1
|
de la Calle CM, Shee K, Yang H, Lonergan PE, Nguyen HG. The endoplasmic reticulum stress response in prostate cancer. Nat Rev Urol 2022; 19:708-726. [PMID: 36168057 DOI: 10.1038/s41585-022-00649-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
In order to proliferate in unfavourable conditions, cancer cells can take advantage of the naturally occurring endoplasmic reticulum-associated unfolded protein response (UPR) via three highly conserved signalling arms: IRE1α, PERK and ATF6. All three arms of the UPR have key roles in every step of tumour progression: from cancer initiation to tumour growth, invasion, metastasis and resistance to therapy. At present, no cure for metastatic prostate cancer exists, as targeting the androgen receptor eventually results in treatment resistance. New research has uncovered an important role for the UPR in prostate cancer tumorigenesis and crosstalk between the UPR and androgen receptor signalling pathways. With an improved understanding of the mechanisms by which cancer cells exploit the endoplasmic reticulum stress response, targetable points of vulnerability can be uncovered.
Collapse
Affiliation(s)
- Claire M de la Calle
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Shee
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Heiko Yang
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peter E Lonergan
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, St. James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College, Dublin, Ireland
| | - Hao G Nguyen
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Ye Y, Li X, Wang Z, Ye F, Xu W, Lu R, Shen H, Miao S. 3,3'-Diindolylmethane induces gastric cancer cells death via STIM1 mediated store-operated calcium entry. Int J Biol Sci 2021; 17:1217-1233. [PMID: 33867841 PMCID: PMC8040462 DOI: 10.7150/ijbs.56833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
3,3'-Diindolylmethane (DIM), a natural phytochemicals isolated from cruciferous vegetables, has been reported to inhibit human gastric cancer cells proliferation and induce cells apoptosis as well as autophagy, but its mechanisms are still unclear. Store-operated calcium entry (SOCE) is a main Ca2+ influx pathway in various of cancers, which is activated by the depletion of endoplasmic reticulum (ER) Ca2+ store. Stromal interaction molecular 1 (STIM1) is the necessary component of SOCE. In this study, we focus on to examine the regulatory mechanism of SOCE on DIM-induced death in gastric cancer. After treating the human BGC-823 and SGC-7901 gastric cancer cells with DIM, cellular proliferation was determined by MTT, apoptosis and autophagy were detected by flow cytometry or Hoechst 33342 staining. The expression levels of related proteins were evaluated by Western blotting. Free cytosolilc Ca2+ level was assessed by fluorescence monitoring under a laser scanning confocal microscope. The data have shown that DIM could significantly inhibit proliferation and induce apoptosis as well as autophagy in two gastric cancer cell lines. After DIM treatment, the STIM1-mediated SOCE was activated by upregulating STIM1 and decreasing ER Ca2+ level. Knockdown STIM1 with siRNA or pharmacological inhibition of SOCE attenuated DIM induced apoptosis and autophagy by inhibiting p-AMPK mediated ER stress pathway. Our data highlighted that the potential of SOCE as a promising target for treating cancers. Developing effective and selective activators targeting STIM1-mediated SOCE pathway will facilitate better therapeutic sensitivity of phytochemicals acting on SOCE in gastric cancer. Moreover, more research should be performed to validate the efficacy of combination chemotherapy of anti-cancer drugs targeting SOCE for clinical application.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhihua Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital to Jiangsu University School of Medicine, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| |
Collapse
|
3
|
Lee GA, Choi KC, Hwang KA. Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells. Biomol Ther (Seoul) 2018; 26:503-511. [PMID: 29310425 PMCID: PMC6131008 DOI: 10.4062/biomolther.2017.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS (0.1-10 µM), BPA (0.1-10 µM) and E2 (0.01-0.0001 µM) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem (30 µM) or DIM (15 µM). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as eIF2α and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.
Collapse
Affiliation(s)
- Geum-A Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
4
|
Roberts JL, Poklepovic A, Booth L. Curcumin interacts with sildenafil to kill GI tumor cells via endoplasmic reticulum stress and reactive oxygen/ nitrogen species. Oncotarget 2017; 8:99451-99469. [PMID: 29245915 PMCID: PMC5725106 DOI: 10.18632/oncotarget.19807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/15/2017] [Indexed: 12/18/2022] Open
Abstract
The present studies focused on the ability of the phosphodiesterase 5 (PDE5) inhibitor sildenafil to enhance the anti-cancer properties of clinically relevant concentrations of the dietary diarylheptanoid curcumin. In gastrointestinal tumor cells, sildenafil and curcumin interacted in a greater than additive fashion to kill. Inhibition of the extrinsic apoptotic pathway suppressed killing by ∼50%, as did blockade of the intrinsic apoptotic pathway. Sildenafil and curcumin reduced mTORC1 and mTORC2 activity and increased Beclin1 levels and the numbers of autophagosomes and autolysosomes in cells in a PERK-eIF2α-dependent fashion. Knock down of Beclin1 or ATG5 partially suppressed killing. In contrast, stable knock out of ATG16-L1 unexpectedly enhanced killing, an effect not altered by Beclin1/ATG5 knock down. Curcumin and sildenafil exposure reduced the expression of MCL-1, BCL-XL, thioredoxin and superoxide dismutase 2 (SOD2) in an eIF2α-dependent fashion. Curcumin and sildenafil interacted in a greater than additive fashion to increase the levels of reactive oxygen species; knock down of thioredoxin or SOD2 enhanced killing and over-expression of thioredoxin or SOD2 suppressed killing. In vivo, curcumin and sildenafil interacted to suppress the growth of colon cancer tumors. Multiplex analyses of plasma taken after drug exposure at animal nadir indicated that the levels of M-CSF, CXCL-9, PDGF and G-CSF were significantly increased by [curcumin + sildenafil] and that expression of CXCL1 and CCL5 were significantly reduced. Cells isolated from in vivo treated [curcumin + sildenafil] tumors were resistant to in vitro [curcumin + sildenafil] exposure, a phenotype that was blocked by the colon cancer therapeutic regorafenib.
Collapse
Affiliation(s)
- Jane L Roberts
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Andrew Poklepovic
- Departments of Biochemistry and Medicine, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| |
Collapse
|
5
|
Storm M, Sheng X, Arnoldussen YJ, Saatcioglu F. Prostate cancer and the unfolded protein response. Oncotarget 2016; 7:54051-54066. [PMID: 27303918 PMCID: PMC5288241 DOI: 10.18632/oncotarget.9912] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/23/2016] [Indexed: 01/01/2023] Open
Abstract
The endoplasmic reticulum (ER) is an essential organelle that contributes to several key cellular functions, including lipogenesis, gluconeogenesis, calcium storage, and organelle biogenesis. The ER also serves as the major site for protein folding and trafficking, especially in specialized secretory cells. Accumulation of misfolded proteins and failure of ER adaptive capacity activates the unfolded protein response (UPR) which has been implicated in several chronic diseases, including cancer. A number of recent studies have implicated UPR in prostate cancer (PCa) and greatly expanded our understanding of this key stress signaling pathway and its regulation in PCa. Here we summarize these developments and discuss their potential therapeutic implications.
Collapse
Affiliation(s)
| | - Xia Sheng
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Yke Jildouw Arnoldussen
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Kim SM. Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer. Int J Mol Sci 2016; 17:ijms17071155. [PMID: 27447608 PMCID: PMC4964527 DOI: 10.3390/ijms17071155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Studies in humans have shown that 3,3′-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER) stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| |
Collapse
|
7
|
Goldberg AA, Draz H, Montes-Grajales D, Olivero-Verbél J, Safe SH, Sanderson JT. 3,3'-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and -independent prostate cancer cells. Genes Cancer 2015; 6:265-280. [PMID: 26124925 PMCID: PMC4482247 DOI: 10.18632/genesandcancer.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/16/2015] [Indexed: 11/25/2022] Open
Abstract
We recently reported that novel ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) induce apoptosis and necrosis in androgen-dependent and -independent prostate cancer cells. In this paper, we have focused on the mechanism(s) associated with ring-DIM-mediated cell death, and on identifying the specific intracellular target(s) of these compounds. The 4,4'- and 7,7'-dichloroDIMs and 4,4'- and 7,7'-dibromoDIMs induced the death of LNCaP, C42B and DU145 prostate cancer cells, but not that of immortalized normal human prostate epithelial (RWPE-1) cells. Ring-DIMs caused the early loss of mitochondrial membrane potential (MMP) and decreased mitochondrial ATP generation in prostate cancer cells. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore, inhibited ring-DIM-mediated cell death, and salubrinal, an inhibitor of ER stress, inhibited cell death mediated only by 4,4'-dihaloDIMs. We found that although salubrinal did not inhibit the onset of ER stress, it prevented 4,4'-dibromoDIM mediated loss of MMP. Salubrinal potentiated cell death in response to 7,7'-dihaloDIMs and DIM, and this effect concurred with increased loss of MMP. Using in silico 3-D docking affinity analysis, we identified Ca2+/calmodulin-dependent kinase II (CaMKII) as a potential direct target for the most toxic ring-DIM, 4,4'-dibromoDIM. An inhibitor of CaMKII, KN93, but not its inactive analog KN92, abrogated cell death mediated by 4,4'-dibromoDIM. The ring-DIMs induced ER stress and autophagy, but these processes were not necessary for ring-DIM-mediated cell death. Inhibition of autophagy with bafilomycin A1, 3-methyladenine or by LC3B gene silencing sensitized LNCaP and C42B, but not ATG5-deficient DU145 cells to ring-DIM- and DIM-mediated cell death. We propose that autophagy induced by the ring-DIMs and DIM has a cytoprotective function in prostate cancer cells.
Collapse
Affiliation(s)
- Alexander A. Goldberg
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
- Critical Care Division and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Hossam Draz
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | - Jesus Olivero-Verbél
- Environmental and Computational Chemistry Group, University of Cartagena, Colombia
| | - Stephen H. Safe
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
8
|
Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and Its Metabolite 3,3'-Diindolylmethane: A Therapeutic Marvel. Adv Pharmacol Sci 2014; 2014:832161. [PMID: 24982671 PMCID: PMC4060499 DOI: 10.1155/2014/832161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 04/19/2014] [Indexed: 11/17/2022] Open
Abstract
Rising evidence provides credible support towards the potential role of bioactive products derived from cruciferous vegetables such as broccoli, cauliflower, kale, cabbage, brussels sprouts, turnips, kohlrabi, bok choy, and radishes. Many epidemiological studies point out that Brassica vegetable protects humans against cancer since they are rich sources of glucosinolates in addition to possessing a high content of flavonoids, vitamins, and mineral nutrients. Indole-3-carbinol (I3C) belongs to the class of compounds called indole glucosinolate, obtained from cruciferous vegetables, and is well-known for tits anticancer properties. In particular, I3C and its dimeric product, 3,3'-diindolylmethane (DIM), have been generally investigated for their value against a number of human cancers in vitro as well as in vivo. This paper reviews an in-depth study of the anticancer activity and the miscellaneous mechanisms underlying the anticarcinogenicity thereby broadening its therapeutic marvel.
Collapse
|
9
|
Goldberg AA, Titorenko VI, Beach A, Abdelbaqi K, Safe S, Sanderson JT. Ring-substituted analogs of 3,3'-diindolylmethane (DIM) induce apoptosis and necrosis in androgen-dependent and -independent prostate cancer cells. Invest New Drugs 2014; 32:25-36. [PMID: 23709189 PMCID: PMC4841686 DOI: 10.1007/s10637-013-9979-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/10/2013] [Indexed: 11/25/2022]
Abstract
We recently reported that novel ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) have anti-androgenic and growth inhibitory effects in androgen-dependent prostate cancer cells. The objectives of this study were to confirm the ability of 4,4'- and 7,7'-dibromo- and dichloro-substituted ring-DIMs to inhibit androgen-stimulated proliferation of androgen-dependent LNCaP human prostate cancer cells using a non-invasive, real-time monitoring technique. In addition, their ability to induce apoptotic and necrotic cell death in androgen-dependent as well as -independent (PC-3) prostate cancer cells was studied. Prostate cancer cells were treated with increasing concentrations of DIM and ring-DIMs (0.3-30 μM) and effects on cell proliferation were measured in real-time using an xCELLigence cellular analysis system. Chromatin condensation and loss of membrane integrity were determined by Hoechst and propidium iodide staining, respectively. Apoptotic protein markers were measured by immunoblotting and activation of caspases determined using selective fluorogenic substrates. Intra- and extracellular concentrations of DIM and ring-DIMs were assessed by electrospray ionization tandem mass spectrometry. Ring-DIMs inhibited androgen-stimulated LNCaP cell proliferation and induced apoptosis and necrosis in LNCaP and PC-3 cells with 2-4 fold greater potencies than DIM. DIM and the ring-DIMs increased caspases -3, -8 and -9 activity, elevated expression of Fas, FasL, DR4 and DR5 protein, and induced PARP cleavage in both cell lines. The cytotoxicity of the most potent ring-DIM, 4,4'-dibromoDIM, but not the other compounds was decreased by an inhibitor of caspase -3. The 4,4'-dibromoDIM was primarily found in the extracellular medium, whereas all other compounds were present to a much larger extent in the cell. In conclusion, ring-DIMs inhibited prostate cancer cell growth and induced cell death in LNCaP and PC-3 cells with greater potencies than DIM; they also structure-dependently activated different cell death pathways suggesting that these compounds have clinical potential as chemopreventive and chemotherapeutic agents in prostate cancer, regardless of hormone-dependency.
Collapse
Affiliation(s)
- A A Goldberg
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, Canada
| | | | | | | | | | | |
Collapse
|
10
|
DIM (3,3'-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. Proc Natl Acad Sci U S A 2013; 110:18650-5. [PMID: 24127581 DOI: 10.1073/pnas.1308206110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DIM (3,3'-diindolylmethane), a small molecule compound, is a proposed cancer preventive agent that can be safely administered to humans in repeated doses. We report that administration of DIM in a multidose schedule protected rodents against lethal doses of total body irradiation up to 13 Gy, whether DIM dosing was initiated before or up to 24 h after radiation. Physiologic submicromolar concentrations of DIM protected cultured cells against radiation by a unique mechanism: DIM caused rapid activation of ataxia-telangiectasia mutated (ATM), a nuclear kinase that regulates responses to DNA damage (DDR) and oxidative stress. Subsequently, multiple ATM substrates were phosphorylated, suggesting that DIM induces an ATM-dependent DDR-like response, and DIM enhanced radiation-induced ATM signaling and NF-κB activation. DIM also caused activation of ATM in rodent tissues. Activation of ATM by DIM may be due, in part, to inhibition of protein phosphatase 2A, an upstream regulator of ATM. In contrast, DIM did not protect human breast cancer xenograft tumors against radiation under the conditions tested. In tumors, ATM was constitutively phosphorylated and was not further stimulated by radiation and/or DIM. Our findings suggest that DIM is a potent radioprotector and mitigator that functions by stimulating an ATM-driven DDR-like response and NF-κB survival signaling.
Collapse
|
11
|
Galluzzi L, De Santi M, Crinelli R, De Marco C, Zaffaroni N, Duranti A, Brandi G, Magnani M. Induction of endoplasmic reticulum stress response by the indole-3-carbinol cyclic tetrameric derivative CTet in human breast cancer cell lines. PLoS One 2012; 7:e43249. [PMID: 22905241 PMCID: PMC3419215 DOI: 10.1371/journal.pone.0043249] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Background Indole-3-carbinol and its metabolic products are considered promising chemopreventive and anticancer agents. Previously we have shown that the indole-3-carbinol cyclic tetrameric derivative CTet induces autophagy and inhibits cell proliferation via inhibition of Akt activity and overexpression of p21/CDKN1A and GADD45A, in both estrogen receptor-positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cell lines. In the present study, we further characterize the autophagic response and investigate the mechanism through which CTet regulates these events. Methodology/Principal Findings Analysis of gene expression microarray data and subsequent confirmation by quantitative real-time PCR, showed that CTet is able to induce up-regulation of key signaling molecules involved in endoplasmic reticulum (ER) stress response (e.g. DDIT3/CHOP, CHAC1, ATF3, HSPA5/BiP/GRP78, CEBPB, ASNS) and autophagy (e.g. MAP1LC3B), in both MCF-7 and MDA-MB-231 cell lines. Moreover, the monitoring of Xbp-1 splicing confirmed the activation of IRE1/Xbp-1 ER stress response branch after CTet treatment. The role of autophagic processes (known to be induced by ER stress) was investigated further through ATG5 gene silencing and pharmacological inhibition of AVOs formation. CTet was shown to induce an autophagy-related cell death. Moreover, CTet-treated cells stained with Hoechst/PI revealed the presence of necrotic processes without evidence of apoptosis. Conclusions/Significance The ER stress response was identified as the main upstream molecular mechanism through which CTet acts in both hormone-responsive and triple-negative breast cancer cells. Because of its important role in cancer development, ER stress is a potential target in cancer therapy. The abiltiy of CTet to induce ER stress response and subsequently activate a death program in tumor cells confirms this molecule as a promising anticancer agent.
Collapse
Affiliation(s)
- Luca Galluzzi
- Department of Biomolecular Science, University of Urbino Carlo Bo, Fano, PU, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Banerjee S, Kong D, Wang Z, Bao B, Hillman GG, Sarkar FH. Attenuation of multi-targeted proliferation-linked signaling by 3,3'-diindolylmethane (DIM): from bench to clinic. Mutat Res 2011; 728:47-66. [PMID: 21703360 DOI: 10.1016/j.mrrev.2011.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/14/2022]
Abstract
Emerging evidence provide credible support in favor of the potential role of bioactive products derived from ingesting cruciferous vegetables such as broccoli, brussel sprouts, cauliflower and cabbage. Among many compounds, 3,3'-diindolylmethane (DIM) is generated in the acidic environment of the stomach following dimerization of indole-3-carbinol (I3C) monomers present in these classes of vegetables. Both I3C and DIM have been investigated for their use in preventing, inhibiting, and reversing the progression of cancer - as a chemopreventive agent. In this review, we summarize an updated, wide-ranging pleiotropic anti-tumor and biological effects elicited by DIM against tumor cells. It is unfeasible to point one single target as basis of cellular target of action of DIM. We emphasize key cellular and molecular events that are effectively modulated in the direction of inducing apoptosis and suppressing cell proliferation. Collectively, DIM orchestrates signaling through Ah receptor, NF-κB/Wnt/Akt/mTOR pathways impinging on cell cycle arrest, modulation of key cytochrome P450 enzymes, altering angiogenesis, invasion, metastasis and epigenetic behavior of cancer cells. The ability of DIM to selectively induce tumor cells to undergo apoptosis has been observed in preclinical models, and thus it has been speculated in improving the therapeutic efficacy of other anticancer agents that have diverse molecular targets. Consequently, DIM has moved through preclinical development into Phase I clinical trials, thereby suggesting that DIM could be a promising and novel agent either alone or as an adjunct to conventional therapeutics such as chemo-radio and targeted therapies. An important development has been the availability of DIM formulation with superior bioavailability for humans. Therefore, DIM appears to be a promising chemopreventive agent or chemo-radio-sensitizer for the prevention of tumor recurrence and/or for the treatment of human malignancies.
Collapse
Affiliation(s)
- Sanjeev Banerjee
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Dejuan Kong
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhiwei Wang
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bin Bao
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Gilda G Hillman
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Li X, Zhang K, Li Z. Unfolded protein response in cancer: the physician's perspective. J Hematol Oncol 2011; 4:8. [PMID: 21345215 PMCID: PMC3060154 DOI: 10.1186/1756-8722-4-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/23/2011] [Indexed: 11/10/2022] Open
Abstract
The unfolded protein response (UPR) is a cascade of intracellular stress signaling events in response to an accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER). Cancer cells are often exposed to hypoxia, nutrient starvation, oxidative stress and other metabolic dysregulation that cause ER stress and activation of the UPR. Depending on the duration and degree of ER stress, the UPR can provide either survival signals by activating adaptive and antiapoptotic pathways, or death signals by inducing cell death programs. Sustained induction or repression of UPR pharmacologically may thus have beneficial and therapeutic effects against cancer. In this review, we discuss the basic mechanisms of UPR and highlight the importance of UPR in cancer biology. We also update the UPR-targeted cancer therapeutics currently in clinical trials.
Collapse
Affiliation(s)
- Xuemei Li
- Lea’s Foundation Center for Hematologic Disorders and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA
| | | | | |
Collapse
|
14
|
Fan S, Meng Q, Saha T, Sarkar FH, Rosen EM. Low concentrations of diindolylmethane, a metabolite of indole-3-carbinol, protect against oxidative stress in a BRCA1-dependent manner. Cancer Res 2009; 69:6083-91. [PMID: 19622773 PMCID: PMC2777684 DOI: 10.1158/0008-5472.can-08-3309] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The indole-3-carbinol (I3C) metabolite 3,3'-diindolylmethane (DIM) is a proposed cancer prevention agent for various tumor types, including breast cancer. Here, we show that DIM up-regulates expression of the tumor suppressor protein BRCA1 in carcinoma and normal cell types. Up-regulation of BRCA1 was dose and time dependent, and it was observed at physiologically relevant micromolar and submicromolar DIM concentrations when cells were exposed for 72 hours. Treatment with the parent compound (I3C) or DIM (1 micromol/L) protected against cell killing due to H(2)O(2) and other oxidants, and the protection was abrogated by knockdown of BRCA1. DIM stimulated signaling by the antioxidant transcription factor NFE2L2 (NRF2) through the antioxidant response element in a BRCA1-dependent manner. We further showed that DIM rapidly stimulated phosphorylation of BRCA1 on Ser (1387) and Ser (1524) and that these phosphorylations are required for protection against oxidative stress. DIM-induced phosphorylation of BRCA1 on Ser (1387) was dependent on ataxia-telangiectasia mutated. Finally, in our assay systems, H(2)O(2)-induced cell death was not due to apoptosis. However, a significant component of cell death was attributable to autophagy, and both DIM and BRCA1 inhibited H(2)O(2)-induced autophagy. Our findings suggest that low concentrations of DIM protect cells against oxidative stress via the tumor suppressor BRCA1 by several distinct mechanisms.
Collapse
Affiliation(s)
- Saijun Fan
- Department of Oncology, Georgetown University, Washington, DC 20057 USA
| | - Qinghui Meng
- Department of Oncology, Georgetown University, Washington, DC 20057 USA
| | - Tapas Saha
- Department of Oncology, Georgetown University, Washington, DC 20057 USA
| | - Fazlul H. Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Eliot M. Rosen
- Department of Oncology, Georgetown University, Washington, DC 20057 USA
- Department of Biochemistry, Georgetown University, Washington, DC 20057 USA
- Department of Radiation Medicine, Georgetown University, Washington, DC 20057 USA
| |
Collapse
|
15
|
Ali S, Varghese L, Pereira L, Tulunay-Ugur OE, Kucuk O, Carey TE, Wolf GT, Sarkar FH. Sensitization of squamous cell carcinoma to cisplatin induced killing by natural agents. Cancer Lett 2009; 278:201-209. [PMID: 19231069 PMCID: PMC3350786 DOI: 10.1016/j.canlet.2009.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 01/14/2023]
Abstract
Cisplatin resistance is a major problem in the successful treatment of squamous cell carcinoma (SCC). In the present study we showed, for the first time, that the constitutive activation of NF-kappaB partly contributes to cisplatin resistance and that the inactivation of NF-kappaB by natural agents [G2535 (isoflavone mixture containing genistein and diadzein), 3,3'-diindolylmethane (Bioresponse BR-DIM referred to as B-DIM)] could overcome this resistance, resulting in the inhibition of cell growth and induction of apoptosis, which might be an useful strategy for achieving better treatment outcome in patients diagnosed with cisplatin-resistant tumors of SCC.
Collapse
Affiliation(s)
- Shadan Ali
- Division of Hematology/Oncology, Karmanos Cancer Center, Wayne State University, Detroit, MI, USA
| | - Lalee Varghese
- Department of Pathology, Karmanos Cancer Center, Wayne State University, Detroit, MI, USA
| | - Lucio Pereira
- Department of Otolaryngology, Karmanos Cancer Center, Wayne State University, Detroit, MI, USA
| | - Ozlem E Tulunay-Ugur
- Department of Otolaryngology, Karmanos Cancer Center, Wayne State University, Detroit, MI, USA
| | - Omer Kucuk
- Division of Hematology/Oncology, Karmanos Cancer Center, Wayne State University, Detroit, MI, USA
| | - Thomas E Carey
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Center, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
16
|
Qi M, Anderson AE, Chen DZ, Sun S, Auborn KJ. Indole-3-carbinol prevents PTEN loss in cervical cancer in vivo. Mol Med 2009; 11:59-63. [PMID: 16557333 PMCID: PMC1449523 DOI: 10.2119/2006-00007.auborn] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Accepted: 02/23/2006] [Indexed: 01/15/2023] Open
Abstract
Indole-3-carbinol (I3C) is a phytochemical (derived from broccoli, cabbage, and other cruciferous vegetables) with proven anticancer efficacy including the reduction of cervical intraepithelial neoplasia (CIN) and its progression to cervical cancer. In a breast cancer cell line, I3C inhibited cell adhesion, spreading, and invasion associated with an upregulation of the tumor suppressor gene PTEN, suggesting that PTEN is important in inhibition of late stages in the development of cancer. The goal of this study was to determine the expression of PTEN during the development of cervical cancer and whether I3C affected expression of PTEN in vivo. We show diminished PTEN expression during the progression from low-grade to high-grade cervical dysplasia in humans and in a mouse model for cervical cancer, the K14HPV16 transgenic mice promoted with estrogen. The implication is that loss of PTEN function is required for this transition. Additionally, dietary I3C increased PTEN expression in the cervical epithelium of the transgenic mouse, an observation that suggests PTEN upregulation by I3C is one mechanism by which I3C inhibits development of cervical cancer.
Collapse
Affiliation(s)
- Mei Qi
- Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Ann E. Anderson
- Department of Pathology, Long Island Jewish Medical Center, The Long Island Campus of Albert Einstein College of Medicine, New Hyde Park, NY, USA
| | - Da-Zhi Chen
- Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Shishinn Sun
- Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karen J. Auborn
- Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Address correspondence and reprint requests to Karen Auborn, Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Room 140, 350 Community Drive, Manhasset, NY 11030. Phone: (516) 562-1184;
| |
Collapse
|
17
|
Bruno RD, Gover TD, Burger AM, Brodie AM, Njar VCO. 17alpha-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol Cancer Ther 2008; 7:2828-36. [PMID: 18790763 DOI: 10.1158/1535-7163.mct-08-0336] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibitors of the enzyme 17alpha-hydroxylase/17,20 lyase are a new class of anti-prostate cancer agents currently undergoing preclinical and clinical development. We have previously reported the superior anticancer activity of our novel 17alpha-hydroxylase/17,20 lyase inhibitor, VN/124-1, against androgen-dependent cancer models. Here, we examined the effect of VN/124-1 on the growth of the androgen-independent cell lines PC-3 and DU-145 and found that the compound inhibits their growth in a dose-dependent manner in vitro (GI50, 7.82 micromol/L and 7.55 micromol/L, respectively). We explored the mechanism of action of VN/124-1 in PC-3 cells through microarray analysis and found that VN/124-1 up-regulated genes involved in stress response and protein metabolism, as well as down-regulated genes involved in cell cycle progression. Follow-up real-time PCR and Western blot analyses revealed that VN/124-1 induces the endoplasmic reticulum stress response resulting in down-regulation of cyclin D1 protein expression and cyclin E2 mRNA. Cell cycle analysis confirmed G1-G0 phase arrest. Measurements of intracellular calcium levels ([Ca2+]i) showed that 20 micromol/L VN/124-1 caused a release of Ca2+ from endoplasmic reticulum stores resulting in a sustained increase in [Ca2+]i. Finally, cotreatment of PC-3 cells with 5, 10, and 20 micromol/L VN/124-1 with 10 nmol/L thapsigargin revealed a synergistic relationship between the compounds in inhibiting PC-3 cell growth. Taken together, these findings show VN/124-1 is endowed with multiple anticancer properties that may contribute to its utility as a prostate cancer therapeutic.
Collapse
Affiliation(s)
- Robert D Bruno
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | | | | | | | | |
Collapse
|
18
|
Safe S, Papineni S, Chintharlapalli S. Cancer chemotherapy with indole-3-carbinol, bis(3'-indolyl)methane and synthetic analogs. Cancer Lett 2008; 269:326-38. [PMID: 18501502 PMCID: PMC2574232 DOI: 10.1016/j.canlet.2008.04.021] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 01/08/2008] [Accepted: 04/04/2008] [Indexed: 11/20/2022]
Abstract
Indole-3-carbinol (I3C) conjugates are phytochemicals expressed in brassica vegetables and have been associated with the anticancer activities of vegetable consumption. I3C and its metabolite bis(3'-indolyl)methane (DIM) induce overlapping and unique responses in multiple cancer cell lines and tumors, and these include growth inhibition, apoptosis and antiangiogenic activities. The mechanisms of these responses are complex and dependent on cell context. I3C and/or DIM activate or inactivate multiple nuclear receptors, induce endoplasmic reticulum stress, decrease mitochondrial membrane potential, and modulate multiple signaling pathways including kinases. DIM has been used as a template to synthesize a series of 1,1-bis(3'indolyl)-1-(substituted aromatic)methanes (i.e. C-DIMs) which are also cytotoxic to cancer cells and tumors. Some of the effects of C-DIMs resemble those reported for DIM analogs; however, structure-activity studies with the aromatic ring has resulted in generation of highly unique receptor agonists. For example, p-trifluoromethylphenyl, p-t-butylphenyl and p-biphenyl analogs activate peroxisome proliferator-activated receptor gamma (PPARgamma), and p-methoxyphenyl and p-phenyl compounds activate nerve growth factor-induced-Balpha (NGFI-Balpha, Nur77) orphan nuclear receptor. The effects of C-DIMs on PPARgamma and Nur77 coupled with their receptor-independent activities has resulted in the development of a novel group of multi-targeted anticancer drugs with excellent potential for clinical treatment of cancer.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, Vet. Res. Building 410, College Station, TX 77843-4466, USA.
| | | | | |
Collapse
|
19
|
Ali S, Banerjee S, Ahmad A, El-Rayes BF, Philip PA, Sarkar FH. Apoptosis-inducing effect of erlotinib is potentiated by 3,3'-diindolylmethane in vitro and in vivo using an orthotopic model of pancreatic cancer. Mol Cancer Ther 2008; 7:1708-19. [PMID: 18566242 DOI: 10.1158/1535-7163.mct-08-0354] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockade of epidermal growth factor receptor (EGFR) by EGFR tyrosine kinase inhibitors is insufficient for effective antitumor activity because of independently activated survival pathways. A multitargeted approach may therefore improve the outcome of anti-EGFR therapies. In the present study, we determined the effects of 3,3'-diindolylmethane (Bioresponse BR-DIM referred to as B-DIM), a formulated DIM with greater bioavailability on cell viability and apoptosis with erlotinib in vitro and in vivo using an orthotopic animal tumor model. BxPC-3 and MIAPaCa cells with varying levels of EGFR and nuclear factor-kappaB (NF-kappaB) DNA-binding activity were treated with B-DIM (20 micromol/L), erlotinib (2 micromol/L), and the combination. Cell survival and apoptosis was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and histone-DNA ELISA. Electrophoretic mobility shift assay was used to evaluate NF-kappaB DNA-binding activity. We found significant reduction in cell viability by both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and clonogenic assays, induction of apoptosis, down-regulation of EGFR phosphorylation, NF-kappaB DNA-binding activity, and expression of antiapoptotic genes in BxPC-3 cells when treated with the combination of erlotinib and B-DIM compared with either agent alone. In contrast, no such effect was observed in MIAPaCa cells by similar treatment. Most importantly, these in vitro results were recapitulated in animal model showing that B-DIM in combination with erlotinib was much more effective as an antitumor agent compared with either agent alone. These results suggest that the utilization of B-DIM could be a useful strategy for achieving better treatment outcome in patients with activated status of EGFR and NF-kappaB in their tumors.
Collapse
Affiliation(s)
- Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lei P, Abdelrahim M, Cho SD, Liu S, Chintharlapalli S, Safe S. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes inhibit colon cancer cell and tumor growth through activation of c-jun N-terminal kinase. Carcinogenesis 2008; 29:1139-47. [PMID: 18460448 PMCID: PMC2574736 DOI: 10.1093/carcin/bgn103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/22/2008] [Accepted: 04/24/2008] [Indexed: 11/13/2022] Open
Abstract
1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes (C-DIMs) activate the orphan receptors peroxisome proliferator-activated receptor gamma (PPARgamma) and Nur77 and induce receptor-dependent and -independent apoptotic pathways in colon and other cancer cells. Structure-activity studies show that the p-bromo (DIM-C-pPhBr) and p-fluoro (DIM-C-pPhF) analogs, which exhibit minimal activation of Nur77 and PPARgamma, induce expression of CCAAT/enhancer-binding protein homologous protein (CHOP/GADD153) in colon cancer cells. Moreover, among a series of bromo and fluoro C-DIM analogs, their induction of CHOP was dependent on the position of the phenyl substituents (para >/= meta >/= ortho) and required a free indole group. DIM-C-pPhBr and DIM-C-pPhF not only induced CHOP but also activated death receptor 5 (CHOP dependent), cleavage of caspase 8 and poly (ADP ribose) polymerase (PARP) that is consistent with activation of the extrinsic pathway of apoptosis. These responses were associated with the activation of c-jun N-terminal kinase (JNK) pathway since inhibition of JNK inhibited induction of the extrinsic apoptotic pathway by these C-DIMs. However, in contrast to classical inducers of endoplasmic reticulum (ER) stress such as tunicamycin and thapsigargin, the C-DIM compounds did not induce glucose-related protein 78 that is a marker of ER stress. Proapoptotic and anticarcinogenic effects were also observed in athymic nude mice bearing RKO cell xenografts and treated with 30 mg/kg/day DIM-C-pPhBr and this was accompanied by increased JNK phosphorylation in the tumors. Thus, the anticarcinogenic activity of DIM-C-pPhBr in colon cancer cells and tumors is related to a novel ER stress-independent activation of JNK.
Collapse
Affiliation(s)
- Ping Lei
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Maen Abdelrahim
- Cancer Research Institute, M.D. Anderson Cancer Center—Orlando, Orlando, FL 32806, USA
- Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Sung Dae Cho
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
- Department of Oral Biology, School of Dentistry, Institute of Oral Biosciences, Chonbuk National University, Jeonju, Republic of Korea 561-756
| | - Shengxi Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Sudhakar Chintharlapalli
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Stephen Safe
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| |
Collapse
|
21
|
Weng JR, Tsai CH, Kulp SK, Chen CS. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett 2008; 262:153-63. [PMID: 18314259 PMCID: PMC2814317 DOI: 10.1016/j.canlet.2008.01.033] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 12/01/2022]
Abstract
During the course of oncogenesis and tumor progression, cancer cells constitutively upregulate signaling pathways relevant to cell proliferation and survival as a strategy to overcome genomic instability and acquire resistance phenotype to chemotherapeutic agents. In light of this clinical and molecular heterogeneity of human cancers, it is desirable to concomitantly target these genetic abnormalities by using an agent with pleiotropic mode of action. Indole-3-carbinol and its metabolite 3,3'-diindoylmethane (DIM) target multiple aspects of cancer cell-cycle regulation and survival including Akt-NF kappa B signaling, caspase activation, cyclin-dependent kinase activities, estrogen metabolism, estrogen receptor signaling, endoplasmic reticulum stress, and BRCA gene expression. This broad spectrum of anti-tumor activities in conjunction with low toxicity underscores the translational value of indole-3-carbinol and its metabolites in cancer prevention/therapy. Furthermore, novel anti-tumor agents with overlapping underlying mechanisms have emerged via structural optimization of indole-3-carbinol and DIM, which may provide considerable therapeutic advantages over the parental compounds with respect to chemical stability and anti-tumor potency. Together, these agents might foster new strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
- China Medical University Hospital, Taichung 40402, Taiwan
| | - Chen-Hsun Tsai
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Samuel K. Kulp
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Ching-Shih Chen
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
22
|
Langer R, Feith M, Siewert JR, Wester HJ, Hoefler H. Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus. BMC Cancer 2008; 8:70. [PMID: 18331622 PMCID: PMC2270853 DOI: 10.1186/1471-2407-8-70] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 03/10/2008] [Indexed: 01/01/2023] Open
Abstract
Background Glucose regulated proteins (GRPs) are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Methods Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett) adenocarcinomas (n = 137) and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G) and overall survival. Results GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm) as compared to more advanced stages (pT2 and pT3) and normal tissue (p = 0.031). Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035). In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07). GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038). For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001) and less lymph node involvement (p = 0.036). Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or pT1sm) or advanced (pT3) tumor stages and no pT2 stage (p = 0.031). Conclusion We could demonstrate an association of GRP78 and GRP94 mRNA and protein expression with tumor stage and behaviour in esophageal adenocarcinomas. Increased expression of GRP78 may be responsible for controlling local tumor growth in early tumor stages, while high expression of GRP78 and GRP94 in advanced stages may be dependent from other factors like cellular stress reactions due to glucose deprivation, hypoxia or the hosts' immune response.
Collapse
Affiliation(s)
- Rupert Langer
- Institute of Pathology, TU München, München, Germany.
| | | | | | | | | |
Collapse
|
23
|
Gaube F, Wolfl S, Pusch L, Kroll TC, Hamburger M. Gene expression profiling reveals effects of Cimicifuga racemosa (L.) NUTT. (black cohosh) on the estrogen receptor positive human breast cancer cell line MCF-7. BMC Pharmacol 2007; 7:11. [PMID: 17880733 PMCID: PMC2194763 DOI: 10.1186/1471-2210-7-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 09/20/2007] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Extracts from the rhizome of Cimicifuga racemosa (black cohosh) are increasingly popular as herbal alternative to hormone replacement therapy (HRT) for the alleviation of postmenopausal disorders. However, the molecular mode of action and the active principles are presently not clear. Previously published data have been largely contradictory. We, therefore, investigated the effects of a lipophilic black cohosh rhizome extract and cycloartane-type triterpenoids on the estrogen receptor positive human breast cancer cell line MCF-7. RESULTS Both extract and purified compounds clearly inhibited cellular proliferation. Gene expression profiling with the extract allowed us to identify 431 regulated genes with high significance. The extract induced expression pattern differed from those of 17beta-estradiol or the estrogen receptor antagonist tamoxifen. We observed a significant enrichment of genes in an anti-proliferative and apoptosis-sensitizing manner, as well as an increase of mRNAs coding for gene products involved in several stress response pathways. These functional groups were highly overrepresented among all regulated genes. Also several transcripts coding for oxidoreductases were induced, as for example the cytochrome P450 family members 1A1 and 1B1. In addition, some transcripts associated with antitumor but also tumor-promoting activity were regulated. Real-Time RT-PCR analysis of 13 selected genes was conducted after treatment with purified compounds - the cycloartane-type triterpene glycoside actein and triterpene aglycons - showing similar expression levels compared to the extract. CONCLUSION No estrogenic but antiproliferative and proapoptotic gene expression was shown for black cohosh in MCF-7 cells at the transcriptional level. The effects may be results of the activation of different pathways. The cycloartane glycosides and - for the first time - their aglycons could be identified as an active principle in black cohosh.
Collapse
Affiliation(s)
- Friedemann Gaube
- Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Semmelweisstr. 10, 07743 Jena, Germany
| | - Stefan Wolfl
- Clinic of Internal Medicine II, University of Jena, Erlanger Allee 101, 07747 Jena, Germany
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimerfeld 364, 69120 Heidelberg, Germany
| | - Larissa Pusch
- Clinic of Internal Medicine II, University of Jena, Erlanger Allee 101, 07747 Jena, Germany
| | - Torsten C Kroll
- Clinic of Internal Medicine II, University of Jena, Erlanger Allee 101, 07747 Jena, Germany
| | - Matthias Hamburger
- Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Semmelweisstr. 10, 07743 Jena, Germany
- Department of Pharmaceutical Sciences, Institute of Pharmaceutical Biology, University of Basel, Klingelbergstr. 50, CH-4053 Basel, Switzerland
| |
Collapse
|
24
|
Hiss DC, Gabriels GA, Folb PI. Combination of tunicamycin with anticancer drugs synergistically enhances their toxicity in multidrug-resistant human ovarian cystadenocarcinoma cells. Cancer Cell Int 2007; 7:5. [PMID: 17439664 PMCID: PMC1865531 DOI: 10.1186/1475-2867-7-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 04/18/2007] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The pharmacologic modulatory effects of the antibiotic, tunicamycin (TM), on multidrug-resistant human UWOV2 ovarian cancer cells are reported. The UWOV2 cell line was derived from a cystadenocarcinoma in a patient refractory to combination chemotherapy with actinomycin D, vincristine (VCR), cis-diaminedichloroplatinum (II) (CDDP) and doxorubicin (DXR). In an attempt to explain drug resistance in this cell line, we examined the effects of TM on their sensitivity to various anticancer drugs, the uptake, efflux and retention of [3H]VCR, and their ability to bind [14C]DXR and [3H]azidopine (AZD), a photoaffinity label of the multidrug transporter, P-glycoprotein (Pgp). RESULTS TM effectively decreased the EC50 for DXR, EXR, VCR and CDDP, thus enhancing their cytotoxicity. The antibiotic also prolonged the intracellular retention time of [3H]VCR and increased the binding of both [14C]DXR and [3H]AZD to the cells. CONCLUSION It is concluded that the pharmacomodulatory effects of TM in these cells are mediated by global inhibition of protein and glycoprotein synthesis and synergistic interaction with antineoplastic drugs. The ability of TM to enhance the sensitivity of drug resistant tumour cells may have impact on the design and optimization of novel resistance modifiers to improve the efficacy of combination treatment of intractable neoplasms.
Collapse
Affiliation(s)
- Donavon C Hiss
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medical BioSciences, University of the Western Cape, 7535, Bellville, South Africa
| | - Gary A Gabriels
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Peter I Folb
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Medical Research Council, 7505, Tygerberg, South Africa
| |
Collapse
|
25
|
Cho SD, Yoon K, Chintharlapalli S, Abdelrahim M, Lei P, Hamilton S, Khan S, Ramaiah SK, Safe S. Nur77 agonists induce proapoptotic genes and responses in colon cancer cells through nuclear receptor-dependent and nuclear receptor-independent pathways. Cancer Res 2007; 67:674-683. [PMID: 17234778 DOI: 10.1158/0008-5472.can-06-2907] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nerve growth factor-induced Balpha (NGFI-Balpha, Nur77) is an orphan nuclear receptor with no known endogenous ligands; however, recent studies on a series of methylene-substituted diindolylmethanes (C-DIM) have identified 1,1-bis(3'-indolyl)-1-(phenyl)methane (DIM-C-Ph) and 1,1-bis(3'-indolyl)-1-(p-anisyl)methane (DIM-C-pPhOCH3) as Nur77 agonists. Nur77 is expressed in several colon cancer cell lines (RKO, SW480, HCT-116, HT-29, and HCT-15), and we also observed by immunostaining that Nur77 was overexpressed in colon tumors compared with normal colon tissue. DIM-C-Ph and DIM-C-pPhOCH3 decreased survival and induced apoptosis in RKO colon cancer cells, and this was accompanied by induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. The induction of apoptosis and TRAIL by DIM-C-pPhOCH3 was significantly inhibited by a small inhibitory RNA for Nur77 (iNur77); however, it was evident from RNA interference studies that DIM-C-pPhOCH3 also induced Nur77-independent apoptosis. Analysis of DIM-C-pPhOCH3-induced gene expression using microarrays identified several proapoptotic genes, and analysis by reverse transcription-PCR in the presence or absence of iNur77 showed that induction of programmed cell death gene 1 was Nur77 dependent, whereas induction of cystathionase and activating transcription factor 3 was Nur77 independent. DIM-C-pPhOCH3 (25 mg/kg/d) also inhibited tumor growth in athymic nude mice bearing RKO cell xenografts. These results show that Nur77-active C-DIM compounds represent a new class of anti-colon cancer drugs that act through receptor-dependent and receptor-independent pathways.
Collapse
Affiliation(s)
- Sung Dae Cho
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, College Station 77843-4466, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Savino JA, Evans JF, Rabinowitz D, Auborn KJ, Carter TH. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane. Mol Cancer Ther 2006; 5:556-63. [PMID: 16546969 DOI: 10.1158/1535-7163.mct-05-0355] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.
Collapse
Affiliation(s)
- John A Savino
- Department of Biological Sciences, St. John's University, Jamaica, New York, USA
| | | | | | | | | |
Collapse
|
27
|
Fan S, Meng Q, Auborn K, Carter T, Rosen EM. BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer 2006; 94:407-26. [PMID: 16434996 PMCID: PMC2361140 DOI: 10.1038/sj.bjc.6602935] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Indole-3-carbinol (I3C) and genistein are naturally occurring chemicals derived from cruciferous vegetables and soy, respectively, with potential cancer prevention activity for hormone-responsive tumours (e.g., breast and prostate cancers). Previously, we showed that I3C induces BRCA1 expression and that both I3C and BRCA1 inhibit oestrogen (E2)-stimulated oestrogen receptor (ER-α) activity in human breast cancer cells. We now report that both I3C and genistein induce the expression of both breast cancer susceptibility genes (BRCA1 and BRCA2) in breast (MCF-7 and T47D) and prostate (DU-145 and LNCaP) cancer cell types, in a time- and dose-dependent fashion. Induction of the BRCA genes occurred at low doses of I3C (20 μM) and genistein (0.5–1.0 μM), suggesting potential relevance to cancer prevention. A combination of I3C and genistein gave greater than expected induction of BRCA expression. Studies using small interfering RNAs (siRNAs) and BRCA expression vectors suggest that the phytochemical induction of BRCA2 is due, in part, to BRCA1. Functional studies suggest that I3C-mediated cytoxicity is, in part, dependent upon BRCA1 and BRCA2. Inhibition of E2-stimulated ER-α activity by I3C and genistein was dependent upon BRCA1; and inhibition of ligand-inducible androgen receptor (AR) activity by I3C and genistein was partially reversed by BRCA1-siRNA. Finally, we provide evidence suggesting that the phytochemical induction of BRCA1 expression is due, in part, to endoplasmic reticulum stress response signalling. These findings suggest that the BRCA genes are molecular targets for some of the activities of I3C and genistein.
Collapse
Affiliation(s)
- S Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057-1469, USA
| | - Q Meng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057-1469, USA
| | - K Auborn
- Department of Otolaryngology, North Shore-Long Island Jewish Research Institute, BoasMarks Biomedical Science Research Center, 350 Community Drive, Manhasset, New York 11030, USA
| | - T Carter
- Department of Otolaryngology, North Shore-Long Island Jewish Research Institute, BoasMarks Biomedical Science Research Center, 350 Community Drive, Manhasset, New York 11030, USA
| | - E M Rosen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057-1469, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057-1469, USA. E-mail:
| |
Collapse
|
28
|
Xue L, Firestone GL, Bjeldanes LF. DIM stimulates IFNgamma gene expression in human breast cancer cells via the specific activation of JNK and p38 pathways. Oncogene 2005; 24:2343-53. [PMID: 15735741 DOI: 10.1038/sj.onc.1208434] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
3,3'-Diindolylmethane (DIM) is a promising anticancer agent derived from Brassica vegetables, but the mechanisms of DIM action are largely unknown. We have shown that DIM can upregulate the expression and stimulate the secretion of interferon-gamma (IFNgamma) in the human MCF-7 breast cancer cell line. This novel effect may provide important clues to explain the anticancer effects of DIM because it is well known that IFNgamma plays an important role in preventing the development of primary and transplanted tumors. Utilizing promoter deletions, we show here that the region between -108 and -36 bp in the IFNgamma promoter, which contains two conserved and essential regulatory elements, is required for DIM-induced IFNgamma expression. DIM activates both JNK and p38 pathways, induces the phosphorylation of c-Jun and ATF-2, and increases the binding of the homodimer or heterodimer of c-Jun/ATF-2 to the proximal AP-1.CREB-ATF-binding element. Moreover, studies with specific enzyme inhibitors showed that up-stream Ca2+-dependent kinase(s) is required for the inducing effects of DIM in MCF-7 cells. These results establish that DIM-induced IFNgamma expression in human breast tumor cells is mediated by activation of both JNK and p38 pathways, which is ultimately dependent on intracellular calcium signaling.
Collapse
Affiliation(s)
- Ling Xue
- Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, Berkeley, CA 94720-3104, USA
| | | | | |
Collapse
|