1
|
Zhu L, Zheng Q, Liu X, Ding H, Ma M, Bao J, Cai Y, Cao C. HMGB1 lactylation drives neutrophil extracellular trap formation in lactate-induced acute kidney injury. Front Immunol 2025; 15:1475543. [PMID: 39850900 PMCID: PMC11754054 DOI: 10.3389/fimmu.2024.1475543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Rationale Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms. Methods For human, the measurement of lactate in arterial blood gas is performed using the direct determination of L-lactate through an electrode oxidation method by a blood gas analyzer. For mice, enzyme-linked immunosorbent assay (ELISA) kits were employed to quantify the concentrations of lactate and AKI biomarkers in blood and cell supernatant. The mouse model of AKI was performed with a single intraperitoneal (i.p.) administration of lactate (30 mg/kg) and low-dose LPS (2 mg/kg) for 24 h. Proteomic analysis was conducted to identify lactylated proteins in kidney tissues. Techniques such as, immunoprecipitation, western blotting and immunofluorescence were used to evaluate the levels of HMGB1 lactylation, neutrophil extracellular traps (NETs)and to assess related molecular signaling pathways. Main results Our findings indicate that lactate serves as an independent predictor of AKI in patients with acute decompensated heart failure (ADHF). We observed that co-administration of lactate with low-dose lipopolysaccharide (LPS) resulted in lactate overproduction, which subsequently elevated serum levels of creatinine (Cre) and blood urea nitrogen (BUN). Furthermore, the combined application of lactate and low-dose LPS was shown to provoke HMGB1 lactylation within renal tissues. Notably, pretreatment with HMGB1 small interfering RNA (siRNA) effectively diminished lactate-mediated HMGB1 lactylation and alleviated the severity of AKI. Additionally, lactate accumulation was found to enhance the expression levels of NETs in the bloodstream, with circulating NETs levels positively correlating with HMGB1 lactylation. Importantly, pre-administration of HMGB1 inhibitors (glycyrrhizin) or lactate dehydrogenase A (LDH-A) inhibitors (oxamate) reversed the upregulation of NETs induced by lactate and low-dose LPS in both the blood and polymorphonuclear neutrophils (PMNs) cell supernatant, thereby ameliorating AKI associated with lactate accumulation. Conclusions These findings illuminate the role of lactate-mediated HMGB1 lactylation in inducing AKI in mice through the activation of the HMGB1-NETs signaling pathway.
Collapse
Affiliation(s)
- Li Zhu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nephrology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Zheng
- Department of Nephrology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaodong Liu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Second People’s Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxin Bao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yawen Cai
- Department of Nephrology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Sohail A, Chaudhary AJ, Bhinder MM, Zahid K, Brown K. Readmission Rate, Predictors, Outcomes, and Burden of Readmission of Hepatorenal Syndrome in the United States: A Nationwide Analysis. JGH Open 2024; 8:e70062. [PMID: 39600414 PMCID: PMC11588588 DOI: 10.1002/jgh3.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Background Nationwide US data on readmission rates for patients with cirrhosis admitted with hepatorenal syndrome (HRS) is lacking. We reviewed 30-day readmission rates after HRS-related hospitalizations, the associated predictors of readmissions, and their impact on resource utilization and mortality in the United States. Methods We identified all adults admitted with HRS between 2016 and 2019 using the Nationwide Readmission database of the Agency for Healthcare Research and Quality's Healthcare Cost and Utilization Project. The primary outcome was all-cause 30-day readmission rate. Secondary outcomes were inpatient mortality rate, predictors of readmission, and resource utilization. Results We identified 245 850 hospitalizations of patients admitted for HRS in the United States from 2016 to 2019. Of these, 214 890 met the inclusion criteria. Mean age was 59.16 years, and 61.31% were males. Medicare was the most common primary payer (44.82%) followed by Medicaid (25.58%). The readmission rate was 24.6% within 30 days of discharge from index hospitalization. The most common cause of readmission was alcoholic cirrhosis with ascites (14.87%), followed by sepsis (9.32%) and unspecified hepatic failure (9%). The in-hospital mortality rate for index hospitalization was 29.52% and 14.35% among those readmitted within 30 days. The mean length of stay (12.33 days vs. 7.15 days, p < 0.01) and hospitalization costs ($44 903 vs. $22 353, p < 0.01) were higher for index hospitalizations than readmissions. Conclusions Our study demonstrated that all-cause 30-day readmission and in-hospital mortality rates after the development of HRS were strikingly high. This warrants health policies and interventions at the institutional level, including close post-hospital discharge follow-up, to decrease readmission rates, improve patient outcomes, and reduce cost burden.
Collapse
Affiliation(s)
- Abdullah Sohail
- Department of Internal MedicineUniversity of Iowa Hospitals and ClinicsIowa CityIowaUSA
| | | | | | | | - Kyle Brown
- Department of Internal Medicine, Gastroenterology and HepatologyUniversity of Iowa Hospitals and ClinicsIowa CityIowaUSA
| |
Collapse
|
3
|
Zheng S, Xue C, Li S, Zao X, Li X, Liu Q, Cao X, Wang W, Qi W, Du H, Zhang P, Ye Y. Liver cirrhosis: current status and treatment options using western or traditional Chinese medicine. Front Pharmacol 2024; 15:1381476. [PMID: 39081955 PMCID: PMC11286405 DOI: 10.3389/fphar.2024.1381476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Liver cirrhosis arises from liver fibrosis and necroinflammation caused by various mechanisms of hepatic injury. It is a prevalent condition in clinical practice characterized by hepatocellular dysfunction, portal hypertension, and associated complications. Despite its common occurrence, the etiology and pathogenesis of liver cirrhosis remain incompletely understood, posing a significant health threat. Effective prevention of its onset and progression is paramount in medical research. Symptoms often include discomfort in the liver area, while complications such as sarcopenia, hepatic encephalopathy, ascites, upper gastrointestinal bleeding, and infection can arise. While the efficacy of Western medicine in treating liver cirrhosis is uncertain, Chinese medicine offers distinct advantages. This review explores advancements in liver cirrhosis treatment encompassing non-pharmacological and pharmacological modalities. Chinese medicine interventions, including Chinese medicine decoctions, Chinese patent medicines, and acupuncture, exhibit notable efficacy in cirrhosis reversal and offer improved prognoses. Nowadays, the combination of Chinese and Western medicine in the treatment of liver cirrhosis also has considerable advantages, which is worthy of further research and clinical promotion. Standardized treatment protocols based on these findings hold significant clinical implications.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Zhao W, Nikolic-Paterson DJ, Li K, Li Y, Wang Y, Chen X, Duan Z, Zhang Y, Liu P, Lu S, Fu R, Tian L. Selenium binding protein 1 protects renal tubular epithelial cells from ferroptosis by upregulating glutathione peroxidase 4. Chem Biol Interact 2024; 393:110944. [PMID: 38518851 DOI: 10.1016/j.cbi.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Ferroptosis is a form of programmed cell death involved in various types of acute kidney injury (AKI). It is characterized by inactivation of the selenoprotein, glutathione peroxidase 4 (GPX4), and upregulation of acyl-CoA synthetase long-chain family member 4 (ACSL4). Since urinary selenium binding protein 1 (SBP1/SELENBP1) is a potential biomarker for AKI, this study investigated whether SBP1 plays a role in AKI. First, we showed that SBP1 is expressed in proximal tubular cells in normal human kidney, but is significant downregulated in cases of AKI in association with reduced GPX4 expression and increased ACSL4 expression. In mouse renal ischemia-reperfusion injury (I/R), the rapid downregulation of SBP1 protein levels preceded downregulation of GPX4 and the onset of necrosis. In vitro, hypoxia/reoxygenation (H/R) stimulation in human proximal tubular epithelial (HK-2) cells induced ferroptotic cell death in associated with an acute reduction in SBP1 and GPX4 expression, and increased oxidative stress. Knockdown of SBP1 reduced GPX4 expression and increased the susceptibility of HK-2 cells to H/R-induced cell death, whereas overexpression of SBP1 reduced oxidative stress, maintained GPX4 expression, reduced mitochondrial damage, and reduced H/R-induced cell death. Finally, selenium deficiency reduced GPX4 expression and promoted H/R-induced cell death, whereas addition of selenium was protective against H/R-induced oxidative stress. In conclusion, SBP1 plays a functional role in hypoxia-induced tubular cell death. Enhancing SBP1 expression is a potential therapeutic approach for the treatment of AKI.
Collapse
Affiliation(s)
- Weihao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Ke Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinhong Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xianghui Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaoyang Duan
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Xi'an, Shaanxi, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine (IMTM), Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lifang Tian
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Mou L, Yang L, Hou S, Wang B, Wang X, Hu L, Deng J, Liu J, Chen X, Jiang Y, Zhang W, Lei P, Wang L, Li R, Fu P, Li GB, Ma L, Yang L. Structure-Activity Relationship Studies of 2,4,5-Trisubstituted Pyrimidine Derivatives Leading to the Identification of a Novel and Potent Sirtuin 5 Inhibitor against Sepsis-Associated Acute Kidney Injury. J Med Chem 2023; 66:11517-11535. [PMID: 37556731 DOI: 10.1021/acs.jmedchem.3c01031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Sepsis-associated acute kidney injury (AKI) is a serious clinical problem without effective drugs. Inhibition of sirtuin 5 (SIRT5) has been confirmed to protect against AKI, suggesting that SIRT5 inhibitors might be a promising therapeutic approach for AKI. Herein, structural optimization was performed on our previous compound 1 (IC50 = 3.0 μM), and a series of 2,4,5-trisubstituted pyrimidine derivatives have been synthesized. The structure-activity relationship (SAR) analysis led to the discovery of three nanomolar level SIRT5 inhibitors, of which the most potent compound 58 (IC50 = 310 nM) was demonstrated to be a substrate-competitive and selective inhibitor. Importantly, 58 significantly alleviated kidney dysfunction and pathological injury in both lipopolysaccharide (LPS)- and cecal ligation/perforation (CLP)-induced septic AKI mice. Further studies revealed that 58 regulated protein succinylation and the release of proinflammatory cytokines in the kidneys of septic AKI mice. Collectively, these results highlighted that targeting SIRT5 has a therapeutic potential against septic AKI.
Collapse
Affiliation(s)
- Luohe Mou
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lina Yang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shuyan Hou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Wang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xinyue Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Hu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jianlin Deng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiayu Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yingying Jiang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Weifeng Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Pengcheng Lei
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lijiao Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Rong Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
6
|
Hepatorenal syndrome: pathophysiology and evidence-based management update. ROMANIAN JOURNAL OF INTERNAL MEDICINE 2021; 59:227-261. [DOI: 10.2478/rjim-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hepatorenal syndrome (HRS) is a functional renal failure that develops in patients with advanced hepatic cirrhosis with ascites and in those with fulminant hepatic failure. The prevalence of HRS varies among studies but in general it is the third most common cause of acute kidney injury (AKI) in cirrhotic patients after pre-renal azotemia and acute tubular necrosis. HRS carries a grim prognosis with a mortality rate approaching 90% three months after disease diagnosis. Fortunately, different strategies have been proven to be successful in preventing HRS. Although treatment options are available, they are not universally effective in restoring renal function but they might prolong survival long enough for liver transplantation, which is the ultimate treatment. Much has been learned in the last two decades regarding the pathophysiology and management of this disease which lead to notable evolution in the HRS definition and better understanding on how best to manage HRS patients. In the current review, we will summarize the recent advancement in epidemiology, pathophysiology, and management of HRS.
Collapse
|
7
|
Smarz-Widelska I, Grywalska E, Morawska I, Forma A, Michalski A, Mertowski S, Hrynkiewicz R, Niedźwiedzka-Rystwej P, Korona-Glowniak I, Parczewski M, Załuska W. Pathophysiology and Clinical Manifestations of COVID-19-Related Acute Kidney Injury-The Current State of Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:7082. [PMID: 34209289 PMCID: PMC8268979 DOI: 10.3390/ijms22137082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
The continually evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in a vast number of either acute or chronic medical impairments of a pathophysiology that is not yet fully understood. SARS-CoV-2 tropism for the organs is associated with bilateral organ cross-talks as well as targeted dysfunctions, among which acute kidney injury (AKI) seems to be highly prevalent in infected patients. The need for efficient management of COVID-related AKI patients is an aspect that is still being investigated by nephrologists; however, another reason for concern is a disturbingly high proportion of various types of kidney dysfunctions in patients who have recovered from COVID-19. Even though the clinical picture of AKI and COVID-related AKI seems to be quite similar, it must be considered that regarding the latter, little is known about both the optimal management and long-term consequences. These discrepancies raise an urgent need for further research aimed at evaluating the molecular mechanisms associated with SARS-CoV-2-induced kidney damage as well as standardized management of COVID-related AKI patients. The following review presents a comprehensive and most-recent insight into the pathophysiology, clinical manifestations, recommended patient management, treatment strategies, and post-mortem findings in patients with COVID-related AKI.
Collapse
Affiliation(s)
- Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, 20-718 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (S.M.)
| | - Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (S.M.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Adam Michalski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (S.M.)
| | - Sebastian Mertowski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (S.M.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland;
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 20-954 Lublin, Poland;
| |
Collapse
|
8
|
Mottelson MN, Lundsgaard CC, Møller S. Mechanisms in fluid retention - towards a mutual concept. Clin Physiol Funct Imaging 2019; 40:67-75. [PMID: 31823451 DOI: 10.1111/cpf.12615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Fluid retention is a common and challenging condition in daily clinical practice. The normal fluid homoeostasis in the human body is based on accurately counter-balanced physiological mechanisms. When compromised fluid retention occurs and is seen in pathophysiologically different conditions such as liver cirrhosis, heart and kidney failure, and in preeclampsia. These conditions may share pathophysiological mechanisms such as functional arterial underfilling, which seems to be a mutual element in cirrhosis, cardiac failure, cardiorenal and hepatorenal syndromes, and in pregnancy. However, there are also distinct differences and it is still unclear whether kidney dysfunction or arterial underfilling is the initiating factor of fluid retention or if they happen simultaneously. This review focuses on similarities and differences in water retaining conditions and points to areas where important knowledge is still needed.
Collapse
Affiliation(s)
- Mathis N Mottelson
- Department of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Internal Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Christoffer C Lundsgaard
- Department of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
9
|
Abstract
Acute kidney injury (AKI) is defined by a rapid increase in serum creatinine, decrease in urine output, or both. AKI occurs in approximately 10-15% of patients admitted to hospital, while its incidence in intensive care has been reported in more than 50% of patients. Kidney dysfunction or damage can occur over a longer period or follow AKI in a continuum with acute and chronic kidney disease. Biomarkers of kidney injury or stress are new tools for risk assessment and could possibly guide therapy. AKI is not a single disease but rather a loose collection of syndromes as diverse as sepsis, cardiorenal syndrome, and urinary tract obstruction. The approach to a patient with AKI depends on the clinical context and can also vary by resource availability. Although the effectiveness of several widely applied treatments is still controversial, evidence for several interventions, especially when used together, has increased over the past decade.
Collapse
Affiliation(s)
- Claudio Ronco
- Department of Medicine, University of Padova, Padova, Italy; International Renal Research Institute of Vicenza, Vicenza, Italy; Department of Nephrology, San Bortolo Hospital, Vicenza, Italy.
| | - Rinaldo Bellomo
- Critical Care Department, Austin Hospital, Melbourne, VIC, Australia
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J 2019; 17:10. [PMID: 31160889 PMCID: PMC6542012 DOI: 10.1186/s12959-019-0198-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
In addition to protective “immune response”, sepsis is characterized by destructive “endothelial response” of the host, leading to endotheliopathy and its molecular dysfunction. Complement activation generates membrane attack complex (MAC). MAC causes channel formation to the cell membrane of pathogen, leading to death of microorganisms. In the host, MAC also may induce channel formation to innocent bystander endothelial cells (ECs) and ECs cannot be protected. This provokes endotheliopathy, which activates two independent molecular pathways: inflammatory and microthrombotic. Activated inflammatory pathway promotes the release of inflammatory cytokines and triggers inflammation. Activated microthrombotic pathway mediates platelet activation and exocytosis of unusually large von Willebrand factor multimers (ULVWF) from ECs and initiates microthrombogenesis. Excessively released ULVWF become anchored to ECs as long elongated strings and recruit activated platelets to assemble platelet-ULVWF complexes and form “microthrombi”. These microthrombi strings trigger disseminated intravascular microthrombosis (DIT), which is the underlying pathology of endotheliopathy-associated vascular microthrombotic disease (EA-VMTD). Sepsis-induced endotheliopathy promotes inflammation and DIT. Inflammation produces inflammatory response and DIT orchestrates consumptive thrombocytopenia, microangiopathic hemolytic anemia, and multiorgan dysfunction syndrome (MODS). Systemic inflammatory response syndrome (SIRS) is a combined phenotype of inflammation and endotheliopathy-associated (EA)-VMTD. Successful therapeutic design for sepsis can be achieved by counteracting the pathologic microthrombogenesis.
Collapse
Affiliation(s)
- Jae C Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| |
Collapse
|
11
|
Zarbock A, Koyner JL, Hoste EAJ, Kellum JA. Update on Perioperative Acute Kidney Injury. Anesth Analg 2018; 127:1236-1245. [DOI: 10.1213/ane.0000000000003741] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Abstract
The development of acute kidney injury in the setting of liver disease is a significant event both before and after liver transplant. Whether acute kidney injury is the cause of or merely associated with worse outcomes, the development of renal failure is significant from a prognostic as well as from a diagnostic and therapeutic standpoint. Although not every etiology is reversible, there are number of etiologies that are correctable, to include hypovolemia, nephrotoxic medications, and acute tubular necrosis. In the post-liver transplant period, renal failure is associated with graft failure as well as worse outcomes overall. Prompt recognition, workup, and intervention can significantly impact outcomes and survival both before and after liver transplant.
Collapse
Affiliation(s)
| | - Ali Al-Khafaji
- 2 Department of Critical Care Medicine, The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Lei L, Li LP, Zeng Z, Mu JX, Yang X, Zhou C, Wang ZL, Zhang H. Value of urinary KIM-1 and NGAL combined with serum Cys C for predicting acute kidney injury secondary to decompensated cirrhosis. Sci Rep 2018; 8:7962. [PMID: 29784944 PMCID: PMC5962573 DOI: 10.1038/s41598-018-26226-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/03/2018] [Indexed: 02/05/2023] Open
Abstract
Urinary kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and serum cystatin C (Cys C) are biomarkers of acute kidney injury (AKI). However, the efficacy of combining these indices to diagnose decompensated cirrhosis is unknown. This study involved 150 patients divided into AKI and non-AKI, and healthy individuals. Urinary KIM-1 and NGAL, serum Cys and creatine, and glomerular filtration rate (GFR) were compared based on Child-Pugh liver function class. Urinary KIM-1 and NGAL concentrations and serum Cys C levels were significantly higher in patients with AKI secondary to decompensated cirrhosis than in those with AKI not secondary to decompensated cirrhosis (p < 0.01). These were significantly associated with higher kidney injury index stages (p < 0.01) and negatively correlated with GFR in secondary AKI patients. Urinary KIM-1 and NGAL and serum Cys C increased significantly and GFR decreased as Child-Pugh class of decompensated cirrhosis significantly increased (p < 0.05). SCr levels were significantly increased in Child-Pugh class C patients (p < 0.05). Urinary KIM-1, urinary NGAL, serum Cys C, and the combined detection factor, as screening indices, could aid in the early diagnosis of AKI secondary to decompensated cirrhosis.
Collapse
Affiliation(s)
- Lei Lei
- Department of Gastroenterology and Hepatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Ping Li
- Department of Gastroenterology and Hepatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Xi Mu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- Department of Gastroenterology and Hepatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Chao Zhou
- Department of Gastroenterology and Hepatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhi Lan Wang
- Department of Gastroenterology and Hepatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Abstract
Recent developments in our understanding of the pathogenesis of kidney disease in the setting of liver failure have highlighted that kidney injury, rather than occurring in isolation, is a marker of systemic disease and poor prognosis. The differential diagnosis of kidney disease associated with liver failure is broader than formerly described and new biopsy data, along with better acute kidney injury classification tools, have increased appreciation for distinct pathophysiological mechanisms. Evidence suggests that acute kidney injury contributes to worsening hepatic failure by directly injuring hepatic cells and by imposing restrictions on therapeutic strategies for portal hypertension. Furthermore, kidney injury limits the use of various therapeutic agents and increases their toxicity due to altered pharmacodynamics. A greater appreciation of CKD in this population is also overdue because management decisions are affected and increased vigilance may avoid further kidney injury. A multidisciplinary approach to kidney injury in the setting of liver failure will enable targeted therapeutic strategies that are safe and effective and serve to guide further research, while limiting clinical potential for harm. Finally, new hepatitis C antiviral therapies promise to change the landscape of liver failure, and a discussion of kidney risk factors and antiviral therapy of patients with kidney disease and hepatitis C is worthwhile.
Collapse
|
15
|
|
16
|
Liberation From Renal Replacement Therapy After Cadaveric Liver Transplantation. Transplant Direct 2016; 2:e110. [PMID: 27826603 PMCID: PMC5096437 DOI: 10.1097/txd.0000000000000622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/21/2016] [Indexed: 11/26/2022] Open
Abstract
Background Renal failure requiring renal replacement therapy (RRT) is common in patients with end-stage liver disease (ESLD) and is associated with worse outcomes following liver transplantation (LT). We investigated the factors associated with liberation from posttransplant RRT and studied the impact of RRT on patient and graft outcomes. Methods A 5-year retrospective study of ESLD patients who received pretransplant RRT was conducted. Variables associated with liberation from RRT at 30 days and at 1-year posttransplant were analyzed. We used propensity matching to compare patient and graft outcomes in the study cohort to those of a control group who underwent LT but not pretransplant RRT. Results Sixty-four patients were included in the study. Twenty-four (38%) were liberated from RRT at 30 days posttransplant. Duration of pretransplant RRT (odds ratio [OR], 0.94; 95% confidence interval [CI], 0.89-0.98) and severe postreperfusion syndrome (OR, 0.26; 95% CI, 0.08-0.87) were significantly associated with continued RRT at 1-month posttransplant. At one year, 34 (53%) patients were liberated from RRT. Age was significantly associated with lack of liberation from RRT (OR, 0.933; 95% CI, 0.875-0.995). Compared with propensity matched controls, patients who received RRT pretransplant had worse graft and patient survival at 1 year (52% vs 82%; P = 0.01, and 53% vs 83%; P = 0.003, respectively). Conclusions In ESLD patients who received pretransplant RRT, one third were liberated from RRT at 1 month, and half at 1 year. Longer duration of pretransplant RRT, postreperfusion syndrome, and older age were associated with lower likelihood of liberation from RRT. Patients who required pretransplant RRT had worse graft and patient survivals compared to matched patients who did not require RRT. Patients who were liberated from RRT post-LT had similar outcomes to patients who never required pre-LT RRT.
Collapse
|
17
|
Huang PM, Kuo SW, Chen JS, Lee JM. Thoracoscopic Mesh Repair of Diaphragmatic Defects in Hepatic Hydrothorax: A 10-Year Experience. Ann Thorac Surg 2016; 101:1921-7. [PMID: 26897323 DOI: 10.1016/j.athoracsur.2015.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/05/2015] [Accepted: 11/09/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND The objective was to analyze the outcomes of thoracoscopic mesh repair for hepatic hydrothorax (HH) at our institution during the past 10 years. METHODS A total of 63 patients with refractory HH who underwent thoracoscopic mesh onlay reinforcement to repair diaphragmatic defects from January 2005 to December 2014 were included in the study. Mesh covering alone was used in 47 patients and mesh with suturing was used in 16 patients. Patient demographics, Child-Pugh class, and model for end-stage liver disease (MELD) score were evaluated to predict morbidity and mortality. RESULTS Of the patients (mean age, 60.4 ± 15 years; 31 men and 32 women), 14.3% had concomitant underlying diseases of renal insufficiency, 34.9% had diabetes mellitus, and 4.8% had pneumonia. Diaphragmatic blebs were the most common diaphragmatic defects (29 of 63 [46%]). After a median 20.5 months of follow-up examinations, 4 patients experienced recurrence. The 1-month mortality rate was 9.5% (6 of 63 patients). On multivariable analysis, underlying impaired renal function (p = 0.039) and MELD scores (p = 0.048) were associated with increased 3-month mortality in 16 patients. Contrary to the rising Child-Pugh score (p = 0.058), rising MELD scores represented an increase in kidney or liver failure and mortality. The main causes of 3-month mortality were septic shock (n = 6), acute renal insufficiency (n = 4), gastrointestinal bleeding (n = 4), hepatic encephalopathy (n = 1), and ischemic bowel (n = 1). CONCLUSIONS Thoracoscopic mesh repair for refractory HH improves symptoms and lowers the recurrence rate.
Collapse
Affiliation(s)
- Pei-Ming Huang
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Shuenn-Wen Kuo
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Shing Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jang-Ming Lee
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|