity, mid-forced expiratory flow of 25%-75% and diffusing capacity of the lung for carbon monoxide were evaluated in all studied children at the start, yearly and at the end of the study after 3 years. Liver function tests were also evaluated. RESULTS There was a significant progressive decrease in FEV1, FVC, forced expiratory flow, total lung capacity and diffusing capacity of the lung for carbon monoxide in CHB patient groups compared with their pulmonary functions at the start of the study and with the control group (P < 0.05), while FEV1/FVC and residual volume showed nonsignificant change (P > 0.05). CONCLUSIONS Subclinical PFT abnormalities are present in children with CHB more than we expected. So, PFT monitoring is recommended in pediatric patients with CHB.
Collapse
Affiliation(s)
- Doaa El Amrousy
- From the Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Samir Hassan
- From the Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba El Ashry
- Tropical Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Goh LY, Card T, Fogarty AW, McKeever TM. The association of exposure to hepatitis B and C viruses with lung function and respiratory disease: a population based study from the NHANES III database. Respir Med 2014; 108:1733-40. [PMID: 25456709 DOI: 10.1016/j.rmed.2014.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Globally, 500 million people are chronically infected with Hepatitis B virus (HBV) and Hepatitis C virus (HCV). While these viruses are notorious for their detrimental effect on the liver they are also known to affect multiple organs in the body including the lungs. AIM To investigate if exposure to HBV and HCV is associated with lung function and respiratory diseases. METHODS Data from the Third National Health and Nutrition Examination Survey (NHANES III) was analysed using multiple linear regressions to investigate the association between exposure to HBV and HCV with the various measures of lung function, while multiple logistic regressions were used to evaluate the association with the respiratory diseases asthma and chronic obstructive pulmonary disease (COPD). RESULTS Exposure to HCV was significantly associated with an increase in Forced Expiratory Volume in 1 s, FEV1 (Coef: 97.94 ml, 95% CI: 38.87 to 157.01) and Full Vital Capacity, FVC (Coef: 90 ml, 95% CI: 14.50 to 166.24). Individuals who had been exposed to both HBV and HCV also had a significantly higher FEV1 (Coef: 145.82, CI: 60.68 to 230.94) and FVC (Coef: 195.09, CI: 78.91 to 311.26). There was also a significant association between exposure to HBV and asthma (OR: 1.28, 95% CI: 1.05 to 1.58). These associations were no longer significant after additionally adjusting for cocaine and marijuana use as well as poverty income ratio. CONCLUSION Our research implies that hepatotropic viruses may affect the respiratory system, but more work at a population level is needed to further explore these associations.
Collapse
Affiliation(s)
- Li Yen Goh
- School of Community Health Sciences, Division of Epidemiology and Public Health, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG51PB, United Kingdom.
| | - Tim Card
- School of Community Health Sciences, Division of Epidemiology and Public Health, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG51PB, United Kingdom
| | - Andrew W Fogarty
- School of Community Health Sciences, Division of Epidemiology and Public Health, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG51PB, United Kingdom.
| | - Tricia M McKeever
- School of Community Health Sciences, Division of Epidemiology and Public Health, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG51PB, United Kingdom.
| |
Collapse
|
5
|
Miner JR, Lewis LM, Mosnaim GS, Varon J, Theodoro D, Hoffmann TJ. Feasibility of percutaneous vagus nerve stimulation for the treatment of acute asthma exacerbations. Acad Emerg Med 2012; 19:421-9. [PMID: 22506946 DOI: 10.1111/j.1553-2712.2012.01329.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study assessed the feasibility of an investigational vagus nerve stimulation (VNS) device for treating acute asthma exacerbations in patients not responding to at least 1 hour of initial standard care therapy. METHODS This was a prospective, nonrandomized study of patients treated in the ED for moderate to severe acute asthma (forced expiratory volume in 1 second [FEV(1)] 25% to 70% of predicted). Treatment entailed percutaneous placement of an electrode near the right carotid sheath and 60 minutes of VNS and continued standard care. VNS voltage was adjusted to perceived improvement, muscle twitching, or adverse events (AEs). All AEs, vital signs, FEV(1), perceived work of breathing (WOB), and final disposition were recorded. RESULTS Twenty-five subjects were enrolled. There were no serious AEs and no significant changes in vital signs. No subject required terminating VNS. One patient had minor bleeding from the procedure, and one had a hematoma and withdrew prior to VNS. AEs related to VNS were temporary and included cough (1 of 24), swallowing difficulty (2 of 24), voice change (2 of 24), and muscle twitching (14 of 24). These resolved when VNS ended. The FEV(1) improved at 15 minutes (median = 15.8%, 95% confidence interval [CI] = 9.3% to 22.4%), 30 minutes (median = 21.3%, 95% CI = 8.1% to 36.5%), and 60 minutes (median = 27.5%, 95% CI = 11.3% to 43.5%). WOB improved at 15 minutes (median = 53.9%, 95% CI = 33.7% to 73.9%), 30 minutes (median = 69.1%, 95% CI = 56.4% to 81.8%), and 60 minutes (median = 81.0%, 95% CI = 68.5% to 93.5%). CONCLUSIONS Percutaneous VNS did not result in serious AEs and was associated with improvements in FEV(1) and perceived dyspnea. Percutaneous VNS appears to be feasible for use in the treatment of moderate to severe acute asthma in patients unresponsive to initial standard care treatment.
Collapse
Affiliation(s)
- James R Miner
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res 2006; 7:73. [PMID: 16684353 PMCID: PMC1479816 DOI: 10.1186/1465-9921-7-73] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/09/2006] [Indexed: 12/14/2022] Open
Abstract
Anticholinergics are widely used for the treatment of COPD, and to a lesser extent for asthma. Primarily used as bronchodilators, they reverse the action of vagally derived acetylcholine on airway smooth muscle contraction. Recent novel studies suggest that the effects of anticholinergics likely extend far beyond inducing bronchodilation, as the novel anticholinergic drug tiotropium bromide can effectively inhibit accelerated decline of lung function in COPD patients. Vagal tone is increased in airway inflammation associated with asthma and COPD; this results from exaggerated acetylcholine release and enhanced expression of downstream signaling components in airway smooth muscle. Vagally derived acetylcholine also regulates mucus production in the airways. A number of recent research papers also indicate that acetylcholine, acting through muscarinic receptors, may in part regulate pathological changes associated with airway remodeling. Muscarinic receptor signalling regulates airway smooth muscle thickening and differentiation, both in vitro and in vivo. Furthermore, acetylcholine and its synthesizing enzyme, choline acetyl transferase (ChAT), are ubiquitously expressed throughout the airways. Most notably epithelial cells and inflammatory cells generate acetylcholine, and express functional muscarinic receptors. Interestingly, recent work indicates the expression and function of muscarinic receptors on neutrophils is increased in COPD. Considering the potential broad role for endogenous acetylcholine in airway biology, this review summarizes established and novel aspects of muscarinic receptor signaling in relation to the pathophysiology and treatment of asthma and COPD.
Collapse
Affiliation(s)
- Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
- Departments of Physiology & Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Johan Zaagsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Andrew J Halayko
- Departments of Physiology & Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, MB, Canada
| |
Collapse
|