1
|
Longhini F, Bruni A, Garofalo E, Tutino S, Vetrugno L, Navalesi P, De Robertis E, Cammarota G. Monitoring the patient-ventilator asynchrony during non-invasive ventilation. Front Med (Lausanne) 2023; 9:1119924. [PMID: 36743668 PMCID: PMC9893016 DOI: 10.3389/fmed.2022.1119924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Patient-ventilator asynchrony is a major issue during non-invasive ventilation and may lead to discomfort and treatment failure. Therefore, the identification and prompt management of asynchronies are of paramount importance during non-invasive ventilation (NIV), in both pediatric and adult populations. In this review, we first define the different forms of asynchronies, their classification, and the method of quantification. We, therefore, describe the technique to properly detect patient-ventilator asynchronies during NIV in pediatric and adult patients with acute respiratory failure, separately. Then, we describe the actions that can be implemented in an attempt to reduce the occurrence of asynchronies, including the use of non-conventional modes of ventilation. In the end, we analyzed what the literature reports on the impact of asynchronies on the clinical outcomes of infants, children, and adults.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy,*Correspondence: Federico Longhini,
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Simona Tutino
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care Unit, SS Annunziata Hospital, Chieti, Italy,Department of Medical, Oral and Biotechnological Sciences, “Gabriele D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Paolo Navalesi
- Anaesthesia and Intensive Care, Padua Hospital, Department of Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
2
|
Bongiovanni F, Michi T, Natalini D, Grieco DL, Antonelli M. Advantages and drawbacks of helmet noninvasive support in acute respiratory failure. Expert Rev Respir Med 2023; 17:27-39. [PMID: 36710082 DOI: 10.1080/17476348.2023.2174974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Non-invasive ventilation (NIV) represents an effective strategy for managing acute respiratory failure. Facemask NIV is strongly recommended in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with hypercapnia and acute cardiogenic pulmonary edema (ACPE). Its role in managing acute hypoxemic respiratory failure (AHRF) remains a debated issue. NIV and continuous positive airway pressure (CPAP) delivered through the helmet are recently receiving growing interest for AHRF management. AREAS COVERED In this narrative review, we discuss the clinical applications of helmet support compared to the other available noninvasive strategies in the different phenotypes of acute respiratory failure. EXPERT OPINION Helmets enable the use of high positive end-expiratory pressure, which may protect from self-inflicted lung injury: in AHRF, the possible superiority of helmet support over other noninvasive strategies in terms of clinical outcome has been hypothesized in a network metanalysis and a randomized trial, but has not been confirmed by other investigations and warrants confirmation. In AECOPD patients, helmet efficacy may be inferior to that of face masks, and its use prompts caution due to the risk of CO2 rebreathing. Helmet support can be safely applied in hypoxemic patients with ACPE, with no advantages over facemasks.
Collapse
Affiliation(s)
- Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy
| | - Daniele Natalini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Esophageal Pressure Measurement in Acute Hypercapnic Respiratory Failure Due to Severe COPD Exacerbation Requiring NIV-A Pilot Safety Study. J Clin Med 2022; 11:jcm11226810. [PMID: 36431287 PMCID: PMC9699291 DOI: 10.3390/jcm11226810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Esophageal pressure (Pes) measurements could optimise ventilator parameters in acute respiratory failure (ARF) patients requiring noninvasive ventilation (NIV). Consequently, the objectives of our study were to evaluate the safety and accuracy of applying a Pes measuring protocol in ARF patients with AECOPD under NIV in our respiratory intermediate care unit (RICU). An observational cohort study was undertaken. The negative inspiratory swing of Pes (ΔPes) was measured: in an upright/supine position in the presence/absence of NIV at D1 (day of admission), D3 (3rd day of NIV), and DoD (day of discharge). A digital filter for artefact removal was developed. We included 15 patients. The maximum values for ∆Pes were recorded at admission (mean ∆Pes 23.2 cm H2O) in the supine position. ∆Pes decreased from D1 to D3 (p < 0.05), the change being BMI-dependent (p < 0.01). The addition of NIV decreased ∆Pes at D1 and D3 (p < 0.01). The reduction of ∆Pes was more significant in the supine position at D1 (8.8 cm H2O, p < 0.01). Under NIV, ∆Pes values remained higher in the supine versus upright position. Therefore, the measurement of Pes in AECOPD patients requiring NIV can be safely done in an RICU. Under NIV, ∆Pes reduction is most significant within the first 24 h of admission.
Collapse
|
4
|
Rosà T, Menga LS, Tejpal A, Cesarano M, Michi T, Sklar MC, Grieco DL. Non-invasive ventilation for acute hypoxemic respiratory failure, including COVID-19. JOURNAL OF INTENSIVE MEDICINE 2022; 3:11-19. [PMID: 36785582 PMCID: PMC9596174 DOI: 10.1016/j.jointm.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/07/2022]
Abstract
Optimal initial non-invasive management of acute hypoxemic respiratory failure (AHRF), of both coronavirus disease 2019 (COVID-19) and non-COVID-19 etiologies, has been the subject of significant discussion. Avoidance of endotracheal intubation reduces related complications, but maintenance of spontaneous breathing with intense respiratory effort may increase risks of patients' self-inflicted lung injury, leading to delayed intubation and worse clinical outcomes. High-flow nasal oxygen is currently recommended as the optimal strategy for AHRF management for its simplicity and beneficial physiological effects. Non-invasive ventilation (NIV), delivered as either pressure support or continuous positive airway pressure via interfaces like face masks and helmets, can improve oxygenation and may be associated with reduced endotracheal intubation rates. However, treatment failure is common and associated with poor outcomes. Expertise and knowledge of the specific features of each interface are necessary to fully exploit their potential benefits and minimize risks. Strict clinical and physiological monitoring is necessary during any treatment to avoid delays in endotracheal intubation and protective ventilation. In this narrative review, we analyze the physiological benefits and risks of spontaneous breathing in AHRF, and the characteristics of tools for delivering NIV. The goal herein is to provide a contemporary, evidence-based overview of this highly relevant topic.
Collapse
Affiliation(s)
- Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luca Salvatore Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Ambika Tejpal
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Michael C. Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto ON M5S 1A1, Canada,Department of Anesthesia and Pain Medicine, St. Michael's Hospital – Unity Health Toronto, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy,Corresponding author: Domenico L. Grieco, Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart. Fondazione ‘Policlinico Universitario Agostino Gemelli’ IRCCS, L.go F. Vito, Rome 00168, Italy.
| |
Collapse
|
5
|
Pierucci P, Portacci A, Carpagnano GE, Banfi P, Crimi C, Misseri G, Gregoretti C. The right interface for the right patient in noninvasive ventilation: a systematic review. Expert Rev Respir Med 2022; 16:931-944. [PMID: 36093799 DOI: 10.1080/17476348.2022.2121706] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Research in the field of noninvasive ventilation (NIV) has contributed to the development of new NIV interfaces. However, interface tolerance plays a crucial role in determining the beneficial effects of NIV therapy. AREAS COVERED This systematic review explores the most significant scientific research on NIV interfaces, with a focus on the potential impact that their design might have on treatment adherence and clinical outcomes. The rationale on the choice of the right interface among the wide variety of devices that are currently available is discussed here. EXPERT OPINION The paradigm "The right mask for the right patient" seems to be difficult to achieve in real life. Ranging from acute to chronic settings, the gold standard should include the tailoring of NIV interfaces to patients' needs and preferences. However, such customization may be hampered by issues of economic nature. High production costs and the increasing demand represent consistent burdens and have to be considered when dealing with patient-tailored NIV interfaces. New research focusing on developing advanced and tailored NIV masks should be prioritized; indeed, interfaces should be designed according to the specific patient and clinical setting where they need to be used.
Collapse
Affiliation(s)
- Paola Pierucci
- A. Cardiothoracic Department, Respiratory and Critical care Unit Bari Policlinic University Hospital, B. Section of Respiratory Diseases, Dept. of Basic Medical Science Neuroscience and Sense Organs, University of Bari 'Aldo Moro'
| | - Andrea Portacci
- A. Cardiothoracic Department, Respiratory and Critical care Unit Bari Policlinic University Hospital, B. Section of Respiratory Diseases, Dept. of Basic Medical Science Neuroscience and Sense Organs, University of Bari 'Aldo Moro'
| | - Giovanna Elisiana Carpagnano
- A. Cardiothoracic Department, Respiratory and Critical care Unit Bari Policlinic University Hospital, B. Section of Respiratory Diseases, Dept. of Basic Medical Science Neuroscience and Sense Organs, University of Bari 'Aldo Moro'
| | - Paolo Banfi
- IRCCS Fondazione Don Carlo Gnocchi, Milano,Italy
| | - Claudia Crimi
- Respiratory Medicine Unit, "Policlinico-Vittorio Emanuele San Marco" University Hospital, Catania, Italy
| | | | - Cesare Gregoretti
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Italy and Fondazione Istituto "G.Giglio" Cefalù', Palermo, Italy
| |
Collapse
|
6
|
Bongiovanni F, Grieco DL, Anzellotti GM, Menga LS, Michi T, Cesarano M, Raggi V, De Bartolomeo C, Mura B, Mercurio G, D'Arrigo S, Bello G, Maviglia R, Pennisi MA, Antonelli M. Gas conditioning during helmet noninvasive ventilation: effect on comfort, gas exchange, inspiratory effort, transpulmonary pressure and patient-ventilator interaction. Ann Intensive Care 2021; 11:184. [PMID: 34952962 PMCID: PMC8708509 DOI: 10.1186/s13613-021-00972-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/12/2021] [Indexed: 01/21/2023] Open
Abstract
Background There is growing interest towards the use of helmet noninvasive ventilation (NIV) for the management of acute hypoxemic respiratory failure. Gas conditioning through heat and moisture exchangers (HME) or heated humidifiers (HHs) is needed during facemask NIV to provide a minimum level of humidity in the inspired gas (15 mg H2O/L). The optimal gas conditioning strategy during helmet NIV remains to be established. Methods Twenty patients with acute hypoxemic respiratory failure (PaO2/FiO2 < 300 mmHg) underwent consecutive 1-h periods of helmet NIV (PEEP 12 cmH2O, pressure support 12 cmH2O) with four humidification settings, applied in a random order: double-tube circuit with HHs and temperature set at 34 °C (HH34) and 37 °C (HH37); Y-piece circuit with HME; double-tube circuit with no humidification (NoH). Temperature and humidity of inhaled gas were measured through a capacitive hygrometer. Arterial blood gases, discomfort and dyspnea through visual analog scales (VAS), esophageal pressure swings (ΔPES) and simplified pressure–time product (PTPES), dynamic transpulmonary driving pressure (ΔPL) and asynchrony index were measured in each step. Results Median [IqR] absolute humidity, temperature and VAS discomfort were significantly lower during NoH vs. HME, HH34 and HH37: absolute humidity (mgH2O/L) 16 [12–19] vs. 28 [23–31] vs. 28 [24–31] vs. 33 [29–38], p < 0.001; temperature (°C) 29 [28–30] vs. 30 [29–31] vs. 31 [29–32] vs 32. [31–33], p < 0.001; VAS discomfort 4 [2–6] vs. 6 [2–7] vs. 7 [4–8] vs. 8 [4–10], p = 0.03. VAS discomfort increased with higher absolute humidity (p < 0.01) and temperature (p = 0.007). Higher VAS discomfort was associated with increased VAS dyspnea (p = 0.001). Arterial blood gases, respiratory rate, ΔPES, PTPES and ΔPL were similar in all conditions. Overall asynchrony index was similar in all steps, but autotriggering rate was lower during NoH and HME (p = 0.03). Conclusions During 1-h sessions of helmet NIV in patients with hypoxemic respiratory failure, a double-tube circuit with no humidification allowed adequate conditioning of inspired gas, optimized comfort and improved patient–ventilator interaction. Use of HHs or HME in this setting resulted in increased discomfort due to excessive heat and humidity in the interface, which was associated with more intense dyspnea. Trail Registration Registered on clinicaltrials.gov (NCT02875379) on August 23rd, 2016.
Collapse
Affiliation(s)
- Filippo Bongiovanni
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy. .,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy.
| | - Gian Marco Anzellotti
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Luca Salvatore Menga
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Teresa Michi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Melania Cesarano
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Valeria Raggi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Cecilia De Bartolomeo
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Benedetta Mura
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Giovanna Mercurio
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Sonia D'Arrigo
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Giuseppe Bello
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Riccardo Maviglia
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Mariano Alberto Pennisi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| |
Collapse
|
7
|
Coppadoro A, Zago E, Pavan F, Foti G, Bellani G. The use of head helmets to deliver noninvasive ventilatory support: a comprehensive review of technical aspects and clinical findings. Crit Care 2021; 25:327. [PMID: 34496927 PMCID: PMC8424168 DOI: 10.1186/s13054-021-03746-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 11/14/2022] Open
Abstract
A helmet, comprising a transparent hood and a soft collar, surrounding the patient's head can be used to deliver noninvasive ventilatory support, both as continuous positive airway pressure and noninvasive positive pressure ventilation (NPPV), the latter providing active support for inspiration. In this review, we summarize the technical aspects relevant to this device, particularly how to prevent CO2 rebreathing and improve patient-ventilator synchrony during NPPV. Clinical studies describe the application of helmets in cardiogenic pulmonary oedema, pneumonia, COVID-19, postextubation and immune suppression. A section is dedicated to paediatric use. In summary, helmet therapy can be used safely and effectively to provide NIV during hypoxemic respiratory failure, improving oxygenation and possibly leading to better patient-centred outcomes than other interfaces.
Collapse
Affiliation(s)
| | - Elisabetta Zago
- ASST Monza, San Gerardo Hospital, Monza, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, MB, Italy
| | - Fabio Pavan
- ASST Monza, San Gerardo Hospital, Monza, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, MB, Italy
| | - Giuseppe Foti
- ASST Monza, San Gerardo Hospital, Monza, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, MB, Italy
| | - Giacomo Bellani
- ASST Monza, San Gerardo Hospital, Monza, Italy.
- Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza, MB, Italy.
| |
Collapse
|
8
|
da Cunha-Martins BSM, Motta-Ribeiro GC, Jandre FC. Short-term usage of three non-invasive ventilation interfaces causes progressive discomfort in healthy adults. RESEARCH ON BIOMEDICAL ENGINEERING 2021. [PMCID: PMC7787606 DOI: 10.1007/s42600-020-00114-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Purpose To evaluate the effect of three different non-invasive ventilation (NIV) interfaces on the subjective discomfort of healthy individuals, and on a set of physiological parameters hypothesized to change in correspondence to discomfort. Methods Continuous pressure NIV was applied to 20 subjects using Total Face, Nasal, and Face masks for 10 min each. Tidal volume (VT) and respiratory period (RP) were estimated from respiratory inductance plethysmography. Electrodermal activity was estimated from conductance signals. Heart rate variability was measured using the time-domain indices SDNN and RMSSD, and the respiratory sinus arrhythmia amplitude (RSAp). Parameters were referenced to 5-min rest periods at beginning and end of protocol. A Likert-like scale of subjective discomfort with the masks and the ventilation was applied after 1, 5, and 9 min using each mask. Results RP and VT increased with the three mask models. Whereas the mean heart rate and RSAp did not change, both SDNN and RMSSD increased during NIV with Nasal and Face masks. Spontaneous electrodermal activity fluctuations were less frequent during NIV than at rest, with significant differences for Total Face and Nasal masks. Discomfort with all masks increased from minutes 1 to 9, markedly in the Total Face mask, considered most uncomfortable by 11 subjects. Conclusion In healthy subjects, the three masks resulted in similar respiratory responses to NIV. Correspondence between changes in physiological parameters and discomfort with NIV interface could not be detected, whereas self-report with the Likert-like scale identified progressive discomfort and the Total Face mask as the most uncomfortable interface. Supplementary Information The online version contains supplementary material available at 10.1007/s42600-020-00114-3.
Collapse
Affiliation(s)
- Beatriz Silva Menezes da Cunha-Martins
- Biomedical Engineering Programme, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, Brazil
| | | | - Frederico Caetano Jandre
- Biomedical Engineering Programme, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Scala R, Accurso G, Ippolito M, Cortegiani A, Iozzo P, Vitale F, Guidelli L, Gregoretti C. Material and Technology: Back to the Future for the Choice of Interface for Non-Invasive Ventilation - A Concise Review. Respiration 2020; 99:800-817. [PMID: 33207357 DOI: 10.1159/000509762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Non-invasive ventilation (NIV) has dramatically changed the treatment of both acute and chronic respiratory failure in the last 2 decades. The success of NIV is correlated to the application of the "best ingredients" of a patient's "tailored recipe," including the appropriate choice of the selected candidate, the ventilator setting, the interface, the expertise of the team, and the education of the caregiver. The choice of the interface is crucial for the success of NIV. Type (oral, nasal, nasal pillows, oronasal, hybrid mask, helmet), size, design, material and headgears may affect the patient's comfort with respect to many aspects, such as air leaks, claustrophobia, skin erythema, eye irritation, skin breakdown, and facial deformity in children. Companies are paying great attention to mask development, in terms of shape, materials, comfort, and leak reduction. Although the continuous development of new products has increased the availability of interfaces and the chance to meet different requirements, in patients necessitating several daily hours of NIV, both in acute and in chronic home setting, the rotational use of different interfaces may remain an excellent strategy to decrease the risk of skin breakdown and to improve patient's tolerance. The aim of the present review was to give the readers a background on mask technology and materials in order to enhance their "knowledge" in making the right choice for the interface to apply during NIV in the different clinical scenarios.
Collapse
Affiliation(s)
- Raffaele Scala
- Pulmonology and Respiratory Intensive Care Unit, S. Donato Hospital, Arezzo, Italy,
| | - Giuseppe Accurso
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), Section of Anesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Mariachiara Ippolito
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), Section of Anesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), Section of Anesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Pasquale Iozzo
- Department of Anesthesia and Intensive Care, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Filippo Vitale
- Department of Anesthesia and Intensive Care, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Luca Guidelli
- Pulmonology and Respiratory Intensive Care Unit, S. Donato Hospital, Arezzo, Italy
| | - Cesare Gregoretti
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), Section of Anesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy.,, Cefalù, Italy
| |
Collapse
|
10
|
Grieco DL, Menga LS, Raggi V, Bongiovanni F, Anzellotti GM, Tanzarella ES, Bocci MG, Mercurio G, Dell'Anna AM, Eleuteri D, Bello G, Maviglia R, Conti G, Maggiore SM, Antonelli M. Physiological Comparison of High-Flow Nasal Cannula and Helmet Noninvasive Ventilation in Acute Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2020; 201:303-312. [PMID: 31687831 DOI: 10.1164/rccm.201904-0841oc] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rationale: High-flow nasal cannula (HFNC) and helmet noninvasive ventilation (NIV) are used for the management of acute hypoxemic respiratory failure.Objectives: Physiological comparison of HFNC and helmet NIV in patients with hypoxemia.Methods: Fifteen patients with hypoxemia with PaO2/FiO2 < 200 mm Hg received helmet NIV (positive end-expiratory pressure ≥ 10 cm H2O, pressure support = 10-15 cm H2O) and HFNC (50 L/min) in randomized crossover order. Arterial blood gases, dyspnea, and comfort were recorded. Inspiratory effort was estimated by esophageal pressure (Pes) swings. Pes-simplified pressure-time product and transpulmonary pressure swings were measured.Measurements and Main Results: As compared with HFNC, helmet NIV increased PaO2/FiO2 (median [interquartile range]: 255 mm Hg [140-299] vs. 138 [101-172]; P = 0.001) and lowered inspiratory effort (7 cm H2O [4-11] vs. 15 [8-19]; P = 0.001) in all patients. Inspiratory effort reduction by NIV was linearly related to inspiratory effort during HFNC (r = 0.84; P < 0.001). Helmet NIV reduced respiratory rate (24 breaths/min [23-31] vs. 29 [26-32]; P = 0.027), Pes-simplified pressure-time product (93 cm H2O ⋅ s ⋅ min-1 [43-138] vs. 200 [168-335]; P = 0.001), and dyspnea (visual analog scale 3 [2-5] vs. 8 [6-9]; P = 0.002), without affecting PaCO2 (P = 0.80) and comfort (P = 0.50). In the overall cohort, transpulmonary pressure swings were not different between treatments (NIV = 18 cm H2O [14-21] vs. HFNC = 15 [8-19]; P = 0.11), but patients exhibiting lower inspiratory effort on HFNC experienced increases in transpulmonary pressure swings with helmet NIV. Higher transpulmonary pressure swings during NIV were associated with subsequent need for intubation.Conclusions: As compared with HFNC in hypoxemic respiratory failure, helmet NIV improves oxygenation, reduces dyspnea, inspiratory effort, and simplified pressure-time product, with similar transpulmonary pressure swings, PaCO2, and comfort.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Luca S Menga
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Valeria Raggi
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Filippo Bongiovanni
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Gian Marco Anzellotti
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Eloisa S Tanzarella
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Maria Grazia Bocci
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giovanna Mercurio
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Antonio M Dell'Anna
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Davide Eleuteri
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giuseppe Bello
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Riccardo Maviglia
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giorgio Conti
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Salvatore Maurizio Maggiore
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| |
Collapse
|
11
|
Cortegiani A, Navalesi P, Accurso G, Sabella I, Misseri G, Ippolito M, Bruni A, Garofalo E, Palmeri C, Gregoretti C. Tidal Volume Estimation during Helmet Noninvasive Ventilation: an Experimental Feasibility Study. Sci Rep 2019; 9:17324. [PMID: 31754262 PMCID: PMC6872634 DOI: 10.1038/s41598-019-54020-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 11/15/2022] Open
Abstract
We performed a bench (BS) and human (HS) study to test the hypothesis that estimation of tidal volume (VT) during noninvasive helmet pressure support ventilation (nHPSV) would be possible using a turbine driven ventilator (TDV) coupled with an intentional leak single-limb vented circuit. During the BS a mannequin was connected to a lung simulator (LS) and at different conditions of respiratory mechanics, positive end expiratory pressure (PEEP) levels and leaks (30, 50 and 80 L/min). All differences were within the 95% limits of agreement (LoA) in all conditions in the Bland-Altman plot. The overall bias (difference between VT measured by TDV and LS) was 35 ml (95% LoA 10 to 57 ml), 15 ml (95% LoA −40 to 70 ml), 141 ml (95% LoA 109 to 173 ml) in the normal, restrictive and obstructive conditions. The bias at different leaks flow in normal condition was 29 ml (95% LoA 19 to 38 ml). In the HS four healthy volunteers using nHPSV had a pneumotachograph (P) inserted through a mouthpiece to measure subject’s VT.The bias showed a scarce clinical relevance. In conclusions, VT estimation seems to be feasible and accurate in all conditions but the obstructive one. Additional leaks seem not to affect VT reliability.
Collapse
Affiliation(s)
- Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy.
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Giuseppe Accurso
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Ignazio Sabella
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Giovanni Misseri
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Mariachiara Ippolito
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Cesira Palmeri
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Cesare Gregoretti
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Bello G, De Santis P, Antonelli M. Non-invasive ventilation in cardiogenic pulmonary edema. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:355. [PMID: 30370282 DOI: 10.21037/atm.2018.04.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiogenic pulmonary edema (CPE) is among the most common causes of acute respiratory failure (ARF) in the acute care setting and often requires ventilatory assistance. In patients with ARF due to CPE, use of non-invasive positive airway pressure can decrease the systemic venous return and the left ventricular (LV) afterload, thus reducing LV filling pressure and limiting pulmonary edema. In these patients, either non-invasive ventilation (NIV) or continuous positive airway pressure (CPAP) can improve vital signs and physiological parameters, decreasing the need for endotracheal intubation (ETI) and hospital mortality when compared to conventional oxygen therapy. Results on the use of NIV or CPAP in patients with CPE prior to hospitalization are not homogeneous among studies, hampering any conclusive recommendation regarding their role in the pre-hospital setting.
Collapse
Affiliation(s)
- Giuseppe Bello
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo De Santis
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
13
|
Garofalo E, Bruni A, Pelaia C, Liparota L, Lombardo N, Longhini F, Navalesi P. Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med 2018; 12:557-567. [DOI: 10.1080/17476348.2018.1480941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luisa Liparota
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Nicola Lombardo
- Otolaryngology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care, Sant’Andrea Hospital, Vercelli, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
14
|
Abstract
Noninvasive ventilation (NIV) has assumed a central role in the treatment of selected patients with acute respiratory failure due to exacerbated chronic obstructive pulmonary disease or acute cardiogenic pulmonary edema. Recent advances in the understanding of physiologic aspects of NIV application through different interfaces and ventilator settings have led to improved patient-machine interaction, enhancing favorable NIV outcome. In recent years, the growing role of NIV in the acute care setting has led to the development of technical innovations to overcome the problems related to gas leakage and dead space, improving the quality of the devices and optimizing ventilation modes.
Collapse
Affiliation(s)
- Giuseppe Bello
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome 00168, Italy.
| | - Alessandra Ionescu Maddalena
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome 00168, Italy
| | - Valentina Giammatteo
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome 00168, Italy
| | - Massimo Antonelli
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome 00168, Italy
| |
Collapse
|
15
|
Longhini F, Pan C, Xie J, Cammarota G, Bruni A, Garofalo E, Yang Y, Navalesi P, Qiu H. New setting of neurally adjusted ventilatory assist for noninvasive ventilation by facial mask: a physiologic study. Crit Care 2017; 21:170. [PMID: 28683763 PMCID: PMC5501553 DOI: 10.1186/s13054-017-1761-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Noninvasive ventilation (NIV) is generally delivered using pneumatically-triggered and cycled-off pressure support (PSP) through a mask. Neurally adjusted ventilatory assist (NAVA) is the only ventilatory mode that uses a non-pneumatic signal, i.e., diaphragm electrical activity (EAdi), to trigger and drive ventilator assistance. A specific setting to generate neurally controlled pressure support (PSN) was recently proposed for delivering NIV by helmet. We compared PSN with PSP and NAVA during NIV using a facial mask, with respect to patient comfort, gas exchange, and patient-ventilator interaction and synchrony. Methods Three 30-minute trials of NIV were randomly delivered to 14 patients immediately after extubation to prevent post-extubation respiratory failure: (1) PSP, with an inspiratory support ≥8 cmH2O; (2) NAVA, adjusting the NAVA level to achieve a comparable peak EAdi (EAdipeak) as during PSP; and (3) PSN, setting the NAVA level at 15 cmH2O/μV with an upper airway pressure (Paw) limit to obtain the same overall Paw applied during PSP. We assessed patient comfort, peak inspiratory flow (PIF), time to reach PIF (PIFtime), EAdipeak, arterial blood gases, pressure-time product of the first 300 ms (PTP300-index) and 500 ms (PTP500-index) after initiation of patient effort, inspiratory trigger delay (DelayTR-insp), and rate of asynchrony, determined as asynchrony index (AI%). The categorical variables were compared using the McNemar test, and continuous variables by the Friedman test followed by the Wilcoxon test with Bonferroni correction for multiple comparisons (p < 0.017). Results PSN significantly improved patient comfort, compared to both PSP (p = 0.001) and NAVA (p = 0.002), without differences between the two latter (p = 0.08). PIF (p = 0.109), EAdipeak (p = 0.931) and gas exchange were similar between modes. Compared to PSP and NAVA, PSN reduced PIFtime (p < 0.001), and increased PTP300-index (p = 0.004) and PTP500-index (p = 0.001). NAVA and PSN significantly reduced DelayTR-insp, as opposed to PSP (p < 0.001). During both NAVA and PSN, AI% was <10% in all patients, while AI% was ≥10% in 7 patients (50%) with PSP (p = 0.023 compared with both NAVA and PSN). Conclusions Compared to both PSP and NAVA, PSN improved comfort and patient-ventilator interaction during NIV by facial mask. PSN also improved synchrony, as opposed to PSP only. Trial registration ClinicalTrials.gov, NCT03041402. Registered (retrospectively) on 2 February 2017.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy
| | - Chun Pan
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Gianmaria Cammarota
- Anesthesia and Intensive Care, "Maggiore della Carità" Hospital, Novara, Italy
| | - Andrea Bruni
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Yi Yang
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Paolo Navalesi
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Haibo Qiu
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
16
|
Gregoretti C, Pisani L, Cortegiani A, Ranieri VM. Noninvasive Ventilation in Critically Ill Patients. Crit Care Clin 2015; 31:435-57. [DOI: 10.1016/j.ccc.2015.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Comparative evaluation of three interfaces for non-invasive ventilation: a randomized cross-over design physiologic study on healthy volunteers. Crit Care 2014; 18:R2. [PMID: 24387642 PMCID: PMC4056758 DOI: 10.1186/cc13175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 11/27/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Interface choice is crucial for non-invasive ventilation (NIV) success. We compared a new interface, the helmet next (HN), with the facial mask (FM) and the standard helmet (HS) in twelve healthy volunteers. Methods In this study, five NIV trials were randomly applied, preceded and followed by a trial of unassisted spontaneous breathing (SB). Baseline settings, for example, 5 cmH2O of both inspiratory pressure support (PS) and positive end-expiratory pressure (PEEP), were applied through FM, HS and HN, while increased settings (PS and PEEP of 8 cmH2O) were only applied through HS and HN. We measured flow, airway, esophageal and gastric pressures, and calculated inspiratory effort indexes and trigger delays. Comfort was assessed with a visual-analog-scale. Results We found that FM, HS and HN at baseline settings were not significantly different with respect to inspiratory effort indexes and comfort. Inspiratory trigger delay and time of synchrony (TI,synchrony) were significantly improved by FM compared to both helmets, whereas expiratory trigger delay was shorter with FM, as opposed to HS only. HN at increased settings performed better than FM in decreasing inspiratory effort measured by pressure-time product of transdiaphragmatic pressure (PTPdi)/breath (10.7 ± 9.9 versus 17.0 ± 11.0 cmH2O*s), and PTPdi/min (128 ± 96 versus 204 ± 81 cmH2O*s/min), and PTPdi/L (12.6 ± 9.9 versus 30.2 ± 16.8 cmH2O*s/L). TI, synchrony was inferior between HN and HS at increased settings and FM. Conclusions HN might hold some advantages with respect to interaction and synchrony between subject and ventilator, but studies on patients are needed to confirm these findings. Trial registration ClinicalTrials.gov NCT01610960
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This critical review discusses the key points that would be of practical help for the clinician who applies noninvasive ventilation (NIV) for treatment of patients with acute respiratory failure (ARF). RECENT FINDINGS In recent years, the growing role of NIV in the acute care setting has led to the development of technical innovations to overcome the problems related to gas leakage and dead space. A considerable amount of research has been conducted to improve the quality of the devices as well as optimize ventilation modes used to administer NIV. As a result, also mechanical ventilators have been implemented with modalities aimed at delivering NIV. SUMMARY The success of NIV in patients with ARF depends on several factors, including the skills of the clinician, selection of patient, choice of interface, selection of ventilation mode and ventilator setting, monitoring, and the motivation of the patient. Recent advances in the understanding of the physiological aspects of using NIV through different interfaces and ventilator settings have led to improve patient-machine interaction, enhancing favorable NIV outcome.
Collapse
|
19
|
Clinical review: Helmet and non-invasive mechanical ventilation in critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:223. [PMID: 23680299 PMCID: PMC3672531 DOI: 10.1186/cc11875] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-invasive mechanical ventilation (NIV) has proved to be an excellent technique in selected critically ill patients with different forms of acute respiratory failure. However, NIV can fail on account of the severity of the disease and technical problems, particularly at the interface. The helmet could be an alternative interface compared to face mask to improve NIV success. We performed a clinical review to investigate the main physiological and clinical studies assessing the efficacy and related issues of NIV delivered with a helmet. A computerized search strategy of MEDLINE/PubMed (January 2000 to May 2012) and EMBASE (January 2000 to May 2012) was conducted limiting the search to retrospective, prospective, nonrandomized and randomized trials. We analyzed 152 studies from which 33 were selected, 12 physiological and 21 clinical (879 patients). The physiological studies showed that NIV with helmet could predispose to CO₂ rebreathing and increase the patients' ventilator asynchrony. The main indications for NIV were acute cardiogenic pulmonary edema, hypoxemic acute respiratory failure (community-acquired pneumonia, postoperative and immunocompromised patients) and hypercapnic acute respiratory failure. In 9 of the 21 studies the helmet was compared to a face mask during either continous positive airway pressure or pressure support ventilation. In eight studies oxygenation was similar in the two groups, while the intubation rate was similar in four and lower in three studies for the helmet group compared to face mask group. The outcome was similar in six studies. The tolerance was better with the helmet in six of the studies. Although these data are limited, NIV delivered by helmet could be a safe alternative to the face mask in patients with acute respiratory failure.
Collapse
|
20
|
Dimech A. Critical care patients' experience of the helmet continuous positive airway pressure. Nurs Crit Care 2012; 17:36-43. [PMID: 22229680 DOI: 10.1111/j.1478-5153.2011.00478.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Continuous positive airway pressure (CPAP) is a common treatment modality for acute respiratory failure (ARF) in critical care. Historically, a tight-fitting mask is used to provide respiratory support. This however is not without risks to the patient. The helmet CPAP is a new product that provides the same treatment with a different method of delivery. There is minimal evidence to date explaining the patient's experience of the new helmet modality. AIMS AND OBJECTIVES The aim of this research study is to explore critical care patient's experience of helmet CPAP. DESIGN A qualitative approach was taken utilizing descriptive phenomenological methodology. In order to obtain rich data, six interviews with cues provided the platform for data generation and collection. A thematic framework was utilized with emergent themes manually analysed using a constant comparative technique to express the experiences or phenomena of a particular event or experiences. FINDINGS/RESULTS The overall experience was unique to each patient. The patients entrusted the health care team which made the experience more tolerable. Paradoxical themes were experienced during treatment. The themes included entrapment, confusion, helping me breathe, liberation, challenges, apprehension, relief, trust and endurance. The desire to survive the acute illness proved to be a driving factor. CONCLUSION The study has provided an insight into the patient's experience of helmet CPAP in the critical care setting. The findings have provided a basis for policy and guideline development. It will also assist in developing future patient focused care.
Collapse
Affiliation(s)
- Andrew Dimech
- Critical Care Unit, Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK.
| |
Collapse
|
21
|
Cammarota G, Olivieri C, Costa R, Vaschetto R, Colombo D, Turucz E, Longhini F, Della Corte F, Conti G, Navalesi P. Noninvasive ventilation through a helmet in postextubation hypoxemic patients: physiologic comparison between neurally adjusted ventilatory assist and pressure support ventilation. Intensive Care Med 2011; 37:1943-50. [PMID: 22005826 DOI: 10.1007/s00134-011-2382-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/21/2011] [Indexed: 11/30/2022]
Abstract
PURPOSE Neurally adjusted ventilatory assist (NAVA) has been shown to improve patient-ventilator interaction and reduce asynchronies in intubated patients, as opposed to pressure support ventilation (PSV). This is a short-term head-to-head physiologic comparison between PSV and NAVA in delivering noninvasive ventilation through a helmet (h-NIV), in patients with postextubation hypoxemic acute respiratory failure. METHODS Ten patients underwent three 20-min trials of h-NIV in PSV, NAVA, and PSV again. Arterial blood gases (ABGs) were assessed at the end of each trial. Diaphragm electrical activity (EAdi) and airway pressure (P (aw)) were recorded to derive neural and mechanical respiratory rate and timing, inspiratory (delay(TR-insp)) and expiratory trigger delays (delay(TR-exp)), time of synchrony between diaphragm contraction and ventilator assistance (time(synch)), and the asynchrony index (AI). RESULTS ABGs, peak EAdi, peak P (aw), respiratory rate, either neural or mechanical, neural timing, and delay(TR-exp) were not different between trials. Compared with PSV, with NAVA the mechanical expiratory time was significantly shorter, while the inspiratory time and duty cycle were greater. Time(synch) was 0.79 ± 0.35 s in NAVA versus 0.60 ± 0.30 s and 0.55 ± 0.29 s during the PSV trials (p < 0.01 for both). AI exceeded 10% during both PSV trials, while not in NAVA (p < 0.001). CONCLUSIONS Compared with PSV, NAVA improves patient-ventilator interaction and synchrony, with no difference in gas exchange, respiratory rate, and neural drive and timing.
Collapse
Affiliation(s)
- Gianmaria Cammarota
- Anesthesia and Intensive Care, Maggiore della Carità University Hospital, Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Costa R, Navalesi P, Spinazzola G, Ferrone G, Pellegrini A, Cavaliere F, Proietti R, Antonelli M, Conti G. Influence of ventilator settings on patient-ventilator synchrony during pressure support ventilation with different interfaces. Intensive Care Med 2010; 36:1363-70. [PMID: 20502872 DOI: 10.1007/s00134-010-1915-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 04/24/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate patient-ventilator interaction during pressure support ventilation (PSV) delivered with three interfaces [endotracheal tube (ET), face mask (FM), and helmet (H)] at different pressurization times (Time(press)), cycling-off flow thresholds (Tr(exp)), and respiratory rates (RR) in a bench study, and with FM and H in a healthy volunteers study. DESIGN Bench study using a mannequin connected to an active lung simulator, and human study including eight healthy volunteers. MEASUREMENTS PSV was delivered through the three interfaces with three different RR in the bench study, and through FM and H at two different RR in the human study. The mechanical and the neural RR, Ti, Te, inspiratory trigger delay (Delay(trinsp)), pressurization time, and expiratory trigger delay were randomly evaluated at various ventilator settings (Time(press)/Tr(exp): 50%/25%, default setting; 20%/5%, slow setting; 80%/60%, fast setting). RESULTS Bench study: patient-ventilator synchrony was significantly better with ET, with lower Delay(trinsp) and higher time of assistance (P < 0.001); the combination Time(press)/Tr(exp) 20%/5% at RR 30 produced the worst interaction, with higher rate of wasted efforts (WE) compared with Time(press)/Tr(exp) 80%/60% (20%, 40%, and 50% of WE versus 0%, 16%, and 26% of all spontaneous breaths, with ET, FM, and H, respectively; P < 0.01). In both studies, compared with H, FM resulted in better synchrony. CONCLUSION Patient-ventilator synchrony was significantly better with ET during the bench study; in the human study, FM outperformed H.
Collapse
Affiliation(s)
- R Costa
- Dipartimento di Anestesia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Continuous flow biphasic positive airway pressure by helmet in patients with acute hypoxic respiratory failure: effect on oxygenation. Intensive Care Med 2010; 36:1688-1694. [PMID: 20521025 DOI: 10.1007/s00134-010-1925-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE We investigated the effects of periodical high pressure breaths (SIGH) or biphasic positive pressure ventilation (BIPAP) during helmet continuous positive airway pressure (CPAP) in patients with acute hypoxic respiratory failure. METHODS We used a recently developed electromechanical expiratory valve (TwinPAP, StarMed, Mirandola, Italy), which is time-cycled between two customizable positive end-expiratory pressure (PEEP) levels. We studied 21 patients (67 ± 17 years old) undergoing helmet CPAP. Continuous flow CPAP system was set at 60 l/min flow rate while maintaining clinical FiO(2) (51 ± 15%). Five steps, lasting 1 h each, were applied: (1) spontaneous breathing with PEEP 0 cmH(2)O (SB), (2) CPAP with PEEP 8 cmH(2)O (CPAP(basal)), (3) low PEEP, 8 cmH(2)O, for 25 s and high PEEP, 25 cmH(2)O, for 5 s (SIGH), (4) low PEEP, 8 cmH(2)O, for 3 s and high PEEP, 20 cmH(2)O, for 3 s (BIPAP), (5) CPAP with PEEP 8 cmH(2)O (CPAP(final)). We randomized the sequence of SIGH and BIPAP. RESULTS PaO(2) was significantly higher during all steps compared to SB. When compared to CPAP(basal), both SIGH and BIPAP induced a further increase in PaO(2). PaO(2) during SIGH and BIPAP were not different. The oxygenation improvement was maintained during CPAP(final). CONCLUSIONS Superimposed, nonsynchronized positive pressure breaths delivered during helmet CPAP by means of the TwinPAP system may improve oxygenation in patients with acute hypoxemic respiratory failure, even at a rate as low as two breaths per minute.
Collapse
|
24
|
|
25
|
Abstract
OBJECTIVE To compare the physiologic effects of noninvasive pressure-support ventilation (NPSV) delivered by a facemask, a helmet with the same settings, and a helmet with specific settings. Inspiratory muscle effort, gas exchange, patient-ventilator synchrony, and comfort were evaluated. DESIGN Prospective crossover study. SETTING A 13-bed medical intensive care unit in a university hospital. PATIENTS Eleven patients at risk for respiratory distress requiring early NPSV after extubation. INTERVENTION One hour after extubation, three 20-minute NPSV periods were delivered in a random order by facemask, helmet, and helmet with 50% increases in both pressure support and positive end-expiratory pressure and with the highest pressurization rate (95% max). MEASUREMENTS AND MAIN RESULTS Flow and airway, esophageal, and gastric pressure signals were measured under the three NPSV conditions and during spontaneous breathing. Compared with the facemask, the helmet with the same settings resulted in a greater inspiratory muscle effort, but this difference was abolished by the specific settings (pressure-time product in cm H2O.s.min, 63.8 [27.3-85.9], 81.8 [36.0-111.5], and 58.0 [25.4-79.5], respectively, p < 0.05, compared with 209.3 [29.8-239.6] during spontaneous breathing). Compared with the facemask, the helmet with the same settings worsened patient-ventilator synchrony, as indicated by longer triggering-on and cycling-off delays (0.14 [0.11-0.20] seconds vs. 0.32 [0.26-0.43] seconds, p < 0.05; and 0.20 [0.08-0.24] seconds vs. 0.27 [0.25-0.35] seconds, p < 0.01, respectively). The specific settings significantly improved the triggering-on delay compared with the helmet without specific settings (p < 0.01). Tolerance was the same with the three methods. CONCLUSIONS Our results suggest that increasing both the pressure-support level and positive end-expiratory pressure and using the highest pressurization rate may be advisable when providing NPSV via a helmet.
Collapse
|
26
|
Mojoli F, Iotti GA, Gerletti M, Lucarini C, Braschi A. Carbon dioxide rebreathing during non-invasive ventilation delivered by helmet: a bench study. Intensive Care Med 2008; 34:1454-60. [PMID: 18421436 DOI: 10.1007/s00134-008-1109-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/15/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To define how to monitor and limit CO(2) rebreathing during helmet ventilation. DESIGN Physical model study. SETTING Laboratory in a university teaching hospital. INTERVENTIONS We applied pressure-control ventilation to a helmet mounted on a physical model. In series 1 we increased CO(2) production (V'CO(2)) from 100 to 550 ml/min and compared mean inhaled CO(2) (iCO(2),mean) with end-inspiratory CO(2) at airway opening (eiCO(2)), end-tidal CO(2) at Y-piece (yCO(2)) and mean CO(2) inside the helmet (hCO(2)). In series 2 we observed, at constant V'CO(2), effects on CO(2) rebreathing of inspiratory pressure, respiratory mechanics, the inflation of cushions inside the helmet and the addition of a flow-by. MEASUREMENTS AND RESULTS In series 1, iCO(2),mean linearly related to V'CO(2). The best estimate of CO(2) rebreathing was provided by hCO(2): differences between iCO(2),mean and hCO(2), yCO(2) and eiCO(2) were 0.0+/-0.1, 0.4+/-0.2 and -1.3+/-0.5%. In series 2, hCO(2) inversely related to the total ventilation (MVtotal) delivered to the helmet-patient unit. The increase in inspiratory pressure significantly increased MVtotal and lowered hCO(2). The low lung compliance halved the patient:helmet ventilation ratio but led to minor changes in MVtotal and hCO(2). Cushion inflation, although it decreased the helmet's internal volume by 33%, did not affect rebreathing. A 8-l/min flow-by effectively decreased hCO(2). CONCLUSIONS During helmet ventilation, rebreathing can be assessed by measuring hCO(2) or yCO(2), but not eiCO(2). It is directly related to V'CO(2), inversely related to MVtotal and can be lowered by increasing inspiratory pressure or adding a flow-by.
Collapse
Affiliation(s)
- Francesco Mojoli
- Servizio di Anestesia e Rianimazione I, Fondazione IRCCS Policlinico S. Matteo, Piazzale Golgi 2, Pavia, Italy.
| | | | | | | | | |
Collapse
|
27
|
Racca F, Appendini L, Gregoretti C, Varese I, Berta G, Vittone F, Ferreyra G, Stra E, Ranieri VM. Helmet ventilation and carbon dioxide rebreathing: effects of adding a leak at the helmet ports. Intensive Care Med 2008; 34:1461-8. [PMID: 18458874 DOI: 10.1007/s00134-008-1120-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE We examined whether additional helmet flow obtained by a single-circuit and a modified plateau valve applied at the helmet expiratory port (open-circuit ventilators) improves CO(2) wash-out by increasing helmet airflow. DESIGN AND SETTING Randomized physiological study in a university research laboratory. PARTICIPANTS Ten healthy volunteers. INTERVENTIONS Helmet continuous positive airway pressure and pressure support ventilation delivered by an ICU ventilator (closed-circuit ventilator) and two open-circuit ventilators equipped with a plateau valve placed either at the inspiratory or at the helmet expiratory port. MEASUREMENTS AND RESULTS We measured helmet air leaks, breathing pattern, helmet minute ventilation (Eh)), minute ventilation washing the helmet (Ewh)), CO(2) wash-out, and ventilator inspiratory assistance. Air leaks were small and similar in all conditions. Breathing pattern was similar among the different ventilators. Inspiratory and end-tidal CO(2) were lower, while (Eh) and (Ewh) were higher only using open-circuit ventilators with the plateau valve placed at the helmet expiratory port. This occurred notwithstanding these ventilators delivered a lower inspiratory assistance. CONCLUSIONS Additional helmet flow provided by open-circuit ventilators can lower helmet CO(2) rebreathing. However, inspiratory pressure assistance significantly decreases using open-circuit ventilators, still casting doubts on the choice of the optimal helmet ventilation setup.
Collapse
Affiliation(s)
- Fabrizio Racca
- Dipartimento di Anestesia e Rianimazione, Università di Torino, Ospedale S. Giovanni Battista-Molinette, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Costa R, Navalesi P, Spinazzola G, Rossi M, Cavaliere F, Antonelli M, Proietti R, Conti G. Comparative evaluation of different helmets on patient-ventilator interaction during noninvasive ventilation. Intensive Care Med 2008; 34:1102-8. [PMID: 18320168 DOI: 10.1007/s00134-008-1041-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Affiliation(s)
- R Costa
- Department of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Peñuelas O, Frutos-Vivar F, Esteban A. Noninvasive positive-pressure ventilation in acute respiratory failure. CMAJ 2007; 177:1211-8. [PMID: 17984471 PMCID: PMC2043058 DOI: 10.1503/cmaj.060147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Noninvasive positive-pressure ventilation is a type of mechanical ventilation that does not require an artificial airway. Studies published in the 1990s that evaluated the efficacy of this technique for the treatment of diseases as chronic obstructive pulmonary disease, congestive heart failure and acute respiratory failure have generalized its use in recent years. Important issues include the selection of the ventilation interface and the type of ventilator. Currently available interfaces include nasal, oronasal and facial masks, mouthpieces and helmets. Comparisons of the available interfaces have not shown one to be clearly superior. Both critical care ventilators and portable ventilators can be used for noninvasive positive-pressure ventilation; however, the choice of ventilator type depends on the patient's condition and therapeutic requirements and on the expertise of the attending staff and the location of care. The best results (decreased need for intubation and decreased mortality) have been reported among patients with exacerbations of chronic obstructive pulmonary disease and cardiogenic pulmonary edema.
Collapse
Affiliation(s)
- Oscar Peñuelas
- Intensive Care Service, Hospital Universitario de Getafe, Madrid, Spain
| | | | | |
Collapse
|
31
|
Hess DR. The mask for noninvasive ventilation: principles of design and effects on aerosol delivery. ACTA ACUST UNITED AC 2007; 20 Suppl 1:S85-98; discussion S98-9. [PMID: 17411410 DOI: 10.1089/jam.2007.0574] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There has been much clinical and academic interest in the use of noninvasive positive-pressure ventilation (NPPV) in patients with acute and chronic respiratory failure. The use of NPPV in appropriately selected patients improves survival and decreases the need for endotracheal intubation. The most commonly used interfaces for NPPV are nasal masks or oronasal masks, but nasal pillows, mouthpieces, total face masks, and helmets can also be used. Critical care ventilators, portable volume ventilators, and ventilators designed specifically for NPPV can be used. There are three options for aerosol delivery during NPPV. The patient can be removed from NPPV and the aerosol administered by nebulizer or MDI in the standard manner, the aerosol can be delivered by nebulizer placed in-line between the circuit and the mask, or a spacer chamber can be placed between the circuit and the mask. There is presently no commercially available system designed specifically for aerosol delivery during NPPV with a bilevel (BiPAP) ventilator. However, in vitro and in vivo studies have demonstrated that a significant amount of bronchodilator can be administered by in-line nebulizer or MDI during NPPV. The evidence base for aerosol delivery during NPPV is not nearly as mature as the evidence for aerosol delivery during invasive mechanical ventilation. With NPVV, issues related to the optimal interface, ventilator settings, and aerosol generator (nebulizer versus MDI) are largely unexplored.
Collapse
Affiliation(s)
- Dean R Hess
- Department of Anesthesia, Harvard Medical School, Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
32
|
Navalesi P, Costa R, Ceriana P, Carlucci A, Prinianakis G, Antonelli M, Conti G, Nava S. Non-invasive ventilation in chronic obstructive pulmonary disease patients: helmet versus facial mask. Intensive Care Med 2007; 33:74-81. [PMID: 17039354 DOI: 10.1007/s00134-006-0391-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE The helmet is a new interface with the potential of increasing the success rate of non-invasive ventilation by improving tolerance. OBJECTIVES To perform a physiological comparison between the helmet and the conventional facial mask in delivering non-invasive ventilation in hypercapnic patients with chronic obstructive pulmonary disease. METHODS Prospective, controlled, randomized study with cross-over design. In 10 patients we evaluated gas exchange, inspiratory effort, patient-ventilator synchrony and patient tolerance after 30 min of non-invasive ventilation delivered either by helmet or facial mask; both trials were preceded by periods of spontaneous unassisted breathing. MEASUREMENTS Arterial blood gases, inspiratory effort, duration of diaphragm contraction and ventilator assistance, effort-to-support delays (at the beginning and at the end of inspiration), number of ineffective efforts, and patient comfort. MAIN RESULTS Non-invasive ventilation improved gas exchange (p<0.05) and inspiratory effort (p<0.01) with both interfaces. The helmet, however, was less efficient than the mask in reducing inspiratory effort (p<0.05) and worsened the patient-ventilator synchrony, as indicated by the longer delays to trigger on (p<0.05) and cycle off (p<0.05) the mechanical assistance and by the number of ineffective efforts (p<0.005). Patient comfort was no different with the two interfaces. CONCLUSIONS Helmet and facial mask were equally tolerated and both were effective in ameliorating gas exchange and decreasing inspiratory effort. The helmet, however, was less efficient in decreasing inspiratory effort and worsened the patient-ventilator interaction.
Collapse
Affiliation(s)
- Paolo Navalesi
- Pneumologia Riabilitativa e Terapia Intensiva Respiratoria, Fondazione S. Maugeri IRCCS, Via S. Maugeri 10, 27100, Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|