1
|
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, Zhang C, Guo HY. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem 2022; 37:2452-2477. [PMID: 36093586 PMCID: PMC9481144 DOI: 10.1080/14756366.2022.2115035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Qing-kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe-shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
2
|
Lu Z, He B, Chen J, Wu LJ, Chen XB, Ye SQ, Yang WH, Shao ZY, Jin EG, Wang SJ, Zhou HB, Cao JY. Optimisation of the Conversion and Extraction of Arctigenin From Fructus arctii Into Arctiin Using Fungi. Front Microbiol 2021; 12:663116. [PMID: 34135874 PMCID: PMC8200475 DOI: 10.3389/fmicb.2021.663116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Fructus arctii is commonly used in Chinese medicine, and arctiin and arctigenin are its main active ingredients. Arctiin has low bioavailability in the human body and needs to be converted into arctigenin by intestinal microbes before it can be absorbed into the blood. Arctigenin has antiviral, anti-inflammatory, and anti-tumour effects and its development has important value. In this study, we used external microbial fermentation with Aspergillus awamori and Trichoderma reesei to process and convert arctiin from F. arctii powder into arctigenin, hence increasing its bioavailability. We developed a fermentation process by optimising the carbon and nitrogen source/ratio, fermentation time, pH, liquid volume, inoculation volume, and substrate solid-liquid ratio. This allowed for an arctiin conversion rate of 99.84%, and the dissolution rate of the final product was 95.74%, with a loss rate as low as 4.26%. After the fermentation of F. arctii powder, the average yield of arctigenin is 19.51 mg/g. Crude fermented F. arctii extract was purified by silica gel column chromatography, and we observed an arctigenin purity of 99.33%. Our technique effectively converts arctiin and extracts arctigenin from F. arctii and provides a solid basis for further development and industrialisation.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, China
| | - Bin He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Li-Jun Wu
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xia-Bing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Sheng-Qiang Ye
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Wen-Hai Yang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhi-Yong Shao
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Er-Guang Jin
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Si-Jiu Wang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Hong-Bo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ji-Yue Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Ge L, Liu F, Hu Y, Zhou X. Qualitative and quantitative analysis of arctiin and arctigenin in Arctium tomentosum Mill. by high-performance thin-layer chromatography. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-019-00005-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Matozaki M, Saito Y, Yasutake R, Munira S, Kaibori Y, Yukawa A, Tada M, Nakayama Y. Involvement of Stat3 phosphorylation in mild heat shock-induced thermotolerance. Exp Cell Res 2019; 377:67-74. [PMID: 30776355 DOI: 10.1016/j.yexcr.2019.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023]
Abstract
Thermotolerance is a phenomenon in which cells become resistant to stress by prior exposure to heat shock, and its development is associated with the induction of heat shock proteins (Hsps), including Hsp70. We previously showed that the expression of Hsp70 is regulated by the cytokine signaling transcription factor Stat3, but the role of Stat3 in thermotolerance is not known. In this study, we examined the possible involvement of Stat3 in the acquisition of thermotolerance. We found that severe heat shock-induced morphological changes and decreases in cell viability, which were suppressed by exposure to non-lethal mild heat shock prior to severe heat shock. This thermotolerance development was accompanied by Stat3 phosphorylation and the induction of Hsps such as Hsp105, Hsp70, and Hsp27. Stat3 phosphorylation and Hsp induction were inhibited by AG490, an inhibitor of JAK tyrosine kinase. Consistent with this, we found that mild heat shock-induced thermotolerance was partially suppressed by AG490 or knockdown of Hsp105. We also found that the Stat3 inhibitor Stattic suppresses the acquisition of thermotolerance by inhibiting the mild heat shock-induced Stat3 phosphorylation and Hsp105 expression. These results suggest that the mild heat shock-dependent stimulation of the JAK-Stat signaling pathway contributes to the development of thermotolerance via the induction of Hsps including Hsp105. This signaling pathway may be a useful target for hyperthermia cancer therapy.
Collapse
Affiliation(s)
- Masashi Matozaki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Ryuji Yasutake
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Sirajam Munira
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuichiro Kaibori
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Akihisa Yukawa
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Madoka Tada
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
5
|
Sun Y, Tan YJ, Lu ZZ, Li BB, Sun CH, Li T, Zhao LL, Liu Z, Zhang GM, Yao JC, Li J. Arctigenin Inhibits Liver Cancer Tumorigenesis by Inhibiting Gankyrin Expression via C/EBPα and PPARα. Front Pharmacol 2018; 9:268. [PMID: 29636686 PMCID: PMC5880935 DOI: 10.3389/fphar.2018.00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 01/19/2023] Open
Abstract
Burdock (Arctium lappa) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro. Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography-mass spectrometry (LC-MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα, and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC growth. In conclusion, our results suggested that arctigenin could inhibit liver cancer growth by directly recruiting C/EBPα to the gankyrin promoter. PPARα subsequently bound to C/EBPα, and both had a negative regulatory effect on gankyrin expression. This study has identified a new mechanism of action of arctigenin against liver cancer growth.
Collapse
Affiliation(s)
- Ying Sun
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu-Jun Tan
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhan-Zhao Lu
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Bing-Bing Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Cheng-Hong Sun
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Tao Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Li Zhao
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Liu
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Gui-Min Zhang
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jing-Chun Yao
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jie Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
6
|
Abstract
With the growth of age, the amount of estrogens produced by the human body will get less and less. Studies have shown that estrogen deficiency may cause many kinds of diseases, such as cardiovascular diseases, osteoporosis, and syndrome of menopause. Estrogens are also distributed extensively in numerous types of plants. Since there is a trace amount of natural estrogen in plants, our body can achieve continuous phytoestrogen supplementation while our health will not be influenced or damaged by the absorbed phytoestrogens in diets. After being absorbed, the phytoestrogens in diets may be converted by intestinal microflora to different metabolites with higher estrogenic activity. This review summarizes the types and distributions of phytoestrogens in diets, their metabolism, metabolites and bioactivities, with an aim to provide some guidelines for further study and utilization of microbial biotransforming metabolites of phytoestrogens.
Collapse
|
7
|
Bussmann RW. The globalization of traditional medicine in northern peru: from shamanism to molecules. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:291903. [PMID: 24454490 PMCID: PMC3888705 DOI: 10.1155/2013/291903] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Northern Peru represents the center of the Andean "health axis," with roots going back to traditional practices of Cupisnique culture (1000 BC). For more than a decade of research, semistructured interviews were conducted with healers, collectors, and sellers of medicinal plants. In addition, bioassays were carried out to evaluate the efficacy and toxicity of plants found. Most of the 510 species encountered were native to Peru (83%). Fifty percent of the plants used in colonial times have disappeared from the pharmacopoeia. Market vendors specialized either on common and exotic plants, plants for common ailments, and plants only used by healers or on plants with magical purposes. Over 974 preparations with up to 29 different ingredients were used to treat 164 health conditions. Almost 65% of the medicinal plants were applied in these mixtures. Antibacterial activity was confirmed in most plants used for infections. Twenty-four percent of the aqueous extracts and 76% of the ethanolic extracts showed toxicity. Traditional preparation methods take this into account when choosing the appropriate solvent for the preparation of a remedy. The increasing demand for medicinal species did not increase the cultivation of medicinal plants. Most species are wild collected, causing doubts about the sustainability of trade.
Collapse
Affiliation(s)
- Rainer W. Bussmann
- William L. Brown Center, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| |
Collapse
|
8
|
Kim YJ, Kang SC, NamKoong S, Choung MG, Sohn EH. Anti-inflammatory Effects by Arctium lappa L. Root Extracts through the Regulation of ICAM-1 and Nitric Oxide. ACTA ACUST UNITED AC 2012. [DOI: 10.7732/kjpr.2012.25.1.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Park JH, Hong YJ, Moon EJ, Kim SA, Kim SY. Forsythiae Fructus and Its Active Component, Arctigenin, Provide Neuroprotection by Inhibiting Neuroinflammation. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.4.425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Wang B, Zheng GC. Treatment with arctigenin inhibits the metastasis and invasion of human hepatocellular carcinoma SMMC-7721 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:723-727. [DOI: 10.11569/wcjd.v19.i7.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of treatment with arctigenin (ARG) on the adhesion, invasion, and metastasis of human hepatocellular carcinoma SMMC-7721 cells.
METHODS: After SMMC-7721 cells were treated with ARG, cell adherence, migration, and invasion were assessed by MTT assay and Transwell migration assay. A model of pulmonary metastasis of SMMC-7721 cells was then generated in nude mice to evaluate the effect of arctigenin on tumor cell metastasis.
RESULTS: The adhesion, migration, and invasion of SMMC-7721 cells were significantly inhibited after ARG treatment. Compared with control cells, the average reduced rates of adhesion, metastasis, and invasion in cells treated with ARG were 43.08%, 55.19% and 58.21%, respectively. ARG inhibited the adhesion of SMMC-7221 cells in a concentration- and time-dependent manner (72 h: 0.260 ± 0.014 vs 0.999 ± 0.066, P < 0.05; 4 h: 0.558 ± 0.026 vs 1.241 ± 0.102, P < 0.05). The number of metastatic pulmonary tumors in nude mice inoculated with arctigenin was lower than that in mice inoculated with control cells (62.5% vs 100%, P < 0.05).
CONCLUSION: Treatment with arctigenin markedly inhibits the adherence, migration and invasion of SMMC-7721 cells.
Collapse
|
11
|
Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SMY, Leung GPH, Yu PHF, Chan SW. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 2010; 19:245-54. [PMID: 20981575 DOI: 10.1007/s10787-010-0062-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
Arctium lappa, commonly known as burdock, is being promoted/recommended as a healthy and nutritive food in Chinese societies. Burdock has been used therapeutically in Europe, North America and Asia for hundreds of years. The roots, seeds and leaves of burdock have been investigated in view of its popular uses in traditional Chinese medicine (TCM). In this review, the reported therapeutic effects of the active compounds present in the different botanical parts of burdock are summarized. In the root, the active ingredients have been found to "detoxify" blood in terms of TCM and promote blood circulation to the skin surface, improving the skin quality/texture and curing skin diseases like eczema. Antioxidants and antidiabetic compounds have also been found in the root. In the seeds, some active compounds possess anti-inflammatory effects and potent inhibitory effects on the growth of tumors such as pancreatic carcinoma. In the leaf extract, the active compounds isolated can inhibit the growth of micro-organisms in the oral cavity. The medicinal uses of burdock in treating chronic diseases such as cancers, diabetes and AIDS have been reported. However, it is also essential to be aware of the side effects of burdock including contact dermatitis and other allergic/inflammatory responses that might be evoked by burdock.
Collapse
Affiliation(s)
- Yuk-Shing Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang GX, Han J, Feng TT, Li FY, Zhu B. Bioassay-guided isolation and identification of active compounds from Fructus Arctii against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol Res 2009; 106:247-55. [DOI: 10.1007/s00436-009-1659-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
|
13
|
Kang HS, Lee JY, Kim CJ. Anti-inflammatory activity of arctigenin from Forsythiae Fructus. JOURNAL OF ETHNOPHARMACOLOGY 2008; 116:305-312. [PMID: 18180122 DOI: 10.1016/j.jep.2007.11.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/13/2007] [Accepted: 11/20/2007] [Indexed: 05/25/2023]
Abstract
Oleaceae Forsythiae Fructus has been used for anti-inflammatory, diuretics, antidote, and antibacterials in traditional herbal medicine. Our previous screening of medicinal plants showed that methanol (MeOH) extract of Forsythiae Fructus had significant anti-inflammatory activity, but the active ingredients remain unclear. For isolation of active ingredient of MeOH extract of Forsythiae Fructus, it was partitioned with n-hexane and ethylacetate (EtOAc), and arctigenin was isolated from EtOAc fraction by column chromatography with anti-inflammatory activity-guided separation. Its activity was evaluated in the animal models of inflammation including myeloperoxidase (MPO) and eosinophil peroxidase (EPO) activities in the edematous tissues homogenate, and silica-induced reactive oxygen species (ROS) production in the RAW 264.7 cell line. It was shown that arctigenin (100 mg/kg) had significantly decreased not only carrageenan-induced paw edema 3 and 4h after injection of carrageenan, arachidonic acid (AA)-induced ear edema at a painting dose of 0.1-1.0mg/ear, and acetic acid-induced writhing response and acetic acid-induced capillary permeability accentuation at an oral dose of 25-100, and 100 mg/kg, respectively, but also MPO and EPO activities at a painting dose of 0.1-1.0mg/ear in the AA-induced edematous tissues homogenate as indicators of neutrophils and eosinophils recruitment into the inflamed tissue. Further, arctigenin (0.1-10 microM) also significantly inhibited the intracellular ROS production by silica. These results indicate that arctigenin is a bioactive agent of Forsythiae Fructus having significant anti-inflammatory action by inhibition of the exudation, and leukocytes recruitment into the inflamed tissues. The pharmacologic mechanism of action of arctigenin may be due to the inhibition of release/production of inflammatory mediators such as AA metabolites and free radicals.
Collapse
Affiliation(s)
- Hyo Sook Kang
- Division of Pathophysiology and Pharmacology, College of Pharmacy, Chung-Ang University, 221 Huksuk-dong, Dongjak-Ku, Seoul 156-756, Republic of Korea
| | | | | |
Collapse
|
14
|
Toyoda T, Tsukamoto T, Mizoshita T, Nishibe S, Deyama T, Takenaka Y, Hirano N, Tanaka H, Takasu S, Ban H, Kumagai T, Inada KI, Utsunomiya H, Tatematsu M. Inhibitory effect of nordihydroguaiaretic acid, a plant lignan, on Helicobacter pylori-associated gastric carcinogenesis in Mongolian gerbils. Cancer Sci 2007; 98:1689-95. [PMID: 17894552 PMCID: PMC11158766 DOI: 10.1111/j.1349-7006.2007.00599.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 07/19/2007] [Accepted: 07/23/2007] [Indexed: 01/15/2023] Open
Abstract
Recent epidemiological studies have demonstrated that consumption of certain natural products can lower cancer risk in humans. For example, plant-derived lignans have been shown to exert chemopreventive effects against cancer in vitro and in vivo. In the present study, the effects of three such lignans, termed arctiin, arctigenin, and nordihydroguaiaretic acid (NDGA), on the proliferation of Helicobacter pylori and the prevention of H. pylori-associated gastric cancer were investigated in Mongolian gerbils. To examine the effects of arctigenin and NDGA on stomach carcinogenesis, specific pathogen-free male, 5-week-old gerbils were infected with H. pylori, administered 10 p.p.m. N-methyl-N-nitrosourea in their drinking water and fed diets containing various concentrations of lignans until they were killed after 52 weeks. At a dietary level of 0.25%, NDGA significantly decreased the incidence of gastric adenocarcinomas. Arctigenin, in contrast, failed to attenuate neoplasia at a level of 0.1%. Both NDGA and arctigenin significantly reduced serum 8-hydroxy-2'-deoxyguanosine levels at doses of 0.25 and 0.05% (NDGA), and 0.1% (arctigenin). Administration of 0.25% NDGA significantly suppressed the formation of intestinal metaplasia both in the antrum and the corpus. Although all three lignans dose-dependently inhibited the in vitro proliferation of H. pylori, there were no differences in the titers of anti-H. pylori antibodies or the amount of the H. pylori-specific urease A gene among all H. pylori-infected groups. These results suggest that NDGA might be effective for prevention of gastric carcinogenesis. The possible mechanisms appear to be related to inhibitory effects on progression of gastritis and antioxidative activity rather than direct antimicrobial influence.
Collapse
Affiliation(s)
- Takeshi Toyoda
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|