1
|
Koschitzki K, Ivanova I, Berneburg M. [Progeroid syndromes : Aging, skin aging, and mechanisms of progeroid syndromes]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2023; 74:696-706. [PMID: 37650893 PMCID: PMC10480280 DOI: 10.1007/s00105-023-05212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Progeroid syndromes (PSs) are characterized by the premature onset of age-related pathologies. PSs display a wide range of heterogeneous pathological symptoms that also manifest during natural aging, including vision and hearing loss, atrophy, hair loss, progressive neurodegeneration, and cardiovascular defects. Recent advances in molecular pathology have led to a better understanding of the underlying mechanisms of these diseases. The genetic mutations underlying PSs are functionally linked to genome maintenance and repair, supporting the causative role of DNA damage accumulation in aging. While some of those genes encode proteins with a direct involvement in a DNA repair machinery, such as nucleotide excision repair (NER), others destabilize the genome by compromising the stability of the nuclear envelope, when lamin A is dysfunctional in Hutchinson-Gilford progeria syndrome (HGPS) or regulate the DNA damage response (DDR) such as the ataxia telangiectasia-mutated (ATM) gene. Understanding the molecular pathology of progeroid diseases is crucial in developing potential treatments to manage and prevent the onset of symptoms. This knowledge provides insight into the underlying mechanisms of premature aging and could lead to improved quality of life for individuals affected by progeroid diseases.
Collapse
Affiliation(s)
- Kevin Koschitzki
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland.
| | - Irina Ivanova
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Mark Berneburg
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| |
Collapse
|
2
|
Nucleotide Excision Repair Pathway Activity Is Inhibited by Airborne Particulate Matter (PM10) through XPA Deregulation in Lung Epithelial Cells. Int J Mol Sci 2022; 23:ijms23042224. [PMID: 35216341 PMCID: PMC8878008 DOI: 10.3390/ijms23042224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH–DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH–DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA–RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer.
Collapse
|
3
|
Ng YM, Coghi P, Ng JPL, Ali F, Wong VKW, Coluccini C. Synthesis and Coordination Properties of a Water-Soluble Material by Cross-Linking Low Molecular Weight Polyethyleneimine with Armed Cyclotriveratrilene. Polymers (Basel) 2021; 13:4133. [PMID: 34883636 PMCID: PMC8659696 DOI: 10.3390/polym13234133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, a full organic and water-soluble material was synthesized by coupling low molecular weight polyethylenimine (PEI-800) with cyclotriveratrilene (CTV). The water-soluble cross-linked polymer contains hydrophobic holes with a high coordination capability towards different organic drug molecules. The coordinating capability towards hydrophilic drugs (doxorubicin, gatifloxacin and sinomenine) and hydrophobic drugs (camptothecin and celastrol) was analyzed in an aqueous medium by using NMR, UV-Vis and emission spectroscopies. The coordination of drug molecules with the armed CTV unit through hydrophobic interactions was observed. In particular, celastrol exhibited more ionic interactions with the PEI moiety of the hosting system. In the case of doxorubicin, the host-guest detachment was induced by the addition of ammonium chloride, suggesting that the intracellular environment can facilitate the release of the drug molecules.
Collapse
Affiliation(s)
- Yoke Mooi Ng
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China;
| | - Jerome P. L. Ng
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (V.K.W.W.)
| | - Fayaz Ali
- Department Chemistry, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan;
| | - Vincent Kam Wai Wong
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (V.K.W.W.)
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| |
Collapse
|
4
|
The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat Commun 2021; 12:3153. [PMID: 34039990 PMCID: PMC8155215 DOI: 10.1038/s41467-021-23505-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csbm/m developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders. XPA-binding protein (XAB)-2 is the human homologue of the yeast pre-mRNA splicing factor Syf1. Here the authors use an in vivo biotinylation tagging approach to show XAB2’s role in DNA repair, RNA splicing and transcription during mammalian development.
Collapse
|
5
|
Nagel ZD, Kitange GJ, Gupta SK, Joughin BA, Chaim IA, Mazzucato P, Lauffenburger DA, Sarkaria JN, Samson LD. DNA Repair Capacity in Multiple Pathways Predicts Chemoresistance in Glioblastoma Multiforme. Cancer Res 2016; 77:198-206. [PMID: 27793847 DOI: 10.1158/0008-5472.can-16-1151] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022]
Abstract
Cancer cells can resist the effects of DNA-damaging therapeutic agents via utilization of DNA repair pathways, suggesting that DNA repair capacity (DRC) measurements in cancer cells could be used to identify patients most likely to respond to treatment. However, the limitations of available technologies have so far precluded adoption of this approach in the clinic. We recently developed fluorescence-based multiplexed host cell reactivation (FM-HCR) assays to measure DRC in multiple pathways. Here we apply a mathematical model that uses DRC in multiple pathways to predict cellular resistance to killing by DNA-damaging agents. This model, developed using FM-HCR and drug sensitivity measurements in 24 human lymphoblastoid cell lines, was applied to a panel of 12 patient-derived xenograft (PDX) models of glioblastoma to predict glioblastoma response to treatment with the chemotherapeutic DNA-damaging agent temozolomide. This work showed that, in addition to changes in O6-methylguanine DNA methyltransferase (MGMT) activity, small changes in mismatch repair (MMR), nucleotide excision repair (NER), and homologous recombination (HR) capacity contributed to acquired temozolomide resistance in PDX models and led to reduced relative survival prolongation following temozolomide treatment of orthotopic mouse models in vivo Our data indicate that measuring the combined status of MMR, HR, NER, and MGMT provided a more robust prediction of temozolomide resistance than assessments of MGMT activity alone. Cancer Res; 77(1); 198-206. ©2016 AACR.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Brian A Joughin
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
6
|
Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer. Proc Natl Acad Sci U S A 2010; 107:21725-30. [PMID: 21118987 DOI: 10.1073/pnas.0914772107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The molecular etiology of breast cancer has proven to be remarkably complex. Most individual oncogenes are disregulated in only approximately 30% of breast tumors, indicating that either very few molecular alterations are common to the majority of breast cancers, or that they have not yet been identified. In striking contrast, we now show that 19 of 19 stage I breast tumors tested with the functional unscheduled DNA synthesis assay exhibited a significant deficiency of DNA nucleotide excision repair (NER) capacity relative to normal epithelial tissue from disease-free controls (n = 23). Loss of DNA repair capacity, including the complex, damage-comprehensive NER pathway, results in genomic instability, a hallmark of carcinogenesis. By microarray analysis, mRNA expression levels for 20 canonical NER genes were reduced in representative tumor samples versus normal. Significant reductions were observed in 19 of these genes analyzed by the more sensitive method of RNase protection. These results were confirmed at the protein level for five NER gene products. Taken together, these data suggest that NER deficiency may play an important role in the etiology of sporadic breast cancer, and that early-stage breast cancer may be intrinsically susceptible to genotoxic chemotherapeutic agents, such as cis-platinum, whose damage is remediated by NER. In addition, reduced NER capacity, or reduced expression of NER genes, could provide a basis for the development of biomarkers for the identification of tumorigenic breast epithelium.
Collapse
|
7
|
Latimer JJ, Johnson JM, Miles TD, Dimsdale JM, Edwards RP, Kelley JL, Grant SG. Cell-type-specific level of DNA nucleotide excision repair in primary human mammary and ovarian epithelial cell cultures. Cell Tissue Res 2008; 333:461-7. [PMID: 18575893 DOI: 10.1007/s00441-008-0645-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 05/13/2008] [Indexed: 12/21/2022]
Abstract
DNA repair, a fundamental function of cellular metabolism, has long been presumed to be constitutive and equivalent in all cells. However, we have previously shown that normal levels of nucleotide excision repair (NER) can vary by 20-fold in a tissue-specific pattern. We have now successfully established primary cultures of normal ovarian tissue from seven women by using a novel culture system originally developed for breast epithelial cells. Epithelial cells in these cultures aggregated to form three-dimensional structures called "attached ovarian epispheres". The availability of these actively proliferating cell cultures allowed us to measure NER functionally and quantitatively by the unscheduled DNA synthesis (UDS) assay, a clinical test used to diagnose constitutive deficiencies in NER capacity. We determined that ovarian epithelial cells manifested an intermediate level of NER capacity in humans, viz., only 25% of that of foreskin fibroblasts, but still 2.5-fold higher than that of peripheral blood lymphocytes. This level of DNA repair capacity was indistinguishable from that of normal breast epithelial cells, suggesting that it might be characteristic of the epithelial cell type. Similar levels of NER activity were observed in cultures established from a disease-free known carrier of a BRCA1 truncation mutation, consistent with previous normal results shown in breast epithelium and blood lymphocytes. These results establish that at least three "normal" levels of such DNA repair occur in human tissues, and that NER capacity is epigenetically regulated during cell differentiation and development.
Collapse
Affiliation(s)
- Jean J Latimer
- Center for Environmental Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Latimer JJ, Rubinstein WS, Johnson JM, Kanbour-Shakir A, Vogel VG, Grant SG. Haploinsufficiency for BRCA1 is associated with normal levels of DNA nucleotide excision repair in breast tissue and blood lymphocytes. BMC MEDICAL GENETICS 2005; 6:26. [PMID: 15955237 PMCID: PMC1215484 DOI: 10.1186/1471-2350-6-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 06/14/2005] [Indexed: 12/17/2022]
Abstract
Background Screening mammography has had a positive impact on breast cancer mortality but cannot detect all breast tumors. In a small study, we confirmed that low power magnetic resonance imaging (MRI) could identify mammographically undetectable tumors by applying it to a high risk population. Tumors detected by this new technology could have unique etiologies and/or presentations, and may represent an increasing proportion of clinical practice as new screening methods are validated and applied. A very important aspect of this etiology is genomic instability, which is associated with the loss of activity of the breast cancer-predisposing genes BRCA1 and BRCA2. In sporadic breast cancer, however, there is evidence for the involvement of a different pathway of DNA repair, nucleotide excision repair (NER), which remediates lesions that cause a distortion of the DNA helix, including DNA cross-links. Case presentation We describe a breast cancer patient with a mammographically undetectable stage I tumor identified in our MRI screening study. She was originally considered to be at high risk due to the familial occurrence of breast and other types of cancer, and after diagnosis was confirmed as a carrier of a Q1200X mutation in the BRCA1 gene. In vitro analysis of her normal breast tissue showed no differences in growth rate or differentiation potential from disease-free controls. Analysis of cultured blood lymphocyte and breast epithelial cell samples with the unscheduled DNA synthesis (UDS) assay revealed no deficiency in NER. Conclusion As new breast cancer screening methods become available and cost effective, patients such as this one will constitute an increasing proportion of the incident population, so it is important to determine whether they differ from current patients in any clinically important ways. Despite her status as a BRCA1 mutation carrier, and her mammographically dense breast tissue, we did not find increased cell proliferation or deficient differentiation potential in breast epithelial cells from this patient which might have contributed to her cancer susceptibility. Although NER deficiency has been demonstrated repeatedly in blood samples from sporadic breast cancer patients, analysis of blood cultured lymphocytes and breast epithelial cells for this patient proves definitively that heterozygosity for inactivation of BRCA1 does not intrinsically confer this type of genetic instability. These data suggest that the mechanism of genomic instability driving the carcinogenic process may be fundamentally different in hereditary and sporadic breast cancer, resulting in different genotoxic susceptibilities, oncogene mutations, and a different molecular pathogenesis.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Biochemistry and Molecular Genetics Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Research Institute, Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Wendy S Rubinstein
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Evanston Northwestern Healthcare Center for Medical Genetics, Evanston, IL, USA
| | - Jennifer M Johnson
- Biochemistry and Molecular Genetics Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amal Kanbour-Shakir
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor G Vogel
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen G Grant
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Biochemistry and Molecular Genetics Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Research Institute, Magee-Womens Hospital, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|