1
|
Astudillo-Ortiz E, Babo PS, Gonçalves AI, Gomes ME. Advancements in dental bioreactor design: A comprehensive approach for application in dentistry. MethodsX 2024; 13:103026. [PMID: 39584001 PMCID: PMC11585832 DOI: 10.1016/j.mex.2024.103026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
The protocol introduces a novel multi-chamber bioreactor tailored for ex-vivo cell culture in dentistry research, emulating the 3D dental environment to propel research in dental applications. Constructed primarily from a polymeric material with a sophisticated 3D design, the bioreactor securely holds teeth structures within sealed chambers, enabling controlled perfusion of culture medium crucial for cell growth through a singular entry and exit point. An integrated electronic system manages flow and pressure, ensuring precise control over environmental conditions. This technology facilitates cell cultivation under conditions closely resembling natural tooth microenvironments, offering opportunities for varied studies from understanding cellular behavior in dental contexts to targeted therapy development. The bioreactor's amalgamation of polymeric components, 3D design, and electronic controls enhances adaptability and accuracy, rendering it a valuable asset in dental research. The report comprehensively delineates the bioreactor's design, operations, and potential applications, showcasing its significant contributions to dental research and regenerative medicine. By amalgamating advanced technologies, this bioreactor emerges as a pivotal tool for investigating cellular processes within dental structures, paving the way for scientific exploration and therapeutic advancements.
Collapse
Affiliation(s)
- Esteban Astudillo-Ortiz
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães 4805-017, Barco, Portugal
- ICVS/3 B's – PT Government Associate Laboratory, Guimarães 4805-017, Braga, Portugal
- Department of Endodontics, School of Dentistry, San Francisco de Quito University, Pampite and Diego de Robles, Quito 170901, Ecuador
| | - Pedro S. Babo
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães 4805-017, Barco, Portugal
- ICVS/3 B's – PT Government Associate Laboratory, Guimarães 4805-017, Braga, Portugal
| | - Ana I. Gonçalves
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães 4805-017, Barco, Portugal
- ICVS/3 B's – PT Government Associate Laboratory, Guimarães 4805-017, Braga, Portugal
| | - Manuela E. Gomes
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Guimarães 4805-017, Barco, Portugal
- ICVS/3 B's – PT Government Associate Laboratory, Guimarães 4805-017, Braga, Portugal
| |
Collapse
|
2
|
M M, Attawar S, BN M, Tisekar O, Mohandas A. Ex vivo lung perfusion and the Organ Care System: a review. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:23-36. [PMID: 38725180 PMCID: PMC11075812 DOI: 10.4285/ctr.23.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/29/2024] [Accepted: 03/08/2024] [Indexed: 05/14/2024]
Abstract
With the increasing prevalence of heart failure and end-stage lung disease, there is a sustained interest in expanding the donor pool to alleviate the thoracic organ shortage crisis. Efforts to extend the standard donor criteria and to include donation after circulatory death have been made to increase the availability of suitable organs. Studies have demonstrated that outcomes with extended-criteria donors are comparable to those with standard-criteria donors. Another promising approach to augment the donor pool is the improvement of organ preservation techniques. Both ex vivo lung perfusion (EVLP) for the lungs and the Organ Care System (OCS, TransMedics) for the heart have shown encouraging results in preserving organs and extending ischemia time through the application of normothermic regional perfusion. EVLP has been effective in improving marginal or borderline lungs by preserving and reconditioning them. The use of OCS is associated with excellent short-term outcomes for cardiac allografts and has improved utilization rates of hearts from extended-criteria donors. While both EVLP and OCS have successfully transitioned from research to clinical practice, the costs associated with commercially available systems and consumables must be considered. The ex vivo perfusion platform, which includes both EVLP and OCS, holds the potential for diverse and innovative therapies, thereby transforming the landscape of thoracic organ transplantation.
Collapse
Affiliation(s)
- Menander M
- Institute of Heart and Lung Transplant, Krishna Institute of Medical Sciences (KIMS) Hospital, Secunderabad, India
| | - Sandeep Attawar
- Institute of Heart and Lung Transplant, Krishna Institute of Medical Sciences (KIMS) Hospital, Secunderabad, India
| | - Mahesh BN
- Institute of Heart and Lung Transplant, Krishna Institute of Medical Sciences (KIMS) Hospital, Secunderabad, India
| | - Owais Tisekar
- Institute of Heart and Lung Transplant, Krishna Institute of Medical Sciences (KIMS) Hospital, Secunderabad, India
| | - Anoop Mohandas
- Institute of Heart and Lung Transplant, Krishna Institute of Medical Sciences (KIMS) Hospital, Secunderabad, India
| |
Collapse
|
3
|
Development and Characterization of a Nonelectronic Versatile Oxygenating Perfusion System for Tissue Preservation. Ann Biomed Eng 2022; 50:978-990. [PMID: 35648279 DOI: 10.1007/s10439-022-02977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022]
Abstract
Oxygenated machine perfusion of human organs has been shown to improve both preservation quality and time duration when compared to the current gold standard: static cold storage. However, existing machine perfusion devices designed for preservation and transportation of transplantable organs are too complicated and organ-specific to merit use as a solution for all organs. This work presents a novel, portable, and nonelectronic device potentially capable of delivering oxygenated machine perfusion to a variety of organs. An innovative pneumatic circuit system regulates a compressed oxygen source that cyclically inflates and deflates silicone tubes, which function as both the oxygenator and perfusion pump. Different combinations of silicone tubes in single or parallel configurations, with lengths ranging from 1.5 to 15.2 m, were evaluated at varying oxygen pressures from 27.6 to 110.3 kPa. The silicone tubes in parallel configurations produced higher peak perfusion pressures (70% increase), mean flow rates (102% increase), and oxygenation rates (268% increase) than the single silicone tubes that had equivalent total lengths. While pumping against a vascular resistance element that mimicked a kidney, the device achieved perfusion pressures (8.4-131.6 mmHg), flow rates (2.0-40.2 mL min-1), and oxygenation rates (up to 388 μmol min-1) that are consistent with values used in previous kidney preservation studies. The nonelectronic device achieved those perfusion parameters using 4.4 L min-1 of oxygen to operate. These results demonstrate that oxygenated machine perfusion can be successfully achieved without any electronic components.
Collapse
|
4
|
See Hoe LE, Wildi K, Obonyo NG, Bartnikowski N, McDonald C, Sato K, Heinsar S, Engkilde-Pedersen S, Diab S, Passmore MR, Wells MA, Boon AC, Esguerra A, Platts DG, James L, Bouquet M, Hyslop K, Shuker T, Ainola C, Colombo SM, Wilson ES, Millar JE, Malfertheiner MV, Reid JD, O'Neill H, Livingstone S, Abbate G, Sato N, He T, von Bahr V, Rozencwajg S, Byrne L, Pimenta LP, Marshall L, Nair L, Tung JP, Chan J, Haqqani H, Molenaar P, Li Bassi G, Suen JY, McGiffin DC, Fraser JF. A clinically relevant sheep model of orthotopic heart transplantation 24 h after donor brainstem death. Intensive Care Med Exp 2021; 9:60. [PMID: 34950993 PMCID: PMC8702587 DOI: 10.1186/s40635-021-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Heart transplantation (HTx) from brainstem dead (BSD) donors is the gold-standard therapy for severe/end-stage cardiac disease, but is limited by a global donor heart shortage. Consequently, innovative solutions to increase donor heart availability and utilisation are rapidly expanding. Clinically relevant preclinical models are essential for evaluating interventions for human translation, yet few exist that accurately mimic all key HTx components, incorporating injuries beginning in the donor, through to the recipient. To enable future assessment of novel perfusion technologies in our research program, we thus aimed to develop a clinically relevant sheep model of HTx following 24 h of donor BSD.
Methods BSD donors (vs. sham neurological injury, 4/group) were hemodynamically supported and monitored for 24 h, followed by heart preservation with cold static storage. Bicaval orthotopic HTx was performed in matched recipients, who were weaned from cardiopulmonary bypass (CPB), and monitored for 6 h. Donor and recipient blood were assayed for inflammatory and cardiac injury markers, and cardiac function was assessed using echocardiography. Repeated measurements between the two different groups during the study observation period were assessed by mixed ANOVA for repeated measures.
Results Brainstem death caused an immediate catecholaminergic hemodynamic response (mean arterial pressure, p = 0.09), systemic inflammation (IL-6 - p = 0.025, IL-8 - p = 0.002) and cardiac injury (cardiac troponin I, p = 0.048), requiring vasopressor support (vasopressor dependency index, VDI, p = 0.023), with normalisation of biomarkers and physiology over 24 h. All hearts were weaned from CPB and monitored for 6 h post-HTx, except one (sham) recipient that died 2 h post-HTx. Hemodynamic (VDI - p = 0.592, heart rate - p = 0.747) and metabolic (blood lactate, p = 0.546) parameters post-HTx were comparable between groups, despite the observed physiological perturbations that occurred during donor BSD. All p values denote interaction among groups and time in the ANOVA for repeated measures. Conclusions We have successfully developed an ovine HTx model following 24 h of donor BSD. After 6 h of critical care management post-HTx, there were no differences between groups, despite evident hemodynamic perturbations, systemic inflammation, and cardiac injury observed during donor BSD. This preclinical model provides a platform for critical assessment of injury development pre- and post-HTx, and novel therapeutic evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00425-4.
Collapse
Affiliation(s)
- Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia. .,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia. .,School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| | - Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Cardiovascular Research Institute Basel, Basel, Switzerland
| | - Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Wellcome Trust Centre for Global Health Research, Imperial College London, London, UK.,Initiative to Develop African Research Leaders (IDeAL), Kilifi, Kenya
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Charles McDonald
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Department of Anaesthesia and Perfusion, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Second Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Sanne Engkilde-Pedersen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia
| | - Sara Diab
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Ai-Ching Boon
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Arlanna Esguerra
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia
| | - David G Platts
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lynnette James
- Department of Cardiac Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Tristan Shuker
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Sebastiano M Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Emily S Wilson
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan E Millar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Maximillian V Malfertheiner
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Regensburg, Germany
| | - Janice D Reid
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Hollier O'Neill
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Ting He
- Department of Cardiac Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Viktor von Bahr
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sacha Rozencwajg
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Pitié-Salpêtrière University Hospital, Paris, France
| | - Liam Byrne
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,The Canberra Hospital Intensive Care, Garran, ACT, Australia.,Australia National University, Canberra, ACT, Australia
| | - Leticia P Pimenta
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Lachlan Marshall
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Department of Cardiac Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital, Brisbane, QLD, Australia
| | - Lawrie Nair
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital, Brisbane, QLD, Australia
| | - John-Paul Tung
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia.,Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jonathan Chan
- Prince Charles Hospital, Brisbane, QLD, Australia.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Haris Haqqani
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Prince Charles Hospital, Brisbane, QLD, Australia
| | - Peter Molenaar
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David C McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, VIC, Australia.,Monash University, Melbourne, VIC, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Tong CKW, Khush KK. New Approaches to Donor Selection and Preparation in Heart Transplantation. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021; 23:28. [PMID: 33776401 PMCID: PMC7985579 DOI: 10.1007/s11936-021-00906-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Purpose of review With increasing survival of patients with stage D heart failure, the demand for heart transplantation has increased. The supply of donor hearts remains relatively limited. Strategies have been investigated and new technologies have been developed to expand the current donor pool. These new approaches will be discussed herein. Recent findings Donor hearts are often considered “marginal” due to risk factors such as older age, size mismatch with the intended recipient, prolonged ischemic time, presence of left ventricular hypertrophy, and hepatitis B/C infection. We reviewed recent data regarding the use of donor hearts with these risk factors and suggest ways to safely liberalize current donor heart acceptance criteria. New technologies such as temperature-controlled transport systems and ex vivo cardiac perfusion methods have also demonstrated promising short-term and intermediate outcomes as compared with routine cold storage, by promoting heart preservation and enabling heart procurement from remote sites with shorter cold ischemic time. Recent use of hearts from donation after circulatory death donors has demonstrated comparable outcomes to conventional donation after brain death, which can further expand the current donor pool. Summary Careful selection of “marginal” donor hearts, use of ex vivo cardiac perfusion, and acceptance of hearts after circulatory death may expand our current cardiac donor pool with comparable outcomes to conventional donor selection and preparation methods.
Collapse
Affiliation(s)
- Calvin K W Tong
- Cardiovascular Medicine, Stanford University, 300 Pasteur Drive, Falk CVRC 263, Stanford, CA 94305 USA
| | - Kiran K Khush
- Cardiovascular Medicine, Stanford University, 300 Pasteur Drive, Falk CVRC 263, Stanford, CA 94305 USA
| |
Collapse
|
6
|
Raffel N, Dittrich R, Orlowski P, Tischer H, Söder S, Erber R, Hoffmann I, Beckmann MW, Lotz L. Is Ovarian Tissue Transport at Supra-zero Temperatures Compared to Body Temperature Optimal for Follicle Survival? In Vivo 2020; 34:533-541. [PMID: 32111751 DOI: 10.21873/invivo.11805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Transportation of ovarian cortex prior to freezing is used clinically; however, basic investigations of ovarian storage are limited and the question remains what temperature is optimal for transport over long distances and time periods. The aim of this study was to evaluate the rate of follicular loss over various time periods under two different temperatures and assess whether ovarian follicle viability is affected following cryopreservation and thawing subsequent to the transportation of ovarian tissue. MATERIALS AND METHODS Pig ovaries were transported at 4°C (n=10) or at 38°C (n=10) prior to cryopreservation. At 0, 4, 12 and 24 h tissues were fixed for histological examination and a LIVE/DEAD Assay. At the same time-points ovarian tissues were cryopreserved and analysed after thawing. RESULTS Histological evaluation and LIVE/DEAD Assay of freshly transported ovarian tissue showed significantly better follicle survival at 4°C during transportation duration. In cryopreserved ovarian tissues the LIVE/DEAD Assay showed a significant difference in the number of intact and dead follicles at 24 h in favor of 4°C (p<0.05). CONCLUSION Ovarian tissue transportation should be kept at a minimum to prevent potential damage.
Collapse
Affiliation(s)
- Nathalie Raffel
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Orlowski
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hannah Tischer
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Söder
- Institute of Pathology, Coburg Hospital, Coburg, Germany
| | - Ramona Erber
- Institute of Pathology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ine Hoffmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Lotz
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Normothermic Ex Vivo Heart Perfusion: Effects of Live Animal Blood and Plasma Cross Circulation. ASAIO J 2018; 63:766-773. [PMID: 28394815 DOI: 10.1097/mat.0000000000000583] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Prolonged normothermic ex vivo heart perfusion could transform cardiac transplantation. To help identify perfusate components that might enable long-term perfusion, we evaluated the effects of cross-circulated whole blood and cross-circulated plasma from a live paracorporeal animal on donor porcine hearts preserved via normothermic ex vivo heart perfusion. Standard perfusion (SP; n = 40) utilized red blood cell/plasma perfusate and Langendorff technique for a goal of 12 hours. Cross-circulation groups used a similar circuit with the addition of cross-circulated venous whole blood (XC-blood; n = 6) or cross-circulated filtered plasma (XC-plasma; n = 7) between a live paracorporeal pig under anesthesia and the perfusate reservoir. Data included oxygen metabolism, vascular resistance, lactate production, left ventricular function, myocardial electrical impedance, and histopathologic injury score. All cross-circulation hearts were successfully perfused for 12 hours, compared with 22 of 40 SP hearts (55%; p = 0.002). Both cross-circulation groups demonstrated higher oxygen consumption and vascular resistance than standard hearts from hours 3-12. No significant differences were seen between XC-blood and XC-plasma hearts in any variable, including left ventricular dP/dT after 12 hours (1478 ± 700 mm Hg/s vs. 872 ± 500; p = 0.17). We conclude that cross circulation of whole blood or plasma from a live animal improves preservation of function of perfused hearts, and cross-circulated plasma performs similarly to cross-circulated whole blood.
Collapse
|
8
|
Over-expression of growth differentiation factor 15 (GDF15) preventing cold ischemia reperfusion (I/R) injury in heart transplantation through Foxo3a signaling. Oncotarget 2018; 8:36531-36544. [PMID: 28388574 PMCID: PMC5482674 DOI: 10.18632/oncotarget.16607] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Ischemia reperfusion (I/R) injury which inevitably occurs during heart transplantation is the major factor leading to organ failure and graft rejection. In order to develop new therapies to prevent I/R injury, we used both a murine heart transplantation model with 24 hour cold I/R and an in vitro cell culture system to determine whether growth differentiation factor 15 (GDF15) is a protective factor in preventing I/R injury in heart transplantation and to further investigate underlying mechanisms of I/R injury. We found that cold I/R caused severe damage to the endocardium, epicardium and myocardium of heart grafts from wild type C57BL/6 mice, whereas grafts from GDF15 transgenic (TG) mice showed less damage as demonstrated by decreased cell apoptosis/death, decreased neutrophils infiltration and the preservation of the normal structure of the heart. Over-expression of GDF15 reduced expression of phosphorylated RelA p65, pre-inflammatory and pro-apoptotic genes while it enhanced Foxo3a phosphorylation in vitro and in vivo. Over-expression of GDF15 inhibited cell apoptosis/death and reduced neutrophil infiltration. In conclusion, this study, for the first time, demonstrates that GDF15 is a promising target for preventing cold I/R injury in heart transplantation. This study also shows that the resultant protective effects are mediated by the Foxo3 and NFκB signaling pathways.
Collapse
|
9
|
Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death. Int J Mol Sci 2016; 17:ijms17060958. [PMID: 27322252 PMCID: PMC4926491 DOI: 10.3390/ijms17060958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Heart transplantation (HTx) is the ultimate treatment for end-stage heart failure. The number of patients on waiting lists for heart transplants, however, is much higher than the number of available organs. The shortage of donor hearts is a serious concern since the population affected by heart failure is constantly increasing. Furthermore, the long-term success of HTx poses some challenges despite the improvement in the management of the short-term complications and in the methods to limit graft rejection. Myocardial injury occurs during transplantation. Injury initiated in the donor as result of brain or cardiac death is exacerbated by organ procurement and storage, and is ultimately amplified by reperfusion injury at the time of transplantation. The innate immune system is a mechanism of first-line defense against pathogens and cell injury. Innate immunity is activated during myocardial injury and produces deleterious effects on the heart structure and function. Here, we briefly discuss the role of the innate immunity in the initiation of myocardial injury, with particular focus on the Toll-like receptors and inflammasome, and how to potentially expand the donor population by targeting the innate immune response.
Collapse
|
10
|
Jia J, Li J, Jiang L, Zhang J, Chen S, Wang L, Zhou Y, Xie H, Zhou L, Zheng S. Protective effect of remote limb ischemic perconditioning on the liver grafts of rats with a novel model. PLoS One 2015; 10:e0121972. [PMID: 25785455 PMCID: PMC4364967 DOI: 10.1371/journal.pone.0121972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/05/2015] [Indexed: 12/16/2022] Open
Abstract
Background Remote ischemic conditioning (RIC) is a known manual conditioning to decrease ischemic reperfusion injury (IRI) but not increase ischemic time. Here we tried to establish a rat RIC model of liver transplantation (LT), optimize the applicable protocols and investigate the protective mechanism. Methods The RIC model was developed by a standard tourniquet. Sprague-Dawley rats were assigned randomly to the sham operated control (N), standard rat liver transplantation (OLT) and RIC groups. According to the different protocols, RIC group was divided into 3 subgroups (10min×3, n = 6; 5min×3, n = 6; 1min×3, n = 6)respectively. Serum transaminases (ALT, AST), creatine kinase (CK), histopathologic changes, malondialdehyde (MDA), myeloperoxidase (MPO) and expressions of p-Akt were evaluated. Results Compared with the OLT group, the grafts subjected to RIC 5min*3 algorithm showed significant reduction of morphological damage and improved the graft function. Also, production of reactive oxygen species (MDA) and neutrophil accumulation (MPO) were markedly depressed and p-Akt was upregulated. Conclusion In conclusion, we successfully established a novel model of RIC in rat LT, the optimal RIC 5min*3 algorithm seemed to be more efficient to alleviate IRI of the liver graft in both functional and morphological categories, which due to its antioxidative, anti-inflammation activities and activating PI3K Akt pathway.
Collapse
Affiliation(s)
- Junjun Jia
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhui Li
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jiang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shasha Chen
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanfei Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
11
|
Minasian SM, Galagudza MM, Dmitriev YV, Karpov AA, Vlasov TD. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg 2014; 20:510-9. [PMID: 25538253 DOI: 10.1093/icvts/ivu432] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The methods of donor heart preservation are aimed at minimizing graft dysfunction caused by ischaemia-reperfusion injury (IRI) which inevitably occurs during the ex vivo transport interval. At present, the standard technique of heart preservation is cardiac arrest followed by static cold storage in a crystalloid heart preservation solution (HPS). This technique ensures an acceptable level of heart protection against IRI for <6 h. In clinical trials, comparable levels of myocardial protection against IRI were provided by various HPSs. The growing shortage of donor hearts is one of the major factors stimulating the development of new techniques of heart preservation. Here, we summarize new HPS formulations and provide a focus for optimization of the composition of existing HPSs. Such methods of donor heart preservation as machine perfusion, preservation at sub-zero temperature and oxygen persufflation are also discussed. Furthermore, we review experimental data showing that pre- and post-conditioning of the cardiac graft can improve its function when used in combination with cold storage. The evidence on the feasibility of cardiac donation after circulatory death, as well as the techniques of heart reconditioning after a period of warm ischaemia, is presented. The implementation of new techniques of donor heart preservation may contribute to the use of hearts from extended criteria donors, thereby expanding the total donor pool.
Collapse
Affiliation(s)
- Sarkis M Minasian
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Yuri V Dmitriev
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation
| | - Andrey A Karpov
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Timur D Vlasov
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| |
Collapse
|
12
|
Iyer A, Kumarasinghe G, Hicks M, Watson A, Gao L, Doyle A, Keogh A, Kotlyar E, Hayward C, Dhital K, Granger E, Jansz P, Pye R, Spratt P, Macdonald PS. Primary graft failure after heart transplantation. J Transplant 2011; 2011:175768. [PMID: 21837269 PMCID: PMC3151502 DOI: 10.1155/2011/175768] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022] Open
Abstract
Primary graft failure (PGF) is a devastating complication that occurs in the immediate postoperative period following heart transplantation. It manifests as severe ventricular dysfunction of the donor graft and carries significant mortality and morbidity. In the last decade, advances in pharmacological treatment and mechanical circulatory support have improved the outlook for heart transplant recipients who develop this complication. Despite these advances in treatment, PGF is still the leading cause of death in the first 30 days after transplantation. In today's climate of significant organ shortages and growing waiting lists, transplant units worldwide have increasingly utilised "marginal donors" to try and bridge the gap between "supply and demand." One of the costs of this strategy has been an increased incidence of PGF. As the threat of PGF increases, the challenges of predicting and preventing its occurrence, as well as the identification of more effective treatment modalities, are vital areas of active research and development.
Collapse
Affiliation(s)
- Arjun Iyer
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gayathri Kumarasinghe
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Mark Hicks
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Alasdair Watson
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Ling Gao
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Aoife Doyle
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Anne Keogh
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Eugene Kotlyar
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Christopher Hayward
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Kumud Dhital
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Emily Granger
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Paul Jansz
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Roger Pye
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Phillip Spratt
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Peter Simon Macdonald
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
13
|
Organ Donation : Intensive Care Issues in Managing Brain Dead. Med J Armed Forces India 2011; 65:155-60. [PMID: 27408224 DOI: 10.1016/s0377-1237(09)80132-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 12/05/2008] [Indexed: 01/29/2023] Open
Abstract
Organ donation and transplantation is one of the most powerful and dramatic practices in modern medicine. It is the pinnacle of centuries of dreams, massive amounts of accrued knowledge and impressive technical developments. One organ donor has the potential of saving more than five lives and impacting the quality of life of many others via tissue donation. The clinical team has a responsibility to the donor families and the recipient patient to do everything possible to provide best practices supported by the best evidence. These standardized best practices should come from the published evidence which is adapted for use in the specific environment, culture, and infrastructure of the institution.
Collapse
|
14
|
Gao L, Tsun J, Sun L, Kwan J, Watson A, Macdonald PS, Hicks M. Critical role of the STAT3 pathway in the cardioprotective efficacy of zoniporide in a model of myocardial preservation - the rat isolated working heart. Br J Pharmacol 2011; 162:633-47. [PMID: 20942815 PMCID: PMC3041253 DOI: 10.1111/j.1476-5381.2010.01071.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/23/2010] [Accepted: 09/21/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Ischemia-reperfusion injury plays an important role in the development of primary allograft failure after heart transplantation. Inhibition of the Na+/H+ exchanger is one of the most promising therapeutic strategies for treating ischemia-reperfusion injury. Here we have characterized the cardioprotective efficacy of zoniporide and the underlying mechanisms in a model of myocardial preservation using rat isolated working hearts. EXPERIMENTAL APPROACH Rat isolated hearts subjected to 6 h hypothermic (1-4°C) storage followed by 45 min reperfusion at 37°C were treated with zoniporide at different concentrations and timing. Recovery of cardiac function, levels of total and phosphorylated protein kinase B, extracellular signal-regulated kinase 1/2, glycogen synthase kinase-3β and STAT3 as well as cleaved caspase 3 were measured at the end of reperfusion. Lactate dehydrogenase release into coronary effluent before and post-storage was also measured. KEY RESULTS Zoniporide concentration-dependently improved recovery of cardiac function after reperfusion. The functional recovery induced by zoniporide was accompanied by up-regulation of p-extracellular signal-regulated kinase 1/2 and p-STAT3, and by reduction in lactate dehydrogenase release and cleaved caspase 3. There were no significant differences in any of the above indices when zoniporide was administered before, during or after ischemia. The STAT3 inhibitor, stattic, abolished zoniporide-induced improvements in functional recovery and up-regulation of p-STAT3 after reperfusion. CONCLUSIONS AND IMPLICATIONS Zoniporide is a potent cardioprotective agent and activation of STAT3 plays a critical role in the cardioprotective action of zoniporide. This agent shows promise as a supplement to storage solutions to improve preservation of donor hearts.
Collapse
Affiliation(s)
- L Gao
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Baker TA, Geng Q, Romero J, Picken MM, Gamelli RL, Majetschak M. Prolongation of myocardial viability by proteasome inhibition during hypothermic organ preservation. Biochem Biophys Res Commun 2010; 401:548-53. [PMID: 20875792 DOI: 10.1016/j.bbrc.2010.09.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/22/2010] [Indexed: 12/28/2022]
Abstract
Recently, we provided evidence for a possible role of the cardiac proteasome during ischemia, suggesting that a subset of 26S proteasomes is a cell-destructive protease, which is activated as the cellular energy supply declines. Although proteasome inhibition during cold ischemia (CI) reduced injury of ischemic hearts, it remains unknown whether these beneficial effects are maintained throughout reperfusion, and thus, may have pathophysiological relevance. Therefore, we evaluated the effects of epoxomicin (specific proteasome inhibitor) in a rat heterotopic heart transplantation model. Donor hearts were arrested with University of Wisconsin solution (UW) and stored for 12 h/24 h in 4 °C UW±epoxomicin, followed by transplantation. Efficacy of epoxomicin was confirmed by proteasome peptidase activity measurements and analyses of myocardial ubiquitin pools. After 12hCI, troponin I content of UW was lower with epoxomicin. Although all hearts after 12hCI started beating spontaneously, addition of epoxomicin to UW during CI reduced cardiac edema and preserved the ultrastructural integrity of the post-ischemic cardiomyocyte. After 24hCI in UW±epoxomicin, hearts did not regain contractility. When hearts were perfused with epoxomicin during cardioplegia, the cardiac proteasome was inhibited immediately, all of these hearts started beating after 24hCI in UW plus epoxomicin and cardiac edema and myocardial ultrastructure were comparable to hearts after 12hCI. Epoxomicin did not affect markers of lipid peroxidation or neutrophil infiltration in post-ischemic hearts. These data further support the concept that proteasome activation during ischemia is of pathophysiological relevance and suggest proteasome inhibition as a promising approach to improve organ preservation strategies.
Collapse
Affiliation(s)
- Todd A Baker
- Burn and Shock Trauma Institute, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | | | | | | | | | | |
Collapse
|
16
|
Geng Q, Romero J, Saini V, Baker TA, Picken MM, Gamelli RL, Majetschak M. A subset of 26S proteasomes is activated at critically low ATP concentrations and contributes to myocardial injury during cold ischemia. Biochem Biophys Res Commun 2010; 390:1136-41. [PMID: 19944202 DOI: 10.1016/j.bbrc.2009.10.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/13/2009] [Indexed: 12/24/2022]
Abstract
Molecular mechanisms leading to myocardial injury during warm or cold ischemia are insufficiently understood. Although proteasomes are thought to contribute to myocardial ischemia-reperfusion injury, their roles during the ischemic period remain elusive. Because donor hearts are commonly exposed to prolonged global cold ischemia prior to cardiac transplantation, we evaluated the role and regulation of the proteasome during cold ischemic storage of rat hearts in context of the myocardial ATP content. When measured at the actual tissue ATP concentration, cardiac proteasome peptidase activity increased by 225% as ATP declined during cold ischemic storage of hearts in University of Wisconsin (UW) solution for up to 48h. Addition of the specific proteasome inhibitor epoxomicin to the UW solution inhibited proteasome activity in the cardiac extracts, significantly reduced edema formation and preserved the ultrastructural integrity of the cardiomyocyte. Utilizing purified 20S/26S proteasome enzyme preparations, we demonstrate that this activation can be attributed to a subset of 26S proteasomes which are stable at ATP concentrations far below physiological levels, that ATP negatively regulates its activity and that maximal activation occurs at ATP concentrations in the low mumol/L range. These data suggest that proteasome activation is a pathophysiologically relevant mechanism of cold ischemic myocardial injury. A subset of 26S proteasomes appears to be a cell-destructive protease that is activated as ATP levels decline. Proteasome inhibition during cold ischemia preserves the ultrastructural integrity of the cardiomyocyte.
Collapse
Affiliation(s)
- Qing Geng
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Corwin WL, Baust JM, Vanbuskirk RG, Baust JG. In Vitro Assessment of Apoptosis and Necrosis Following Cold Storage in a Human Airway Cell Model. Biopreserv Biobank 2009; 7:19-27. [PMID: 22087352 DOI: 10.1089/bio.2009.0002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 03/16/2009] [Indexed: 11/13/2022] Open
Abstract
As advances in medical technology improve the efficacy of cell and tissue transplantation, a void remains in our knowledge base as to the specific molecular responses of cells to low-temperature storage. While much focus has been given to solution formulation for tissue perfusion during storage, investigations into cold exposure-induced complex molecular changes remain limited. The intent of this study was to quantify the levels of cell death following hypothermic storage in a lung cell model, establishing a foundation for future in-depth molecular analysis. Normal human lung fibroblasts (IMR-90) were stored for 1 day or 2 days and small airway epithelial cells (SAEC) were stored for 5 days or 7 days at 4°C in complete media, ViaSpan, or ViaSpan + pan-caspase (VI) inhibitor. (Poststorage viability was assessed for 3 days using alamarBlue(™).) Sample analysis revealed that IMR-90 cells stored in ViaSpan remained 80% (±9) viable after 1 day of storage and 21% (±7) viable after 2 days of storage. SAEC cells stored in ViaSpan remained 81% (±5) viable after 5 days and 28% (±7) after 7 days. Microfluidic flow cytometry analysis of the apoptotic and necrotic populations in the ViaSpan-stored samples revealed that in the IMR-90 cells stored for 2 days, 7% of the population was apoptotic at 4-h poststorage, while ∼70% was identified as necrotic. Analysis of the SAEC cell system following 7 days of ViaSpan storage revealed an apoptotic peak of 19% at 4-h poststorage and a corresponding necrotic peak of 19%. Caspase inhibition during hypothermic storage increased viability 33% for IMR-90 and 25% for SAEC. Data revealed a similar pattern of cell death, through both apoptosis and necrosis, once the onset of cold storage failure began, implying a potential conserved mechanism of cold-induced cell death. These data highlight the critical need for a more in-depth understanding of the molecular changes that occur as a result of cold exposure in cells and tissues.
Collapse
|
18
|
Kohmoto J, Nakao A, Sugimoto R, Wang Y, Zhan J, Ueda H, McCurry KR. Carbon monoxide-saturated preservation solution protects lung grafts from ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2008; 136:1067-75. [PMID: 18954651 DOI: 10.1016/j.jtcvs.2008.06.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/28/2008] [Accepted: 06/15/2008] [Indexed: 01/04/2023]
Abstract
OBJECTIVES In previous work we have demonstrated that delivery of low concentrations (250 ppm) of carbon monoxide by means of inhalation to donors, recipients, or both protects transplanted lungs from ischemia-reperfusion injury (improved gas exchange, diminished intragraft and systemic inflammation, and retention of graft vascular endothelial cell ultrastructure). In this study we examined whether delivery of carbon monoxide to lung grafts in the preservation solution could protect against lung ischemia-reperfusion injury. METHODS Orthotopic left lung transplantation was performed in syngeneic Lewis to Lewis rats. Grafts were preserved in University of Wisconsin solution with or without (control solution) carbon monoxide at 4 degrees C for 6 hours. Carbon monoxide gas (5% or 100%) was bubbled into University of Wisconsin solution at 4 degrees C for 5 minutes before use. RESULTS In control animals, ischemia-reperfusion injury resulted in significant deterioration of graft function and was associated with a massive cellular infiltrate 2 hours after reperfusion. Grafts stored in University of Wisconsin solution with carbon monoxide (5%), however, demonstrated significantly better gas exchange and significantly reduced intragraft inflammation (reduced inflammatory mediators and cellular infiltrate). Experiments demonstrated that the protective effects afforded by 100% University of Wisconsin solution with carbon monoxide were not as potent as those of 5% University of Wisconsin solution with carbon monoxide. CONCLUSIONS This study demonstrates that 5% carbon monoxide as an additive to the cold flush/preservation solution can impart potent anti-inflammatory and cytoprotective effects after cold preservation and transplantation of lung grafts. Such ex vivo treatment of lung grafts with carbon monoxide can minimize concerns associated with carbon monoxide inhalation and might offer the opportunity to significantly advance the application of carbon monoxide in the clinical setting.
Collapse
Affiliation(s)
- Junichi Kohmoto
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Blasco V, Leone M, Bouvenot J, Geissler A, Albanèse J, Martin C. Impact of intensive care on renal function before graft harvest: results of a monocentric study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:R103. [PMID: 17868450 PMCID: PMC2556746 DOI: 10.1186/cc6120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/30/2007] [Accepted: 09/14/2007] [Indexed: 12/01/2022]
Abstract
Background The aim of life-support measures in brain-dead donors is to preserve the functional value of their organs. In renal transplantation, serum creatinine level is one of the criteria for graft harvest. The aim of this study was to assess the impact of intensive care on donor renal function through two criteria: preharvesting serum creatinine level above 120 μmol/L and the elevation of serum creatinine level above 20% between intensive care unit (ICU) admission and graft harvest. Methods Between 1 January 1999 and 31 December 2005, we performed an observational study on 143 brain-dead donors. ICU chronology, hemodynamic, hematosis, and treatment data were collected for each patient from ICU admission to kidney removal. Results Twenty-two percent of the 143 patients had a serum creatinine level above 120 μmol/L before graft harvest. The independent factors revealed by multivariate analysis were the administration of epinephrine (odds ratio [OR]: 4.36, 95% confidence interval [CI]: 1.33 to 14.32; p = 0.015), oliguria (OR: 3.73, 95% CI: 1.22 to 11.36; p = 0.021), acidosis (OR: 3.26, 95% CI: 1.07 to 9.95; p = 0.038), the occurrence of disseminated intravascular coagulation (OR: 3.97, 95% CI: 1.05 to 15.02; p = 0.042), female gender (OR: 0.13, 95% CI: 0.03 to 0.50; p = 0.003), and the administration of desmopressin (OR: 0.12, 95% CI: 0.03 to 0.44; p = 0.002). The incidence of elevated serum creatinine level above 20% between admission and graft harvest was 41%. The independent risk factors were the duration of brain death greater than 24 hours (OR: 2.64, 95% CI: 1.25 to 5.59; p = 0.011) and the volume of mannitol (OR: 2.08, 95% CI: 1.03 to 4.21; p = 0.041). Conclusion This study shows that the resuscitation of brain-dead donors impacts on their renal function. The uses of epinephrine and mannitol are associated with impairment of kidney function. It seems that graft harvest should be performed less than 24 hours after brain death diagnosis.
Collapse
Affiliation(s)
- Valéry Blasco
- Département d'Anesthésie et de Réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13915 Marseille cedex 20, Université de la Méditerranée, Faculté de Médecine, 13005 Marseille, France
| | - Marc Leone
- Département d'Anesthésie et de Réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13915 Marseille cedex 20, Université de la Méditerranée, Faculté de Médecine, 13005 Marseille, France
| | - Julien Bouvenot
- Service de Biostatistique, Faculté de Médecine, Université de la Méditerranée, Bd Jean Moulin, 13005 Marseille, France
| | - Alain Geissler
- Département d'Anesthésie et de Réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13915 Marseille cedex 20, Université de la Méditerranée, Faculté de Médecine, 13005 Marseille, France
| | - Jacques Albanèse
- Département d'Anesthésie et de Réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13915 Marseille cedex 20, Université de la Méditerranée, Faculté de Médecine, 13005 Marseille, France
| | - Claude Martin
- Département d'Anesthésie et de Réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13915 Marseille cedex 20, Université de la Méditerranée, Faculté de Médecine, 13005 Marseille, France
| |
Collapse
|
20
|
Todd PM, Jerome RN, Jarquin-Valdivia AA. Organ preservation in a brain dead patient: information support for neurocritical care protocol development. J Med Libr Assoc 2007; 95:238-45. [PMID: 17641753 PMCID: PMC1924930 DOI: 10.3163/1536-5050.95.3.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | | | - Adrian A. Jarquin-Valdivia
- , Assistant Professor of Neurology, Anesthesiology and Internal Medicine-Neurocritical Care, Department of Neurology; Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
21
|
Hing AJ, Hicks M, Garlick SR, Gao L, Kesteven SH, Faddy SC, Wilson MK, Feneley MP, Macdonald PS. The effects of hormone resuscitation on cardiac function and hemodynamics in a porcine brain-dead organ donor model. Am J Transplant 2007; 7:809-17. [PMID: 17331116 DOI: 10.1111/j.1600-6143.2007.01735.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We compared the effects of hormone resuscitation (HR) with a norepinephrine-based protocol on cardiac function, hemodynamics and need for vasopressor support after brain death in a porcine model. Following brain death induction, animals were treated with norepinephrine and fluids for 3 h. In the following 3 h, they continued on norepinephrine and fluids (control) or received additional HR (triiodothyronine, methylprednisolone, vasopressin, insulin). Data were collected pre-brain death, 3 and 6 h post-brain death. At 6 h, median norepinephrine use was higher in controls (0.563 vs. 0 microg/kg/min; p < 0.005), with 6/8 HR animals weaned off norepinephrine compared with 0/9 controls. Mean arterial pressure was higher in HR animals at 6 h (74 +/- 17 vs. 54 +/- 14 mmHg; p < 0.05). Cardiac contractility was also significantly higher in HR animals at 6 h (stroke work index 1.777 vs. 1.494). After collection of 6 h data, all animals were placed on the same low dose of norepinephrine. At 6.25 h, HR animals had higher stroke work (3540 +/- 1083 vs. 1536 +/- 702 mL.mmHg; p < 0.005), stroke volume (37.2 +/- 8.2 vs. 21.5 +/- 9.8 mL; p < 0.01) and cardiac output (5.8 +/- 1.4 vs. 3.2 +/- 1.2 L/min; p < 0.005). HR in a porcine model of brain death reduces norepinephrine requirements, and improves hemodynamics and cardiac function. These results support the use of HR in the management of the brain-dead donor.
Collapse
Affiliation(s)
- A J Hing
- Transplant Program, The Victor Chang Cardiac Research Institute, and Heart Transplant Unit, St Vincent's Hospital, Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|