1
|
Roe T, Talbot T, Terrington I, Johal J, Kemp I, Saeed K, Webb E, Cusack R, Grocott MPW, Dushianthan A. Physiology and pathophysiology of mucus and mucolytic use in critically ill patients. Crit Care 2025; 29:68. [PMID: 39920835 PMCID: PMC11806889 DOI: 10.1186/s13054-025-05286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
Airway mucus is a highly specialised secretory fluid which functions as a physical and immunological barrier to pathogens whilst lubricating the airways and humifying atmospheric air. Dysfunction is common during critical illness and is characterised by changes in production rate, chemical composition, physical properties, and inflammatory phenotype. Mucociliary clearance, which is determined in part by mucus characteristics and in part by ciliary function, is also dysfunctional in critical illness via disease related and iatrogenic mechanisms. The consequences of mucus dysfunction are potentially devastating, contributing to prolonged ventilator dependency, increased risk of secondary pneumonia, and worsened lung injury. Mucolytic therapies are designed to decrease viscosity, improve expectoration/suctioning, and thereby promote mucus removal. Mucolytics, including hypertonic saline, dornase alfa/rhDNase, nebulised heparin, carbocisteine/N-Acetyl cysteine, are commonly used in critically ill patients. This review summarises the physiology and pathophysiology of mucus and the existing evidence for the use of mucolytics in critically ill patients and speculates on journey to individualised mucolytic therapy.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Thomas Talbot
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Isis Terrington
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Jayant Johal
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ivan Kemp
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Kordo Saeed
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Elizabeth Webb
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Rebecca Cusack
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK.
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK.
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
2
|
Manti S, Gambadauro A, Galletta F, Ruggeri P, Piedimonte G. Update on the Role of β2AR and TRPV1 in Respiratory Diseases. Int J Mol Sci 2024; 25:10234. [PMID: 39408565 PMCID: PMC11477158 DOI: 10.3390/ijms251910234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Respiratory diseases (RDs) constitute a common public health problem both in industrialized and developing countries. The comprehension of the pathophysiological mechanisms underlying these conditions and the development of new therapeutic strategies are critical for improving the quality of life of affected patients. β2-adrenergic receptor (β2AR) and transient receptor potential vanilloid 1 (TRPV1) are both involved in physiological responses in the airways. β2AR is implicated in bronchodilation, mucociliary clearance, and anti-inflammatory effects, while TRPV1 is involved in the mediation of pain and cough reflexes. In RDs, such as respiratory infections, asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, the concentration and expression of these receptors can be altered, leading to significant consequences. In this review, we provided an update on the literature about the role of β2AR and TRPV1 in these conditions. We reported how the diminished or defective expression of β2AR during viral infections or prolonged therapy with β2-agonists can increase the severity of these pathologies and impact the prognosis. Conversely, the role of TRPV1 was pivotal in neuroinflammation, and its modulation could lead to innovative treatment strategies in specific patients. We indicate future perspectives and potential personalized treatments in RDs through a comprehensive analysis of the roles of these receptors in the physiological and pathological mechanisms of these pathologies.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Paolo Ruggeri
- Pulmonology Unit, Department of Biomedical and Dental Sciences, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giovanni Piedimonte
- Office for Research and Departments of Pediatrics, Biochemistry, and Molecular Biology, Tulane University, New Orleans, LA 70112, USA;
| |
Collapse
|
3
|
Gipsman AI, Lapinel NC, Mayer OH. Airway clearance in patients with neuromuscular disease. Paediatr Respir Rev 2023; 47:33-40. [PMID: 36894356 PMCID: PMC10928549 DOI: 10.1016/j.prrv.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Airway clearance is a critical component of both maintenance of respiratory health and management of acute respiratory illnesses. The process of effective airway clearance begins with the recognition of secretions in the airway and culminates in expectoration or swallowing. There are multiple points on this continuum at which neuromuscular disease causes impaired airway clearance. This can result in an otherwise mild upper respiratory illness progressing unabated from an easily managed condition to a severe, life-threatening lower respiratory illness requiring intensive therapy for patient recovery. Even during periods of relative health, airway protective mechanisms can be compromised, and patients may have difficulty managing average quantities of secretions. This review summarizes airway clearance physiology and pathophysiology, mechanical and pharmacologic treatment modalities, and provides a practical approach for managing secretions in patients with neuromuscular disease. Neuromuscular disease is an umbrella term used to describe disorders that involve dysfunction of peripheral nerves, the neuromuscular junction, or skeletal muscle. Although this paper specifically reviews airway clearance pertaining to those with neuromuscular diseases (e.g., muscular dystrophy, spinal muscular atrophy, myasthenia gravis), most of its content is relevant to the management of patients with central nervous system disorders such as chronic static encephalopathy caused by trauma, metabolic or genetic abnormalities, congenital infection, or neonatal hypoxic-ischemic injury.
Collapse
Affiliation(s)
| | | | - Oscar Henry Mayer
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, USA
| |
Collapse
|
4
|
Escher A, Kieninger E, Groof SD, Savas ST, Schneiter M, Tschanz SA, Frenz M, Latzin P, Casaulta C, Müller L. In Vitro Effect of Combined Hypertonic Saline and Salbutamol on Ciliary Beating Frequency and Mucociliary Transport in Human Nasal Epithelial Cells of Healthy Volunteers and Patients with Cystic Fibrosis. J Aerosol Med Pulm Drug Deliv 2023; 36:171-180. [PMID: 37196208 DOI: 10.1089/jamp.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Background: Inhalation of hypertonic saline (HS) is standard of care in patients with cystic fibrosis (CF). However, it is unclear if adding salbutamol has-besides bronchodilation-further benefits, for example, on the mucociliary clearance. We assessed this in vitro by measuring the ciliary beating frequency (CBF) and the mucociliary transport rate (MCT) in nasal epithelial cells (NECs) of healthy volunteers and patients with CF. Aims: To investigate the effect of HS, salbutamol, and its combination on (muco)ciliary activity of NECs in vitro, and to assess potential differences between healthy controls and patients with CF. Methods: NECs obtained from 10 healthy volunteers and 5 patients with CF were differentiated at the air-liquid interface and aerosolized with 0.9% isotonic saline ([IS] control), 6% HS, 0.06% salbutamol, or combined HS and salbutamol. CBF and MCT were monitored over 48-72 hours. Results: In NECs of healthy controls, the absolute CBF increase was comparable for all substances, but CBF dynamics were different: HS increased CBF slowly and its effect lasted for an extended period, salbutamol and IS increased CBF rapidly and the effect subsided similarly fast, and HS and salbutamol resulted in a rapid and long-lasting CBF increase. Results for CF cells were comparable, but less pronounced. Similar to CBF, MCT increased after the application of all the tested substances. Conclusion: CBF and MCT of NECs of healthy participants and CBF of patients with CF increased upon treatment with aerosolized IS, HS, salbutamol, or HS and salbutamol, showing a relevant effect for all tested substances. The difference in the CBF dynamics can be explained by the fact that the properties of the mucus are changed differently by different saline concentrations.
Collapse
Affiliation(s)
- Anaïs Escher
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Susan De Groof
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sibel T Savas
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Martin Schneiter
- Institute of Applied Physics, University of Bern, Bern, Switzerland
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Martin Frenz
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Loretta Müller
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ayoub MMRR, Lethem MI, Lansley AB. The effect of ingredients commonly used in nasal and inhaled solutions on the secretion of mucus in vitro. Int J Pharm 2021; 608:121054. [PMID: 34461170 DOI: 10.1016/j.ijpharm.2021.121054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Hypersecretion of mucus is associated with impaired mucociliary clearance that can influence the retention of active pharmaceutical ingredients in the airway but is also linked with recurrent airway disease. Therefore, the effect on mucin secretion of a range of ingredients used in solutions delivered to the nose and lung was studied. Mucin secretion from explants of ovine epithelium was quantified using an enzyme-linked lectin assay (ELLA) or sandwich ELLA depending on the compatibility of the ingredients with the assay. Benzalkonium chloride (0.015% w/w), Methocel™ E50 premium LV (1.0% w/w), propylene glycol (1.5% w/w), potassium sorbate + propylene glycol (0.3% w/w + 1.5% w/w) and polysorbate 80 (0.025% w/w), used at common working concentrations, all increased the secretion of mucin from the explants (P < 0.05). Ethylenediamine tetraacetic acid-disodium salt (EDTA) (0.015% w/w), Avicel® RC591 (1.5% w/w), fluticasone furoate (0.0004% w/w, concentration in solution) and dimethyl sulfoxide (DMSO) (0.2% w/w) did not affect mucin secretion. Compounds increasing mucin secretion could alter the rate of mucociliary clearance and the mucus could provide a barrier to drug absorption. This could predispose patients to disease and affect the activity of delivered drugs, decreasing or increasing their clinical efficacy.
Collapse
Affiliation(s)
- Marwa M R R Ayoub
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Michael I Lethem
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Alison B Lansley
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
6
|
Koumbourlis AC, Belessis Y, Cataletto M, Cutrera R, DeBoer E, Kazachkov M, Laberge S, Popler J, Porcaro F, Kovesi T. Care recommendations for the respiratory complications of esophageal atresia-tracheoesophageal fistula. Pediatr Pulmonol 2020; 55:2713-2729. [PMID: 32716120 DOI: 10.1002/ppul.24982] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Tracheoesophageal fistula (TEF) with esophageal atresia (EA) is a common congenital anomaly that is associated with significant respiratory morbidity throughout life. The objective of this document is to provide a framework for the diagnosis and management of the respiratory complications that are associated with the condition. As there are no randomized controlled studies on the subject, a group of experts used a modification of the Rand Appropriateness Method to describe the various aspects of the condition in terms of their relative importance, and to rate the available diagnostic methods and therapeutic interventions on the basis of their appropriateness and necessity. Specific recommendations were formulated and reported as Level A, B, and C based on whether they were based on "strong", "moderate" or "weak" agreement. The tracheomalacia that exists in the site of the fistula was considered the main abnormality that predisposes to all other respiratory complications due to airway collapse and impaired clearance of secretions. Aspiration due to impaired airway protection reflexes is the main underlying contributing mechanism. Flexible bronchoscopy is the main diagnostic modality, aided by imaging modalities, especially CT scans of the chest. Noninvasive positive airway pressure support, surgical techniques such as tracheopexy and rarely tracheostomy are required for the management of severe tracheomalacia. Regular long-term follow-up by a multidisciplinary team was considered imperative. Specific templates outlining the elements of the clinical respiratory evaluation according to the patients' age were also developed.
Collapse
Affiliation(s)
- Anastassios C Koumbourlis
- Division of Pulmonary & Sleep Medicine, Children's National Hospital, George Washington University School of Medicine & Health Sciences, Washington, District of Columbia
| | - Yvonne Belessis
- Department of Respiratory Medicine, Sydney Children's Hospital Randwick, Randwick, New South Wales, Australia
| | - Mary Cataletto
- Division of Pediatric Pulmonary Medicine, New York University, Winthrop University Hospital, Mineola, New York
| | - Renato Cutrera
- Academic Department of Pediatrics (DPUO), Pediatric Pulmonology & Respiratory Intermediate Care Unit, Sleep and Long Term Ventilation Unit, Pediatric Hospital "Bambino Gesù" Research Institute, Rome, Italy
| | - Emily DeBoer
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado Denver, Children's Hospital Colorado Breathing Institute, Aurora, Colorado
| | - Mikhail Kazachkov
- Department of Pediatric Pulmonology, Gastroesophageal, Upper Airway and Respiratory Diseases Center, New York University School of Medicine, New York, New York
| | - Sophie Laberge
- Department of Pediatrics, Division of Respiratory Medicine, Sainte-Justine University Hospital Center, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Popler
- Division of Pediatric Pulmonology, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Federica Porcaro
- Department of Pediatrics, Pediatric Pulmonology & Respiratory Intermediate Care Unit, Sleep and Long-Term Ventilation Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Thomas Kovesi
- Pediatrics, Division of Respirology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Esther CR, Muhlebach MS, Ehre C, Hill DB, Wolfgang MC, Kesimer M, Ramsey KA, Markovetz MR, Garbarine IC, Forest MG, Seim I, Zorn B, Morrison CB, Delion MF, Thelin WR, Villalon D, Sabater JR, Turkovic L, Ranganathan S, Stick SM, Boucher RC. Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis. Sci Transl Med 2020; 11:11/486/eaav3488. [PMID: 30944166 DOI: 10.1126/scitranslmed.aav3488] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients. Total mucins and mucus flakes correlated with inflammation, hypoxia, and oxidative stress. Many CF BALFs appeared sterile by culture and molecular analyses, whereas other samples exhibiting bacterial taxa associated with the oral cavity. Children without computed tomography-defined structural lung disease exhibited elevated BALF mucus flakes and neutrophils, but little/no bacterial infection. Although CF mucus flakes appeared "permanent" because they did not dissolve in dilute BALF matrix, they could be solubilized by a previously unidentified reducing agent (P2062), but not N-acetylcysteine or deoxyribonuclease. These findings indicate that early CF lung disease is characterized by an increased mucus burden and inflammatory markers without infection or structural lung disease and suggest that mucolytic and anti-inflammatory agents should be explored as preventive therapy.
Collapse
Affiliation(s)
- Charles R Esther
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S Muhlebach
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camille Ehre
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn A Ramsey
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Telethon Kids Institute, University of Western Australia, Perth 6009, Australia
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian C Garbarine
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Gregory Forest
- Departments of Mathematics, Biomedical Engineering, and Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Seim
- Departments of Mathematics, Biomedical Engineering, and Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryan Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cameron B Morrison
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martial F Delion
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Juan R Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Lidija Turkovic
- Telethon Kids Institute, University of Western Australia, Perth 6009, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, University of Melbourne, Parkville 3052, Australia
| | - Stephen M Stick
- Telethon Kids Institute, University of Western Australia, Perth 6009, Australia.,Division of Paediatrics and Child Health, University of Western Australia, Perth 6009, Australia.,Princess Margaret Hospital for Children, Perth 6009, Australia
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Kim MD, Baumlin N, Yoshida M, Polineni D, Salathe SF, David JK, Peloquin CA, Wanner A, Dennis JS, Sailland J, Whitney P, Horrigan FT, Sabater JR, Abraham WM, Salathe M. Losartan Rescues Inflammation-related Mucociliary Dysfunction in Relevant Models of Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:313-324. [PMID: 31613648 PMCID: PMC6999107 DOI: 10.1164/rccm.201905-0990oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Rationale: Despite therapeutic progress in treating cystic fibrosis (CF) airway disease, airway inflammation with associated mucociliary dysfunction remains largely unaddressed. Inflammation reduces the activity of apically expressed large-conductance Ca2+-activated and voltage-dependent K+ (BK) channels, critical for mucociliary function in the absence of CFTR (CF transmembrane conductance regulator).Objectives: To test losartan as an antiinflammatory therapy in CF using CF human bronchial epithelial cells and an ovine model of CF-like airway disease.Methods: Losartan's antiinflammatory effectiveness to rescue BK activity and thus mucociliary function was tested in vitro using primary, fully redifferentiated human airway epithelial cells homozygous for F508del and in vivo using a previously validated, now expanded pharmacologic sheep model of CF-like, inflammation-associated mucociliary dysfunction.Measurements and Main Results: Nasal scrapings from patients with CF showed that neutrophilic inflammation correlated with reduced expression of LRRC26 (leucine rich repeat containing 26), the γ subunit mandatory for BK function in the airways. TGF-β1 (transforming growth factor β1), downstream of neutrophil elastase, decreased mucociliary parameters in vitro. These were rescued by losartan at concentrations achieved by nebulization in the airway and oral application in the bloodstream: BK dysfunction recovered acutely and over time (the latter via an increase in LRRC26 expression), ciliary beat frequency and airway surface liquid volume improved, and mucus hyperconcentration and cellular inflammation decreased. These effects did not depend on angiotensin receptor blockade. Expanding on a validated and published nongenetic, CF-like sheep model, ewes inhaled CFTRinh172 and neutrophil elastase for 3 days, which resulted in prolonged tracheal mucus velocity reduction, mucus hyperconcentration, and increased TGF-β1. Nebulized losartan rescued both mucus transport and mucus hyperconcentration and reduced TGF-β1.Conclusions: Losartan effectively reversed CF- and inflammation-associated mucociliary dysfunction, independent of its angiotensin receptor blockade.
Collapse
Affiliation(s)
- Michael D. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Nathalie Baumlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Makoto Yoshida
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Deepika Polineni
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sebastian F. Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Joseph K. David
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Charles A. Peloquin
- College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Adam Wanner
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - John S. Dennis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Juliette Sailland
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Philip Whitney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Frank T. Horrigan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas; and
| | | | | | - Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
9
|
Whole body periodic acceleration in normal and reduced mucociliary clearance of conscious sheep. PLoS One 2019; 14:e0224764. [PMID: 31697733 PMCID: PMC6837306 DOI: 10.1371/journal.pone.0224764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
The purpose of this investigation was to ascertain whether nitric oxide (NO) released into the circulation by a noninvasive technology called whole body periodic acceleration (WBPA) could increase mucociliary clearance (MCC). It was based on observations by others that nitric oxide donor drugs increase ciliary beat frequency of nasal epithelium without increasing mucociliary clearance. Tracheal mucous velocity (TMV), a reflection of MCC, was measured in sheep after 1-hour treatment of WBPA and repeated after pretreatment with the NO synthase inhibitor, L-NAME to demonstrated action of NO. Aerosolized human neutrophil elastase (HNE) was administered to sheep to suppress TMV as might occur in cystic fibrosis and other inflammatory lung diseases. WBPA increased TMV to a peak of 136% of baseline 1h after intervention, an effect blocked by L-NAME. HNE reduced TMV to 55% of baseline but slowing was reversed by WBPA, protection lost in the presence of L-NAME. NO released into the circulation from eNOS by WBPA can acutely access airway epithelium for improving MCC slowed in cystic fibrosis and other inflammatory lung diseases as a means of enhancing host defense against pathogens.
Collapse
|
10
|
Chung S, Baumlin N, Dennis JS, Moore R, Salathe SF, Whitney PL, Sabater J, Abraham WM, Kim MD, Salathe M. Electronic Cigarette Vapor with Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors. Am J Respir Crit Care Med 2019; 200:1134-1145. [PMID: 31170808 PMCID: PMC6888648 DOI: 10.1164/rccm.201811-2087oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Electronic cigarette (e-cig) use has been widely adopted under the perception of safety. However, possibly adverse effects of e-cig vapor in never-smokers are not well understood.Objectives: To test the effects of nicotine-containing e-cig vapors on airway mucociliary function in differentiated human bronchial epithelial cells isolated from never-smokers and in the airways of a novel, ovine large animal model.Methods: Mucociliary parameters were measured in human bronchial epithelial cells and in sheep. Systemic nicotine delivery to sheep was quantified using plasma cotinine levels, measured by ELISA.Measurements and Main Results:In vitro, exposure to e-cig vapor reduced airway surface liquid hydration and increased mucus viscosity of human bronchial epithelial cells in a nicotine-dependent manner. Acute nicotine exposure increased intracellular calcium levels, an effect primarily dependent on TRPA1 (transient receptor potential ankyrin 1). TRPA1 inhibition with A967079 restored nicotine-mediated impairment of mucociliary parameters including mucus transport in vitro. Sheep tracheal mucus velocity, an in vivo measure of mucociliary clearance, was also reduced by e-cig vapor. Nebulized e-cig liquid containing nicotine also reduced tracheal mucus velocity in a dose-dependent manner and elevated plasma cotinine levels. Importantly, nebulized A967079 reversed the effects of e-cig liquid on sheep tracheal mucus velocity.Conclusions: Our findings show that inhalation of e-cig vapor causes airway mucociliary dysfunction in vitro and in vivo. Furthermore, they suggest that the main nicotine effect on mucociliary function is mediated by TRPA1 and not nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Samuel Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Nathalie Baumlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - John S. Dennis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Robert Moore
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Sebastian F. Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Phillip L. Whitney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - William M. Abraham
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - Michael D. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| |
Collapse
|
11
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Brewington JJ, Backstrom J, Feldman A, Kramer EL, Moncivaiz JD, Ostmann AJ, Zhu X, Lu LJ, Clancy JP. Chronic β2AR stimulation limits CFTR activation in human airway epithelia. JCI Insight 2018; 3:93029. [PMID: 29467332 DOI: 10.1172/jci.insight.93029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
Traditional pulmonary therapies for cystic fibrosis (CF) target the downstream effects of CF transmembrane conductance regulator (CFTR) dysfunction (the cause of CF). Use of one such therapy, β-adrenergic bronchodilators (such as albuterol), is nearly universal for airway clearance. Conversely, novel modulator therapies restore function to select mutant CFTR proteins, offering a disease-modifying treatment. Recent trials of modulators targeting F508del-CFTR, the most common CFTR mutation, suggest that chronic β-agonist use may undermine clinical modulator benefits. We therefore sought to understand the impact of chronic or excess β-agonist exposure on CFTR activation in human airway epithelium. The present studies demonstrate a greater than 60% reduction in both wild-type and modulator-corrected F508del-CFTR activation following chronic exposure to short- and long-acting β-agonists. This reduction was due to reduced cellular generation of cAMP downstream of the β-2 adrenergic receptor-G protein complex. Our results point towards a posttranscriptional reduction in adenylyl cyclase function as the mechanism of impaired CFTR activation produced by prolonged β-agonist exposure. β-Agonist-induced CFTR dysfunction was sufficient to abrogate VX809/VX770 modulation of F508del-CFTR in vitro. Understanding the clinical relevance of our observations is critical for CF patients using these drugs, and for investigators to inform future CFTR modulator drug trials.
Collapse
Affiliation(s)
| | | | - Amanda Feldman
- Division of Pulmonary Medicine, Department of Pediatrics, and
| | | | | | | | - Xiaoting Zhu
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - L Jason Lu
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John P Clancy
- Division of Pulmonary Medicine, Department of Pediatrics, and
| |
Collapse
|
13
|
Tsai YF, Hwang TL. Neutrophil elastase inhibitors: a patent review and potential applications for inflammatory lung diseases (2010 - 2014). Expert Opin Ther Pat 2015; 25:1145-58. [PMID: 26118988 DOI: 10.1517/13543776.2015.1061998] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The proteolytic activity of neutrophil elastase (NE) not only destroys pathogens but also degrades host matrix tissues by generating a localized protease-antiprotease imbalance. In humans, NE is well known to be involved in various acute and chronic inflammatory diseases, such as chronic obstructive pulmonary disease, emphysema, asthma, acute lung injury, acute respiratory distress syndrome and cystic fibrosis. The regulation of NE activity is thought to represent a promising therapeutic approach, and NE is considered as an important target for the development of novel selective inhibitors to treat these diseases. AREAS COVERED This article summarizes and analyzes patents on NE inhibitors and their therapeutic potential based on a review of patent applications disclosed between 2010 and 2014. EXPERT OPINION According to this review of recent NE inhibitor patents, all of the disclosed inhibitors can be classified into peptide- and non-peptide-based groups. The non-peptide NE inhibitors include heterocyclics, uracil derivatives and deuterium oxide. Among the heterocyclic analogs, derivatives of pyrimidinones, tetrahydropyrrolopyrimidinediones, pyrazinones, benzoxazinones and hypersulfated disaccharides were introduced. The literature has increasingly implicated NE in the pathogenesis of various diseases, of which inflammatory destructive lung diseases remain a major concern. However, only a few agents have been validated for therapeutic use in clinical settings to date.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- a 1 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan.,b 2 Chang Gung Memorial Hospital, Department of Anesthesiology , Kweishan, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- a 1 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan.,c 3 Chang Gung University, Healthy Aging Research Center, Chinese Herbal Medicine Research Team , Taoyuan 33302, Taiwan.,d 4 Chang Gung University of Science and Technology, Department of Cosmetic Science and Research Center for Industry of Human Ecology , Taoyuan 33302, Taiwan.,e 5 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan +88 6 3211 8506 ; +88 6 3211 8506 ;
| |
Collapse
|
14
|
Åstrand ABM, Hemmerling M, Root J, Wingren C, Pesic J, Johansson E, Garland AL, Ghosh A, Tarran R. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol Lung Cell Mol Physiol 2014; 308:L22-32. [PMID: 25361567 DOI: 10.1152/ajplung.00163.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis and chronic bronchitis (CB). Rehydration by hypertonic saline is efficacious but suffers from a short duration of action. We tested whether epithelial sodium channel (ENaC) inhibition would rehydrate normal and dehydrated airways to increase mucociliary clearance (MCC) over a significant time frame. For this, we used a tool compound (Compound A), which displays nanomolar ENaC affinity and retention in the airway surface liquid (ASL). Using normal human bronchial epithelial cultures (HBECs) grown at an air-liquid interface, we evaluated in vitro potency and efficacy using short-circuit current (I(sc)) and ASL height measurements where it inhibited I(sc) and increased ASL height by ∼ 50% (0.052 μM at 6 h), respectively. The in vivo efficacy was investigated in a modified guinea pig tracheal potential difference model, where we observed an effective dose (ED50) of 5 μg/kg (i.t.), and by MCC measures in rats and sheep, where we demonstrated max clearance rates at 100 μg/kg (i.t.) and 75 μg/kg (i.t.), respectively. Acute cigarette smoke-induced ASL height depletion in HBECs was used to mimic the situation in patients with CB, and pretreatment prevented both cigarette smoke-induced ASL dehydration and lessened the decrease in ciliary beat frequency. Furthermore, when added after cigarette smoke exposure, Compound A increased the rate of ASL rehydration. In conclusion, Compound A demonstrated significant effects and a link between increased airway hydration, ciliary function, and MCC. These data support the hypothesis that ENaC inhibition may be efficacious in the restoration of mucus hydration and transport in patients with CB.
Collapse
Affiliation(s)
| | | | - James Root
- AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | | - Alaina L Garland
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Arunava Ghosh
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Fortis S, Kittah J, De Aguirre M, Plataki M, Wolff A, Amoateng-Adjepong Y, Manthous CA. Perseverant, non-indicated treatment of obese patients for obstructive lung disease. BMC Pulm Med 2013; 13:68. [PMID: 24266961 PMCID: PMC4222837 DOI: 10.1186/1471-2466-13-68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/05/2013] [Indexed: 11/25/2022] Open
Abstract
Background Bronchodilators are a mainstay of treatment for patients with airflow obstruction. We hypothesized that patients with obesity and no objective documentation of airflow obstruction are inappropriately treated with bronchodilators. Methods Spirometric results and medical records of all patients with body mass index >30 kg/m2 who were referred for testing between March 2010 and August 2011 were analyzed. Results 155 patients with mean age of 52.6 ± (SE)1.1 y and BMI of 38.7 ± 0.7 kg/m2 were studied. Spirometry showed normal respiratory mechanics in 62 (40%), irreversible airflow obstruction in 36 (23.2%), flows suggestive of restriction in 35 (22.6%), reversible obstruction, suggestive of asthma in 11 (7.1%), and mixed pattern (obstructive and restrictive) in 6 (3.9%). Prior to testing, 45.2% (28 of 62) of patients with normal spirometry were being treated with medications for obstructive lung diseases and 33.9% (21 of 62) continued them despite absence of airflow obstruction on spirometry. 60% (21 of 35) of patients with a restrictive pattern in their spirometry received treatment for obstruction prior to spirometry and 51.4% (18 of 35) continued bronchodilator therapy after spirometric testing. There was no independent association of non-indicated treatment with spirometric results, age, BMI, co-morbidities or smoking history. All patients with airflow obstruction on testing who were receiving bronchodilators before spirometry continued to receive them after testing. Conclusion A substantial proportion of patients with obesity referred for pulmonary function testing did not have obstructive lung disease, but were treated nonetheless, before and after spirometry demonstrating absence of airway obstruction.
Collapse
Affiliation(s)
- Spyridon Fortis
- Department of Medicine, Bridgeport Hospital and Yale School of Medicine, New Britain, CT 06050, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Esther CR, Boucher RC, Johnson MR, Ansede JH, Donn KH, O'Riordan TG, Ghio AJ, Hirsh AJ. Airway drug pharmacokinetics via analysis of exhaled breath condensate. Pulm Pharmacol Ther 2013; 27:76-82. [PMID: 23932897 DOI: 10.1016/j.pupt.2013.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/13/2013] [Accepted: 07/29/2013] [Indexed: 11/16/2022]
Abstract
Although the airway surface is the anatomic target for many lung disease therapies, measuring drug concentrations and activities on these surfaces poses considerable challenges. We tested whether mass spectrometric analysis of exhaled breath condensate (EBC) could be utilized to non-invasively measure airway drug pharmacokinetics and predicted pharmacological activities. Mass spectrometric methods were developed to detect a novel epithelial sodium channel blocker (GS-9411/P-680), two metabolites, a chemically related internal standard, plus naturally occurring solutes including urea as a dilution marker. These methods were then applied to EBC and serum collected from four (Floridian) sheep before, during and after inhalation of nebulized GS-9411/P-680. Electrolyte content of EBC and serum was also assessed as a potential pharmacodynamic marker of drug activity. Airway surface concentrations of drug, metabolites, and electrolytes were calculated from EBC measures using EBC:serum urea based dilution factors. GS-9411/P-680 and its metabolites were quantifiable in the sheep EBC, with peak airway concentrations between 1.9 and 3.4 μM measured 1 h after inhalation. In serum, only Metabolite #1 was quantifiable, with peak concentrations ∼60-fold lower than those in the airway (45 nM at 1 h). EBC electrolyte concentrations suggested a pharmacological effect; but this effect was not statistical significant. Analysis of EBC collected during an inhalation drug study provided a method for quantification of airway drug and metabolites via mass spectrometry. Application of this methodology could provide an important tool in development and testing of drugs for airways diseases.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Richard C Boucher
- Cystic Fibrosis/Pulmonary Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | - Andrew J Ghio
- Environmental Protection Agency, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
17
|
Tarran R, Sabater JR, Clarke TC, Tan CD, Davies CM, Liu J, Yeung A, Garland AL, Stutts MJ, Abraham WM, Phillips G, Baker WR, Wright CD, Wilbert S. Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion. Am J Physiol Lung Cell Mol Physiol 2013; 304:L746-56. [PMID: 23542952 DOI: 10.1152/ajplung.00292.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucus clearance is an important component of the lung's innate defense system. A failure of this system brought on by mucus dehydration is common to both cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Mucus clearance rates are regulated by the volume of airway surface liquid (ASL) and by ciliary beat frequency (CBF). Chronic treatment with macrolide antibiotics is known to be beneficial to both CF and COPD patients. However, chronic macrolide usage may induce bacterial resistance. We have developed a novel macrolide, 2'-desoxy-9-(S)-erythromycylamine (GS-459755), that has significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and Haemophilus influenzae. Since neutrophilia frequently occurs in chronic lung disease and human neutrophil elastase (HNE) induces mucus stasis by activating the epithelial sodium channel (ENaC), we tested the ability of GS-459755 to protect against HNE-induced mucus stasis. GS-459755 had no effect on HNE activity. However, GS-459755 pretreatment protected against HNE-induced ASL volume depletion in human bronchial epithelial cells (HBECs). The effect of GS-459755 on ASL volume was dose dependent (IC₅₀ ~3.9 μM) and comparable to the antibacterial macrolide azithromycin (IC₅₀ ~2.4 μM). Macrolides had no significant effect on CBF or on transepithelial water permeability. However, the amiloride-sensitive transepithelial voltage, a marker of ENaC activity, was diminished by macrolide pretreatment. We conclude that GS-459755 may limit HNE-induced activation of ENaC and may be useful for the treatment of mucus dehydration in CF and COPD without inducing bacterial resistance.
Collapse
Affiliation(s)
- Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Salbutamol improves markers of epithelial function in mice with chronic allergic pulmonary inflammation. Respir Physiol Neurobiol 2011; 177:155-61. [PMID: 21443970 DOI: 10.1016/j.resp.2011.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022]
Abstract
We investigated the effects of salbutamol on the markers of epithelial function in a murine model of chronic allergic pulmonary inflammation by recording the ciliary beat frequency (CBF) and the transepithelial potential difference (PD) in vivo. Mice were sensitized and received four challenges of ovalbumin (OVA group) or 0.9% saline (control group). Forty-eight hours after the 4th inhalation, we observed eosinophilia in the bronchoalveolar lavage and epithelium remodeling with stored acid mucus in the OVA group (P < 0.001). No difference in the baseline CBF was noticed between the groups; however, the OVA group had a significantly lower baseline PD (P = 0.013). Salbutamol increased the CBF in all groups studied, and the dose response curve to salbutamol increased the PD in the OVA group from 10(-4)M to 10(-2)M. We suggest that salbutamol affects the CBF and the depth of the periciliary layer, which, in great part, determines the ability of the cilia to propel the mucus layer. This effect may have a positive impact on airway mucociliary transport in asthma and may have clinical implications.
Collapse
|
19
|
Airway disease: the use of large animal models for drug discovery. Pulm Pharmacol Ther 2011; 24:525-32. [PMID: 21356324 DOI: 10.1016/j.pupt.2011.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/08/2011] [Accepted: 02/21/2011] [Indexed: 11/24/2022]
Abstract
Large animal models have contributed to our current understanding of respiratory pathophysiology and the effects of pulmonary disease modifying drugs. For drug development, the benefit of using large animals over smaller animal species is primarily due to the greater similarity between humans and equivalent sized animals in terms of gross anatomy, morphometry, structure and physiology of their respiratory systems. Thus, when appropriate lung structure and function are required for correctly assessing the efficacy of novel drugs, large animals can play an important role in the development of these drugs to combat respiratory disease. The most widely used and best characterised large animal for drug development has been the sheep model of asthma. Recently, large animal models for chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) have been reported but thus far have not been used extensively for drug development. Some important limitations of using large animals are the large costs associated with this type of research, as well as the poorer understanding of disease mechanisms in these species relative to rodents. In this review we discuss the extent of correlations between preclinical testing performed in large animal models and the initial indication of clinical efficacy in ongoing clinical trials.
Collapse
|
20
|
Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch 2010; 460:1-17. [PMID: 20401730 DOI: 10.1007/s00424-010-0827-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na(+) channel (ENaC) is the rate-limiting step that governs Na(+) absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na(+), and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP(2). In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease.
Collapse
|
21
|
Abstract
Sheep naturally allergic to Ascaris suum antigen have been used to study the pathophysiology of asthma and more recently allergic rhinitis, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. The utility of the model as it relates to the study of these diseases is discussed.
Collapse
Affiliation(s)
- William M Abraham
- Department of Research, Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, FL 33140, USA.
| |
Collapse
|
22
|
Scuri M, Sabater JR, Abraham WM. Hyaluronan blocks porcine pancreatic elastase-induced mucociliary dysfunction in allergic sheep. J Appl Physiol (1985) 2007; 102:2324-31. [PMID: 17395761 DOI: 10.1152/japplphysiol.00568.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neutrophil elastase is a mediator common to asthma, chronic obstructive pulmonary disease, and cystic fibrosis and thought to contribute to the pathophysiology of these diseases. Previously, we found that inhaled hyaluronan blocked elastase-induced bronchoconstriction in allergic sheep through its control of tissue kallikrein. Here, we extend those studies by determining if inhaled hyaluronan can protect against the elastase-induced depression in tracheal mucus velocity, a surrogate marker of whole lung mucociliary clearance. We measured tracheal mucus velocity in allergic sheep before, and sequentially for 6 h after, aerosol challenge with porcine pancreatic elastase alone and after pretreatment with 1.5 or 6 mg aerosolized hyaluronan. Elastase (2.55 U) decreased tracheal mucus velocity. Pretreatment with 6 mg, but not 1.5 mg, hyaluronan inhibited the elastase-induced decrease in tracheal mucus velocity. Hyaluronan (6 mg) given 1 h after elastase challenge was ineffective, suggesting the involvement of secondary mediators. The elastase-induced depression in mucus transport appeared to be mediated, in part, by reactive oxygen species and bradykinin because pretreatment with either aerosolized catalase (38 mg/3 ml) or the bradykinin B2-receptor antagonist HOE140 (400 nM/kg) was also effective in blocking the response. These latter two findings are consistent with oxygen radical-induced degradation of hyaluronan with concomitant loss of its regulatory effect on tissue kallikrein, resulting in kinin generation. This hypothesis is supported by the demonstration that hyaluronan failed to block the oxygen radical-induced fall in tracheal mucus velocity resulting from xanthine-xanthine oxidase challenge and that inhaled bradykinin itself can slow mucociliary transport.
Collapse
Affiliation(s)
- Mario Scuri
- Division of Pulmonary and Critical Care Medicine, Miller School of Medicine, University of Miami at Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | | | | |
Collapse
|