1
|
Lee HK, Park T, Yoo H. Device Applications Enabled by Bandgap Engineering Through Quantum Dot Tuning: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5335. [PMID: 39517603 PMCID: PMC11547182 DOI: 10.3390/ma17215335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Quantum dots (QDs) are becoming essential materials for future scientific and real-world applications, owing to their interesting and distinct optical and electrical properties compared to their bulk-state counterparts. The ability to tune the bandgap of QDs based on size and composition-a key characteristic-opens up new possibilities for enhancing the performance of various optoelectronic devices. These advances could extend to cutting-edge applications such as ultrawide-band or dual-band photodetectors (PDs), optoelectronic logic gates, neuromorphic devices, and security functions. This paper revisits the recent progress in QD-embedded optoelectronic applications, focusing on bandgap tunability. The current limitations and challenges in advancing and realizing QD-based optoelectronic devices are also discussed.
Collapse
Affiliation(s)
- Ho Kyung Lee
- Smart Materials Research Center for IoT, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea
| | - Taehyun Park
- Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Tarasov AM, Sorokina LI, Dronova DA, Volovlikova O, Trifonov AY, Itskov SS, Tregubov AV, Shabaeva EN, Zhurina ES, Dubkov SV, Kozlov DV, Gromov D. Influence of the Structure of Hydrothermal-Synthesized TiO 2 Nanowires Formed by Annealing on the Photocatalytic Reduction of CO 2 in H 2O Vapor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1370. [PMID: 39195408 DOI: 10.3390/nano14161370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
The present study investigates the photocatalytic properties of hydrothermally synthesized TiO2 nanowires (NWs) for CO2 reduction in H2O vapor. It has been demonstrated that TiO2 NWs, thermally treated at 500-700 °C, demonstrate an almost tenfold higher yield of products compared to the known commercial powder TiO2 P25. It has been found that the best material is a combination of anatase, TiO2-B and rutile. The product yield increases with increasing heat treatment temperature of TiO2 NWs. This is associated with an increase in the degree of crystallinity of the material. It is shown that the best product yield of the CO2 reduction in H2O vapor is achieved when the TiO2 NW photocatalyst is heated to 100 °C.
Collapse
Affiliation(s)
- Andrey M Tarasov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Larisa I Sorokina
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Daria A Dronova
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Olga Volovlikova
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Alexey Yu Trifonov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
- National Research Centre "Kurchatov Institute", 1 Kurchatov Square, 123182 Moscow, Russia
| | - Sergey S Itskov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Aleksey V Tregubov
- S.P. Kapitsa Scientific Technological Research Institute, Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia
| | - Elena N Shabaeva
- S.P. Kapitsa Scientific Technological Research Institute, Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia
| | - Ekaterina S Zhurina
- S.P. Kapitsa Scientific Technological Research Institute, Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia
| | - Sergey V Dubkov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Dmitry V Kozlov
- S.P. Kapitsa Scientific Technological Research Institute, Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia
| | - Dmitry Gromov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, 119435 Moscow, Russia
| |
Collapse
|
3
|
Boruah A, Boro B, Paul R, Chang CC, Mandal S, Shrotri A, Pao CW, Mai BK, Mondal J. Site-Selective Zn-Metalation in Poly-Triphenyl Amine-based Porous Organic Polymer for Solid-Gas Phase CO 2 Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34437-34449. [PMID: 38940318 DOI: 10.1021/acsami.4c06198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Harvesting solar energy to produce value-added chemicals from carbon dioxide (CO2) presents a promising route for addressing the complexities of sustainable energy systems and environmental issues. In this context, the development of metal-coordinated porous organic polymers (POPs) offers a vital avenue for improving the photocatalytic performance of organic motifs. The current study presents a metal-integrated photocatalytic system (namely, Zn@BP-POP) developed via a one-pot Friedel-Crafts (F.C.) acylation strategy, for solid-gas phase photochemical CO2 reduction to CO (CO2RR). The postsynthetic incorporation of metal (Zn) active sites on the host polymeric backbone of BP-POP significantly influences the catalytic activity. Notably, Zn@BP-POP demonstrates good photocatalytic performance in the absence of any cocatalyst and photosensitizer yielding CO while impeding the competitive hydrogen evolution reaction (HER) from water. The experimental findings collectively propose that the observed catalytic activity and selectivity arise from the synergistic interplay between the singular zinc catalytic centers and the light-harvesting capacity of the highly conjugated polymeric backbone. Further, X-ray absorption spectroscopy (XAS) analysis has significantly highlighted the prominent role played by the ZnN2O4 single sites in the polymeric framework for activating the gaseous CO2 molecules. Further, time-dependent density functional theory (DFT) analysis also reveals the thermodynamic feasibility of CO2RR over HER under optimized reaction conditions. This work cumulatively presents an effective strategy to demonstrate the importance of metal-active sites and effectively establish their structure-activity relationship during photocatalysis.
Collapse
Affiliation(s)
- Ankita Boruah
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| | - Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
| | - Chia-Che Chang
- National Synchrotron Radiation Research Centre,101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Srayee Mandal
- Department of Chemical Sciences, IISER- Berhampur, Berhampur, Odisha 760010, India
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Centre,101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 United States
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| |
Collapse
|
4
|
Miyazaki M, Sugawara Y, Li YJ. Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:712-720. [PMID: 35957676 PMCID: PMC9344549 DOI: 10.3762/bjnano.13.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Surface photovoltage (SPV) measurements are a crucial way of investigating optoelectronic and photocatalytic semiconductors. The local SPV is generally measured consecutively by Kelvin probe force microscopy (KPFM) in darkness and under illumination, in which thermal drift degrades spatial and energy resolutions. In this study, we propose the method of AC bias Kelvin probe force microscopy (AC-KPFM), which controls the AC bias to nullify the modulated signal. We succeeded in directly measuring the local SPV by AC-KPFM with higher resolution, thanks to the exclusion of the thermal drift. We found that AC-KPFM can achieve a SPV response faster by about one to eight orders of magnitude than classical KPFM. Moreover, AC-KPFM is applicable in both amplitude modulation and frequency modulation mode. Thus, it contributes to advancing SPV measurements in various environments, such as vacuum, air, and liquids. This method can be utilized for direct measurements of changes in surface potential induced by modulated external disturbances.
Collapse
Affiliation(s)
- Masato Miyazaki
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Sugawara
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yan Jun Li
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Zhang L, Chu W, Zheng Q, Zhao J. Effects of oxygen vacancies on the photoexcited carrier lifetime in rutile TiO 2. Phys Chem Chem Phys 2022; 24:4743-4750. [PMID: 35142307 DOI: 10.1039/d1cp04248c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoexcited carrier lifetime in semiconductors plays a crucial role in solar energy conversion processes. The defects or impurities in semiconductors are usually proposed to introduce electron-hole (e-h) recombination centers and consequently reduce the photoexcited carrier lifetime. In this report, we investigate the effects of oxygen vacancies (OV) on the carrier lifetime in rutile TiO2, which has important applications in photocatalysis and photovoltaics. It is found that an OV introduces two excess electrons which form two defect states in the band gap. The lower state is localized on one Ti atom and behaves as a small polaron, and the higher one is a hybrid state contributed by three Ti atoms around the OV. Both the polaron and hybrid states exhibit strong electron-phonon (e-ph) coupling and their charge distributions become more and more delocalized when the temperature increases from 100 to 700 K. Such strong e-ph coupling and charge delocalization enhance the nonadibatic coupling between the electronic states along the hole relaxation path, where the defect states behave as intermediate states, leading to a distinct acceleration of e-h recombination. Our study provides valuable insights to understand the role of defects on photoexcited carrier lifetime in semiconductors.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Weibin Chu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
6
|
Silly MG. High resolution and time resolved photoemission spectroscopy for developing more efficient materials to reduce energy consumption and increase renewable energy production. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227301013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Due to the increase of energy consumption and the resulting ecological challenge, a collective awareness leads to the development of renewable energies and more efficient materials to increase the green energy production. Development of efficient photovoltaic materials is very closely related to their chemical and electronic properties. A better knowledge of these imbricated properties is needed, in addition to a better comprehension of their interplay with charge transport mechanisms. Exciton creation and recombination processes, charge transfer and charge collection processes take place at the surface and interface of the photoactive materials. Photoemission spectroscopy as chemical specific and surface sensitive spectroscopic technique is a method of choice on the study of physical phenomena at the origin of photoconversion efficiency. Time resolved photoemission spectroscopy has been recently renewed interest covering time scale from fs to more than seconds. It permits to probe the dynamics of relaxation of photoexcited charges and determine their lifetime. It finds application in various materials used in solar photovoltaics. In this paper, we define the physical and chemical properties determined by the combination of high resolution and time resolved photoemission spectroscopy. We show examples dealing with the development of renewable energy and energy consumption reduction in agreement with the current ecological trend for a better future.
Collapse
|
7
|
Valence Fluctuations in Yb(Al,Fe)B<sub>4</sub> Studied by Nanosecond-time-resolved Photoemission Spectroscopy Using Synchrotron Radiation. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2021. [DOI: 10.1380/ejssnt.2021.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Erratum: A Surface Science Approach to Understanding TiO<sub>2</sub> Photocatalyst: Correlation between Carrier Lifetime and Photocatalytic Activity. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2020. [DOI: 10.1380/ejssnt.2020.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|