1
|
Abstract
Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.
Collapse
|
2
|
Matera C, Gomila AMJ, Camarero N, Libergoli M, Soler C, Gorostiza P. Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J Am Chem Soc 2018; 140:15764-15773. [DOI: 10.1021/jacs.8b08249] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Núria Camarero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Michela Libergoli
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Concepció Soler
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat 08908, Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
3
|
Xu X, Huang M, Zou X. Docking-based inverse virtual screening: methods, applications, and challenges. BIOPHYSICS REPORTS 2018; 4:1-16. [PMID: 29577065 PMCID: PMC5860130 DOI: 10.1007/s41048-017-0045-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Identifying potential protein targets for a small-compound ligand query is crucial to the process of drug development. However, there are tens of thousands of proteins in human alone, and it is almost impossible to scan all the existing proteins for a query ligand using current experimental methods. Recently, a computational technology called docking-based inverse virtual screening (IVS) has attracted much attention. In docking-based IVS, a panel of proteins is screened by a molecular docking program to identify potential targets for a query ligand. Ever since the first paper describing a docking-based IVS program was published about a decade ago, the approach has been gradually improved and utilized for a variety of purposes in the field of drug discovery. In this article, the methods employed in docking-based IVS are reviewed in detail, including target databases, docking engines, and scoring function methodologies. Several web servers developed for non-expert users are also reviewed. Then, a number of applications are presented according to different research purposes, such as target identification, side effects/toxicity, drug repositioning, drug-target network development, and receptor design. The review concludes by discussing the challenges that docking-based IVS needs to overcome to become a robust tool for pharmaceutical engineering.
Collapse
Affiliation(s)
- Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 USA
- Informatics Institute, University of Missouri, Columbia, MO 65211 USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
| | - Marshal Huang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 USA
- Informatics Institute, University of Missouri, Columbia, MO 65211 USA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 USA
- Informatics Institute, University of Missouri, Columbia, MO 65211 USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
4
|
Li L, Wei Y, To C, Zhu CQ, Tong J, Pham NA, Taylor P, Ignatchenko V, Ignatchenko A, Zhang W, Wang D, Yanagawa N, Li M, Pintilie M, Liu G, Muthuswamy L, Shepherd FA, Tsao MS, Kislinger T, Moran MF. Integrated Omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nat Commun 2014; 5:5469. [DOI: 10.1038/ncomms6469] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/03/2014] [Indexed: 11/09/2022] Open
|
5
|
Hu L, Iliuk A, Galan J, Hans M, Tao WA. Identification of drug targets in vitro and in living cells by soluble-nanopolymer-based proteomics. Angew Chem Int Ed Engl 2011; 50:4133-6. [PMID: 21455918 DOI: 10.1002/anie.201006459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/14/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Lianghai Hu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
6
|
Hu L, Iliuk A, Galan J, Hans M, Tao WA. Identification of Drug Targets In Vitro and in Living Cells by Soluble-Nanopolymer-Based Proteomics. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Dadvar P, Kovanich D, Folkers GE, Rumpel K, Raijmakers R, Heck AJR. Phosphatidylethanolamine-binding proteins, including RKIP, exhibit affinity for phosphodiesterase-5 inhibitors. Chembiochem 2010; 10:2654-62. [PMID: 19760692 DOI: 10.1002/cbic.200900452] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Identifying protein "interactors" of drugs is of great importance to understand their mode of action and possible cross-reactivity to off-target protein binders. In this study, we profile proteins that bind to PF-3717842, a high-affinity phosphodiesterase-5 (PDE5) inhibitor, by using a refined affinity pulldown approach with PF-3717842 immobilized beads. By performing these pulldowns in rat testis tissue lysate, we strongly and specifically enriched for PDE5 and a few other PDEs. In addition to these expected affinity-enriched proteins we also detect rodent-specific phosphatidylethanolamine-binding protein 2 (PEBP2), as a putative binder to the PDE5 inhibitor. By using recombinant forms of the related murine mPEBP2, mPEBP1 and human hPEBP1 (also known as Raf kinase inhibitor protein or RKIP) we confirm that they all can bind strongly to immobilized as well as soluble PF-3717842. As the phosphatidylethanolamine-binding proteins are involved in various important signal transduction pathways, the synthetic PDE5 inhibitor used here might form a platform to synthesize enhanced binders/inhibitors of the family of PEBP proteins. Our approach shows how chemical proteomics might be used to profile the biochemical space (interactome) of small molecule inhibitors.
Collapse
Affiliation(s)
- Poupak Dadvar
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, NL
| | | | | | | | | | | |
Collapse
|
8
|
McConnell O, Bach A, Balibar C, Byrne N, Cai Y, Carter G, Chlenov M, Di L, Fan K, Goljer I, He Y, Herold D, Kagan M, Kerns E, Koehn F, Kraml C, Marathias V, Marquez B, McDonald L, Nogle L, Petucci C, Schlingmann G, Tawa G, Tischler M, Williamson RT, Sutherland A, Watts W, Young M, Zhang MY, Zhang Y, Zhou D, Ho D. Enantiomeric separation and determination of absolute stereochemistry of asymmetric molecules in drug discovery—Building chiral technology toolboxes. Chirality 2007; 19:658-82. [PMID: 17390370 DOI: 10.1002/chir.20399] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The application of Chiral Technology, or the (extensive) use of techniques or tools for the determination of absolute stereochemistry and the enantiomeric or chiral separation of racemic small molecule potential lead compounds, has been critical to successfully discovering and developing chiral drugs in the pharmaceutical industry. This has been due to the rapid increase over the past 10-15 years in potential drug candidates containing one or more asymmetric centers. Based on the experiences of one pharmaceutical company, a summary of the establishment of a Chiral Technology toolbox, including the implementation of known tools as well as the design, development, and implementation of new Chiral Technology tools, is provided.
Collapse
Affiliation(s)
- Oliver McConnell
- Wyeth Research, Chemical and Screening Sciences, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huang N, Kalyanaraman C, Irwin JJ, Jacobson MP. Physics-Based Scoring of Protein−Ligand Complexes: Enrichment of Known Inhibitors in Large-Scale Virtual Screening. J Chem Inf Model 2005; 46:243-53. [PMID: 16426060 DOI: 10.1021/ci0502855] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that using an all-atom molecular mechanics force field combined with an implicit solvent model for scoring protein-ligand complexes is a promising approach for improving inhibitor enrichment in the virtual screening of large compound databases. The rescoring method is evaluated by the extent to which known binders for nine diverse, therapeutically relevant enzymes are enriched against a background of approximately 100,000 drug-like decoys. The improvement in enrichment is most robust and dramatic within the top 1% of the ranked database, that is, the first thousand compounds; below the first few percent of the ranked database, there is little overall improvement. The improved early enrichment is likely due to the more realistic treatment of ligand and receptor desolvation in the rescoring procedure. We also present anecdotal but encouraging results assessing the ability of the rescoring method to predict specificity of inhibitors for structurally related proteins.
Collapse
Affiliation(s)
- Niu Huang
- Department of Pharmaceutical Chemistry, University of California San Francisco, Genentech Hall, 94143-2240, USA
| | | | | | | |
Collapse
|
10
|
Slon-Usakiewicz JJ, Pasternak A, Reid N, Toledo-Sherman LM. New targets for an old drug. Clin Proteomics 2004. [DOI: 10.1385/cp:1:3-4:227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|