1
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
2
|
Han Y, Gao T, Li X, Wāng Y. Didactical approaches and insights into environmental processes and cardiovascular hazards of arsenic contaminants. CHEMOSPHERE 2024; 352:141381. [PMID: 38360414 DOI: 10.1016/j.chemosphere.2024.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Arsenic, as a metalloid, has the ability to move and transform in different environmental media. Its widespread contamination has become a significant environmental problem and public concern. Arsenic can jeopardize multiple organs through various pathways, influenced by environmental bioprocesses. This article provides a comprehensive overview of current research on the cardiovascular hazards of arsenic. A bibliometric analysis revealed that there are 376 papers published in 145 journals, involving 40 countries, 631 institutions, and 2093 authors, all focused on arsenic-related concerns regarding cardiovascular health. China and the U.S. have emerged as the central hubs of collaborative relationships and have the highest number of publications. Hypertension and atherosclerosis are the most extensively studied topics, with redox imbalance, apoptosis, and methylation being the primary mechanistic clues. Cardiovascular damage caused by arsenic includes arrhythmia, cardiac remodeling, vascular leakage, and abnormal angiogenesis. However, the current understanding is still inadequate over cardiovascular impairments, underlying mechanisms, and precautionary methods of arsenic, thus calling an urgent need for further studies to bridge the gap between environmental processes and arsenic hazards.
Collapse
Affiliation(s)
- Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tiantian Gao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiaozhi Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Nucera S, Serra M, Caminiti R, Ruga S, Passacatini LC, Macrì R, Scarano F, Maiuolo J, Bulotta R, Mollace R, Bosco F, Guarnieri L, Oppedisano F, Ilari S, Muscoli C, Palma E, Mollace V. Non-essential heavy metal effects in cardiovascular diseases: an overview of systematic reviews. Front Cardiovasc Med 2024; 11:1332339. [PMID: 38322770 PMCID: PMC10844381 DOI: 10.3389/fcvm.2024.1332339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Cardiovascular diseases (CVDs) are the most important cause of premature death and disability worldwide. Environmental degradation and cardiovascular diseases are two keys to health challenges, characterized by a constant evolution in an industrialized world that exploits natural resources regardless of the consequences for health. The etiological risk factors of CVDs are widely known and include dyslipidemia, obesity, diabetes, and chronic cigarette consumption. However, one component that is often underestimated is exposure to heavy metals. The biological perspective explains that different metals play different roles. They are therefore classified into essential heavy metals, which are present in organisms where they perform important vital functions, especially in various physiological processes, or non-essential heavy metals, with a no biological role but, nonetheless, remain in the environment in which they are absorbed. Although both types of metal ions are many times chemically similar and can bind to the same biological ligands, the attention given today to nonessential metals in several eukaryotic species is starting to raise strong concerns due to an exponential increase in their concentrations. The aim of this systematic review was to assess possible correlations between exposure to nonessential heavy metals and increased incidence of cardiovascular disease, reporting the results of studies published in the last 5 years through March 2023. Methods The studies includes reviews retrieved from PubMed, Medline, Embase, and Web of Science databases, in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and following the PICO (Population Intervention Comparison Outcome Population) framework. Results Eight reviews, including a total of 153 studies, were identified. Seven of these review enlighted the association between CVDs and non-essential heavy metals chronic exposure. Discussion It is evident that exposure to heavy metals represent a risk factor for CVDs onset. However, further studies are needed to better understand the effects caused by these metals.
Collapse
Affiliation(s)
- Saverio Nucera
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Caminiti
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Roberta Macrì
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Laboratory of Pharmaceutical Biology, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Bulotta
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Francesca Bosco
- Science of Health Department, Section of Pharmacology, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Science of Health Department, Section of Pharmacology, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Sara Ilari
- Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, Rome, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, Rome, Italy
| | - Ernesto Palma
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
4
|
Kaur G, Desai KP, Chang IY, Newman JD, Mathew RO, Bangalore S, Venditti FJ, Sidhu MS. A Clinical Perspective on Arsenic Exposure and Development of Atherosclerotic Cardiovascular Disease. Cardiovasc Drugs Ther 2023; 37:1167-1174. [PMID: 35029799 DOI: 10.1007/s10557-021-07313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/03/2022]
Abstract
Cardiovascular risk has traditionally been defined by modifiable and non-modifiable risk factors, such as tobacco use, hyperlipidemia, and family history. However, chemicals and pollutants may also play a role in cardiovascular disease (CVD) risk. Arsenic is a naturally occurring element that is widely distributed in the Earth's crust. Inorganic arsenic (iAs) has been implicated in the pathogenesis of atherosclerosis, with chronic high-dose exposure to iAs (> 100 µg/L) being linked to CVD; however, whether low-to-moderate dose exposures of iAs (< 100 µg/L) are associated with the development of CVD is unclear. Due to limitations of the existing literature, it is difficult to define a threshold for iAs toxicity. Studies demonstrate that the effect of iAs on CVD is far more complex with influences from several factors, including diet, genetics, metabolism, and traditional risk factors such as hypertension and smoking. In this article, we review the existing data of low-to-moderate dose iAs exposure and its effect on CVD, along with highlighting the potential mechanisms of action.
Collapse
Affiliation(s)
- Gurleen Kaur
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Karan P Desai
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Jonathan D Newman
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Roy O Mathew
- Division of Nephrology, Loma Linda VA Health Care System, Loma Linda, CA, USA
| | - Sripal Bangalore
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Ferdinand J Venditti
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA
| | - Mandeep S Sidhu
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA.
| |
Collapse
|
5
|
Lundin KK, Qadeer YK, Wang Z, Virani S, Leischik R, Lavie CJ, Strauss M, Krittanawong C. Contaminant Metals and Cardiovascular Health. J Cardiovasc Dev Dis 2023; 10:450. [PMID: 37998508 PMCID: PMC10671885 DOI: 10.3390/jcdd10110450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of research has begun to link exposure to environmental contaminants, such as heavy metals, with a variety of negative health outcomes. In this paper, we sought to review the current research describing the impact of certain common contaminant metals on cardiovascular (CV) health. We reviewed ten metals: lead, barium, nickel, chromium, cadmium, arsenic, mercury, selenium, zinc, and copper. After a literature review, we briefly summarized the routes of environmental exposure, pathophysiological mechanisms, CV health impacts, and exposure prevention and/or mitigation strategies for each metal. The resulting article discloses a broad spectrum of pathological significance, from relatively benign substances with little to no described effects on CV health, such as chromium and selenium, to substances with a wide-ranging and relatively severe spectrum of CV pathologies, such as arsenic, cadmium, and lead. It is our hope that this article will provide clinicians with a practical overview of the impact of these common environmental contaminants on CV health as well as highlight areas that require further investigation to better understand how these metals impact the incidence and progression of CV diseases.
Collapse
Affiliation(s)
- Karl Kristian Lundin
- Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA; (K.K.L.); (Y.K.Q.)
| | - Yusuf Kamran Qadeer
- Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA; (K.K.L.); (Y.K.Q.)
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55905, USA
- Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Salim Virani
- Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA; (K.K.L.); (Y.K.Q.)
- The Aga Khan University, Karachi 74800, Pakistan
- Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roman Leischik
- Department of Cardiology, Sector Preventive Medicine, Health Promotion, Faculty of Health, School of Medicine, University Witten/Herdecke, 58095 Hagen, Germany
| | - Carl J. Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA 70121, USA
| | - Markus Strauss
- Department of Cardiology, Sector Preventive Medicine, Health Promotion, Faculty of Health, School of Medicine, University Witten/Herdecke, 58095 Hagen, Germany
- Department of Cardiology I- Coronary and Periphal Vascular Disease, Heart Failure Medicine, University Hospital Muenster, Cardiol, 48149 Muenster, Germany
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Huang J, El-Kersh K, Mann KK, James KA, Cai L. Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicol Appl Pharmacol 2022; 454:116247. [PMID: 36122736 PMCID: PMC9941893 DOI: 10.1016/j.taap.2022.116247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023]
Abstract
Environmental causes of cardiovascular diseases (CVDs) are global health issues. In particular, an association between metal exposure and CVDs has become evident but causal evidence still lacks. Therefore, this symposium at the Society of Toxicology 2022 annual meeting addressed epidemiological, clinical, pre-clinical animal model-derived and mechanism-based evidence by five presentations: 1) An epidemiologic study on potential CVD risks of individuals exposed occupationally and environmentally to heavy metals; 2) Both presentations of the second and third were clinical studies focusing on the potential link between heavy metals and pulmonary arterial hypertension (PAH), by presenting altered blood metal concentrations of both non-essential and essential metals in the patients with PAH and potential therapeutic approaches; 3) Arsenic-induced atherosclerosis via inflammatory cells in mouse model; 4) Pathogenic effects on the heart by adult chronic exposure to very low-dose cadmium via epigenetic mechanisms and whole life exposure to low dose cadmium via exacerbating high-fat-diet-lipotoxicity. This symposium has brought epidemiologists, therapeutic industry, physicians, and translational scientists together to discuss the health risks of occupational and environmental exposure to heavy metals through direct cardiotoxicity and indirect disruption of homeostatic mechanisms regulating essential metals, as well as lipid levels. The data summarized by the presenters infers a potential causal link between multiple metals and CVDs and defines differences and commonalities. Therefore, summary of these presentations may accelerate the development of efficient preventive and therapeutic strategies by facilitating collaborations among multidisciplinary investigators.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koren K Mann
- Departments of Pharmacology & Therapeutics and Oncology and Medicine, McGill University, Canada; Segal Cancer Center, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA,.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
7
|
Farzan SF, Eunus HM, Haque SE, Sarwar G, Hasan AR, Wu F, Islam T, Ahmed A, Shahriar M, Jasmine F, Kibriya MG, Parvez F, Karagas MR, Chen Y, Ahsan H. Arsenic exposure from drinking water and endothelial dysfunction in Bangladeshi adolescents. ENVIRONMENTAL RESEARCH 2022; 208:112697. [PMID: 35007543 PMCID: PMC8917065 DOI: 10.1016/j.envres.2022.112697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 05/12/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, with ∼80% of CVD-related deaths occurring in low- and middle-income countries. Growing evidence suggests that chronic arsenic exposure may contribute to CVD through its effect on endothelial function in adults. However, few studies have examined the influence of arsenic exposure on cardiovascular health in children and adolescents. To examine arsenic's relation to preclinical markers of endothelial dysfunction, we enrolled 200 adolescent children (ages 15-19 years; median 17) of adult participants in the Health Effects of Arsenic Longitudinal Study (HEALS), in Araihazar, Bangladesh. Participants' arsenic exposure was determined by recall of lifetime well usage for drinking water. As part of HEALS, wells were color-coded to indicate arsenic level (<10 μg/L, 10-50 μg/L, >50 μg/L). Endothelial function was measured by recording fingertip arterial pulsatile volume change and reactive hyperemia index (RHI) score, an independent CVD risk factor, was calculated from these measurements. In linear regression models adjusted for participant's sex, age, education, maternal education, land ownership and body weight, individuals who reported always drinking water from wells with >50 μg/L arsenic had a 11.75% lower level of RHI (95% CI: -21.26, -1.09, p = 0.03), as compared to participants who drank exclusively from wells with ≤50 μg/L arsenic. Sex-stratified analyses suggest that these associations were stronger in female participants. As compared to individuals who drank exclusively from wells with ≤50 μg/L arsenic, the use of wells with >50 μg/L arsenic was associated with 14.36% lower RHI (95% CI: -25.69, -1.29, p = 0.03) in females, as compared to 5.35% lower RHI (95% CI: -22.28, 15.37, p = 0.58) in males for the same comparison. Our results suggest that chronic arsenic exposure may be related to endothelial dysfunction in adolescents, especially among females. Further work is needed to confirm these findings and examine whether these changes may increase risk of later adverse cardiovascular health events.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | - Fen Wu
- Department of Population Health, New York University, New York, NY, USA
| | | | | | - Mohammad Shahriar
- UChicago Research Bangladesh, Dhaka, Bangladesh; Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yu Chen
- Department of Population Health, New York University, New York, NY, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Coral JA, Heaps S, Glaholt SP, Karty JA, Jacobson SC, Shaw JR, Bondesson M. Arsenic exposure induces a bimodal toxicity response in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117637. [PMID: 34182391 DOI: 10.1016/j.envpol.2021.117637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 05/25/2023]
Abstract
In toxicology, standard sigmoidal concentration-response curves are used to predict effects concentrations and set chemical regulations. However, current literature also establishes the existence of complex, bimodal concentration-response curves, as is the case for arsenic toxicity. This bimodal response has been observed at the molecular level, but not characterized at the whole organism level. This study investigated the effect of arsenic (sodium arsenite) on post-gastrulated zebrafish embryos and elucidated effects of bimodal concentration-responses on different phenotypic perturbations. Six hour post fertilized (hpf) zebrafish embryos were exposed to arsenic to 96 hpf. Hatching success, mortality, and morphometric endpoints were evaluated both in embryos with chorions and dechorionated embryos. Zebrafish embryos exhibited a bimodal response to arsenic exposure. Concentration-response curves for exposed embryos with intact chorions had an initial peak in mortality (88%) at 1.33 mM arsenic, followed by a decrease in toxicity (~20% mortality) at 1.75 mM, and subsequently peaked to 100% mortality at higher concentrations. To account for the bimodal response, two distinct concentration-response curves were generated with estimated LC10 values (and 95% CI) of 0.462 (0.415, 0.508) mM and 1.69 (1.58, 1.78) mM for the 'low concentration' and 'high concentration' peaks, respectively. Other phenotypic analyses, including embryo length, yolk and pericardial edema all produced similar concentration-response patterns. Tests with dechorionated embryos also resulted in a bimodal toxicity response but with lower LC10 values of 0.170 (0.120, 0.220) mM and 0.800 (0.60, 0842) mM, respectively. Similarities in bimodal concentration-responses between with-chorion and dechorionated embryos indicate that the observed effect was not caused by the chorion limiting arsenic availability, thus lending support to other studies such as those that hypothesized a conserved bimodal mechanism of arsenic interference with nuclear receptor activation.
Collapse
Affiliation(s)
- Jason A Coral
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| | - Samuel Heaps
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| |
Collapse
|
9
|
Whitlock B. Telomere Length and Arsenic: Improving Animal Models of Toxicity by Choosing Mice With Shorter Telomeres. Int J Toxicol 2021; 40:211-217. [PMID: 34008434 DOI: 10.1177/10915818211009844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arsenic is both a chemotherapeutic drug and an environmental toxicant that affects hundreds of millions of people each year. Arsenic exposure in drinking water has been called the worst poisoning in human history. How arsenic is handled in the body is frequently studied using rodent models to investigate how arsenic both causes and treats disease. These models, used in a variety of arsenic-related testing, from tumor formation to drug toxicity monitoring, have virtually always been developed from animals with telomeres that are unnaturally long, likely because of accidental artificial selective pressures. Mice that have been bred in captivity in laboratory conditions, often for over 100 years, are the standard in creating animal models for this research. Using these mice introduces challenges to any work that can be affected by the length of telomeres and the related capacities for tissue repair and cancer resistance. However, arsenic research is particularly susceptible to the misuse of such animal models due to the multiple and various interactions between arsenic and telomeres. Researchers in the field commonly find mouse models and humans behaving very differently upon exposure to acute and chronic arsenic, including drug therapies which seem safe in mice but are toxic in humans. Here, some complexities and apparent contradictions of the arsenic carcinogenicity and toxicity research are reconciled by an explanatory model that involves telomere length explained by the evolutionary pressures in laboratory mice. A low-risk hypothesis is proposed which has the power to determine whether researchers can easily develop more powerful and accurate mouse models by simply avoiding mouse lineages that are very old and have strangely long telomeres. Swapping in newer mouse lineages for the older, long-telomere mice may vastly improve our ability to research arsenic toxicity with virtually no increase in cost or difficulty of research.
Collapse
Affiliation(s)
- Brayden Whitlock
- University of Alberta Health Accelerator, Edmonton, Alberta, Canada.,Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Sharma AK, Kaur J, Kaur T, Singh B, Yadav HN, Pathak D, Singh AP. Ameliorative role of bosentan, an endothelin receptor antagonist, against sodium arsenite-induced renal dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7180-7190. [PMID: 33026618 DOI: 10.1007/s11356-020-11035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Arsenic exposure is well documented to cause serious health hazards, such as cardiovascular abnormalities, neurotoxicity and nephrotoxicity. In the present study, we intended to explore the role of bosentan, an endothelial receptor antagonist, against sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Sodium arsenite (5 mg/kg, oral) was administered for 4 weeks to induce renal dysfunction in rats. Sodium arsenite intoxicated rats were treated with bosentan (50 and 100 mg/kg, oral) for 4 weeks. Arsenic led renal damage was demonstrated by significant increase in serum creatinine, urea, uric acid, potassium, fractional excretion of sodium, microproteinuria and decreased creatinine clearance in rats. Sodium arsenite resulted in marked oxidative stress in rat kidneys as indicated by profound increase in lipid peroxides, and superoxide anion generation alongwith decrease in reduced glutathione levels. Hydroxyproline assay highlighted arsenic-induced renal fibrosis in rats. Hematoxylin-eosin staining indicated glomerular and tubular changes in rat kidneys. Picrosirius red staining highlighted collagen deposition in renal tissues of arsenic treated rats. Immunohistological results demonstrated the reduction of renal eNOS expression in arsenic treated rats. Notably, treatment with bosentan attenuated arsenic-induced renal damage and resisted arsenic-led reduction in renal eNOS expression. In addition, sodium arsenite-induced alteration in hepatic parameters (serum aspartate aminotransferase, alanine transferase, alkaline phosphatase, bilirubin), oxidative stress and histological changes were abrogated by bosentan treatment in rats. Hence, we conclude that bosentan treatment attenuated sodium arsenite-induced oxidative stress, fibrosis and reduction in renal eNOS expression in rat kidneys. Moreover, bosentan abrogated arsenic led hepatic changes in rats.
Collapse
Affiliation(s)
- Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Japneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | | | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
11
|
Anguiano T, Sahu A, Qian B, Tang WY, Ambrosio F, Barchowsky A. Arsenic Directs Stem Cell Fate by Imparting Notch Signaling Into the Extracellular Matrix Niche. Toxicol Sci 2020; 177:494-505. [PMID: 32647881 DOI: 10.1093/toxsci/kfaa106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Compromise of skeletal muscle metabolism and composition may underlie the etiology of cardiovascular and metabolic disease risk from environmental arsenic exposures. We reported that arsenic impairs muscle maintenance and regeneration by inducing maladaptive mitochondrial phenotypes in muscle stem cells (MuSC), connective tissue fibroblasts (CTF), and myofibers. We also found that arsenic imparts a dysfunctional memory in the extracellular matrix (ECM) that disrupts the MuSC niche and is sufficient to favor the expansion and differentiation of fibrogenic MuSC subpopulations. To investigate the signaling mechanisms involved in imparting a dysfunctional ECM, we isolated skeletal muscle tissue and CTF from mice exposed to 0 or 100 μg/l arsenic in their drinking water for 5 weeks. ECM elaborated by arsenic-exposed CTF decreased myogenesis and increased fibrogenic/adipogenic MuSC subpopulations and differentiation. However, treating arsenic-exposed mice with SS-31, a mitochondrially targeted peptide that repairs the respiratory chain, reversed the arsenic-promoted CTF phenotype to one that elaborated an ECM supporting normal myogenic differentiation. SS-31 treatment also reversed arsenic-induced Notch1 expression, resulting in an improved muscle regeneration after injury. We found that persistent arsenic-induced CTF Notch1 expression caused the elaboration of dysfunctional ECM with increased expression of the Notch ligand DLL4. This DLL4 in the ECM was responsible for misdirecting MuSC myogenic differentiation. These data indicate that arsenic impairs muscle maintenance and regenerative capacity by targeting CTF mitochondria and mitochondrially directed expression of dysfunctional regulators in the stem cell niche. Therapies that restore muscle cell mitochondria may effectively treat arsenic-induced skeletal muscle dysfunction and compositional decline.
Collapse
Affiliation(s)
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation
| | - Baoli Qian
- Department of Environmental and Occupational Health
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health
| | - Fabrisia Ambrosio
- Department of Environmental and Occupational Health.,Department of Physical Medicine and Rehabilitation.,McGowan Institute for Regenerative Medicine.,Department of Bioengineering
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
12
|
Navas-Acien A, Sanchez TR, Mann K, Jones MR. Arsenic Exposure and Cardiovascular Disease: Evidence Needed to Inform the Dose-Response at Low Levels. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00186-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Farzan SF, Howe CG, Zens MS, Palys T, Channon JY, Li Z, Chen Y, Karagas MR. Urine Arsenic and Arsenic Metabolites in U.S. Adults and Biomarkers of Inflammation, Oxidative Stress, and Endothelial Dysfunction: A Cross-Sectional Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:127002. [PMID: 29373859 PMCID: PMC5963594 DOI: 10.1289/ehp2062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Arsenic (As) exposure has been associated with increased risk for cardiovascular disease (CVD) and with biomarkers of potential CVD risk and inflammatory processes. However, few studies have evaluated the effects of As on such biomarkers in U.S. populations, which are typically exposed to low to moderate As concentrations. OBJECTIVES We investigated associations between As exposures and biomarkers relevant to inflammation, oxidative stress, and CVD risk in a subset of participants from the New Hampshire Health Study, a population with low to moderate As exposure (n=418). METHODS Associations between toenail As, total urine As (uAs), and %uAs metabolites [monomethyl (%uMMAV), dimethyl (%uDMAV), and inorganic (%iAs) species] and plasma biomarkers, including soluble plasma vascular and cellular adhesion molecules (VCAM-1 and ICAM-1, respectively), matrix metalloproteinase-9 (MMP-9), tumor necrosis factor-α, plasminogen activator inhibitor-1 (PAI-1), and urinary oxidative stress marker 15-F2t-isoprostane (15-F2t-IsoP), were evaluated using linear regression models. RESULTS Covariate-adjusted estimates of associations with a doubling of urinary As suggested an 8.8% increase in 15-F2t-IsoP (95% CI: 3.2, 14.7), and a doubling of toenail As was associated with a 1.7% increase in VCAM-1 (95% CI: 0.2, 3.2). Additionally, a 5% increase in %uMMA was associated with a 7.9% increase in 15-F2t-IsoP (95% CI: 2.1, 14.1), and a 5% increase in %uDMA was associated with a 2.98% decrease in 15-F2t-IsoP [(95% CI: -6.1, 0.21); p=0.07]. However, in contrast with expectations, a doubling of toenail As was associated with a 2.3% decrease (95% CI: -4.3, -0.3) in MMP-9, and a 5% increase in %uMMA was associated with a 7.7% decrease (95% CI: -12.6, -2.5) in PAI-1. CONCLUSION In a cross-sectional study of U.S. adults, we observed some positive associations of uAs and toenail As concentrations with biomarkers potentially relevant to CVD pathogenesis and inflammation, and evidence of a higher capacity to metabolize inorganic As was negatively associated with a marker of oxidative stress. https://doi.org/10.1289/EHP2062.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Michael S Zens
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| | - Thomas Palys
- Center for Molecular Epidemiology at Dartmouth, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| | - Jacqueline Y Channon
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
- Norris Cotton Cancer Center, Dartmouth–Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| | - Zhigang Li
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Margaret R Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| |
Collapse
|
14
|
Farzan SF, Brickley EB, Li Z, Gilbert-Diamond D, Gossai A, Chen Y, Howe CG, Palys T, Karagas MR. Maternal and infant inflammatory markers in relation to prenatal arsenic exposure in a U.S. pregnancy cohort. ENVIRONMENTAL RESEARCH 2017; 156:426-433. [PMID: 28410520 PMCID: PMC5477637 DOI: 10.1016/j.envres.2017.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Accumulating evidence indicates that arsenic (As), a potent environmental toxicant, may increase cardiovascular disease risk and adversely affect endothelial function at high levels of exposure. Pregnancy is a vulnerable time for both mother and child; however, studies examining the association between prenatal As exposure and plasma biomarkers of inflammation and endothelial function in mothers and newborns are lacking. METHODS We examined maternal urinary As levels at gestational weeks 24-28 and levels of inflammatory biomarkers in plasma from 563 pregnant women and 500 infants' cord blood. We assessed a multiplexed panel of circulating inflammatory and endothelial function markers, including tumor necrosis factor alpha (TNFα), monocyte chemoattractant protein 1 (MCP1), intercellular adhesion molecule (ICAM1) and vascular cell adhesion molecule (VCAM1). RESULTS Compared with the bottom tertile, the highest tertile of maternal urinary As during pregnancy was associated with a 145.2ng/ml (95% CI 4.1, 286.3; p=0.04) increase in cord blood ICAM1 and 557.3ng/ml (95% CI -56.4, 1171.1; p=0.09) increase in cord blood VCAM1. Among mothers, the highest tertile of maternal urinary As during pregnancy was related to a 141.8ng/ml (95% CI 26.1, 257.5; p=0.02) increase maternal plasma VCAM1 levels. Urinary As was unrelated to MCP1 or TNFα in maternal plasma and cord blood. In structural equation models, the association between maternal urinary As and infant VCAM was mediated by maternal levels of VCAM (βmediation: 0.024, 95% CI: 0.002, 0.050). CONCLUSION Our observations indicate that As exposure during pregnancy may affect markers of vascular health and endothelial function in both pregnant women and children, and suggest further investigation of the potential impacts on cardiovascular health in these susceptible populations.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | - Elizabeth B Brickley
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Zhigang Li
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anala Gossai
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Thomas Palys
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Margaret R Karagas
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
15
|
Patel B, Das R, Gautam A, Tiwari M, Acharya S, Kumar S. Evaluation of vascular effect of arsenic using in vivo assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15521-15527. [PMID: 28516350 DOI: 10.1007/s11356-017-9156-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) is an abundant toxicant present in groundwater and soil in various parts of the world including eastern part of India. The epidemiological studies have shown that arsenic exposure is linked to developmental defects and miscarriage. Placenta is known to utilize vasculogenesis to develop its vasculature circulation. The effects of four different doses of sodium meta-arsenite (0, 10, 20, 75, and 150 ppm) were assessed on the vascular structure using two different in vivo models, i.e., Matrigel and chorioallantoic membrane (CAM) assay. For the Matrigel assay, mice were exposed to different doses of arsenic through drinking water for 1 month. Placenta and Matrigel plug (which was inserted on gestational day (GD 0.5)) were removed on GD 14. Similar arsenic concentration was used in CAM assay to observe the effect of vessel development in hen's eggs. The CAM assay outcome evaluated by Angiosys software showed that arsenic exposure reduced the total and mean tubule length in all the arsenic-treated groups. The percentage tubule inhibition was declined significantly in 20, 75, and 150 ppm arsenic-treated groups as evaluated by ImageJ software. Analysis of the CAM outcome by both the image analysis software indicated the adverse effect of arsenic on the tubules. Further, a significant higher blood vessel density in 10 ppm and lower vessel density in 20, 75, and 150 ppm arsenic-exposed mice were also observed in Matrigel plug assay. The placental hypertrophy and dysplasia especially in the labyrinth zone (vasculature) were noted in placenta of arsenic-treated mice. The study indicated that higher arsenic exposures inhibited the angiogenesis which was dose-dependent in both CAM and Matrigel assay and altered structural morphology of placenta. However, no inhibition of blood vessels was noted at lower, i.e., 10 ppm of arsenic-treated group.
Collapse
Affiliation(s)
- Bharat Patel
- Division of Reproductive Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Rajat Das
- Department of Anatomy, Agartala Government Medical College, Agartala, 799006, India
| | - Anil Gautam
- Division of Reproductive Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Mugdha Tiwari
- Division of Reproductive Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Sukhdev Acharya
- Department of Anatomy, Agartala Government Medical College, Agartala, 799006, India
| | - Sunil Kumar
- Division of Reproductive Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India.
| |
Collapse
|
16
|
Zhang C, Ferrari R, Beezhold K, Stearns-Reider K, D'Amore A, Haschak M, Stolz D, Robbins PD, Barchowsky A, Ambrosio F. Arsenic Promotes NF-Κb-Mediated Fibroblast Dysfunction and Matrix Remodeling to Impair Muscle Stem Cell Function. Stem Cells 2016; 34:732-42. [PMID: 26537186 DOI: 10.1002/stem.2232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
Abstract
Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration and impaired functional recovery, relative to controls. When naïve human MuSCs were seeded onto three-dimensional decellularized muscle constructs derived from arsenic-exposed muscles, cells displayed an increased fibrogenic conversion and decreased myogenicity, compared with cells seeded onto control constructs. Consistent with myomatrix alterations, fibroblasts isolated from arsenic-exposed muscle displayed sustained expression of matrix remodeling genes, the majority of which were mediated by NF-κB. Inhibition of NF-κB during arsenic exposure preserved normal myofiber structure and functional recovery after injury, suggesting that NF-κB signaling serves as an important mechanism of action for the deleterious effects of arsenic on tissue healing. Taken together, the results from this study implicate myomatrix biophysical and/or biochemical characteristics as culprits in arsenic-induced MuSC dysfunction and impaired muscle regeneration. It is anticipated that these findings may aid in the development of strategies to prevent or revert the effects of arsenic on tissue healing and, more broadly, provide insight into the influence of the native myomatrix on stem cell behavior.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ricardo Ferrari
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Beezhold
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen Stearns-Reider
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martin Haschak
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul D Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Physical Therapy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Zhang Y, Wang Y, Lu Q, Xin W, Cui W, Zhu J. Organoarsenic Roxarsone Promotes Angiogenesis In Vivo. Basic Clin Pharmacol Toxicol 2015; 118:259-70. [PMID: 26450128 DOI: 10.1111/bcpt.12501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Abstract
Roxarsone, an organoarsenic feed additive, is widely used worldwide to promote animal growth. It has been found to exhibit a higher angiogenic index than As(III) at lower concentrations and to promote angiogenic phenotype in human endothelial cell in vitro. Little research has focused on the potential angiogenic effect of roxarsone in vitro or in vivo. Here, we investigated the pro-angiogenic effect of roxarsone in vivo. The effects of 0.1-10.0 μM roxarsone were tested in the rat endothelial cell Matrigel plug assay, chicken chorioallantoic membrane (CAM) model and MCF-7 cell xenograft tumour model; 10 ng/mL vascular endothelial growth factor (VEGF) was used as a positive control and PBS as a negative control. Roxarsone significantly increased the volume, weight and haemoglobin content of the Matrigel plugs compared to PBS group (p < 0.05); 1.0 μM roxarsone exerted the most significant effects. H&E staining and CD31 immunochemistry revealed obviously more new vessels or capillary-like structures in the plugs of the roxarsone and VEGF groups. Roxarsone significantly increased the numbers of primary/secondary vessels and area of vessels in the CAM assay and obviously increased tumour weight and volume in the xenograft model compared to PBS (p < 0.05). Histochemistry indicated local necrosis was observed at the centre of the xenograft tumours in the PBS and roxarsone groups, with less necrosis apparent in the VEGF-treated tumours. The growth of endothelial cells and VEGF level was obviously affected at blockade of VEGF and its receptor Flt-1/Flk-1 by SU5416 or its antibody in vitro. This study demonstrates roxarsone promotes angiogenesis in vivo, and a VEGF/VEGFR mechanism may be involved.
Collapse
Affiliation(s)
- Yumei Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yujing Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Qianqian Lu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Wenfang Xin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Weibo Cui
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Jiaqiao Zhu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
18
|
Dodmane PR, Arnold LL, Pennington KL, Singh RK, Cardoso APF, Cohen SM. Effect of trivalent arsenicals on cell proliferation in mouse and human microvascular endothelial cells. Toxicol Rep 2015; 2:833-837. [PMID: 28962419 PMCID: PMC5598208 DOI: 10.1016/j.toxrep.2015.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/28/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022] Open
Abstract
Chronic exposure to high levels of inorganic arsenic (iAs) has been associated with cancerous and non-cancerous health effects, including cardiovascular effects. However, the mechanism for a presumed toxic effect of arsenic on vascular tissue is not clear. Our working hypothesis is that inorganic trivalent arsenic and its methylated metabolites react with cysteine-containing cellular proteins and alter their function leading to adverse events such as cytotoxicity or proliferation. In this study, human microvascular endothelial cells (HMEC1) and mouse microvascular endothelial cells (MFP-MVEC) were exposed to arsenite (iAsIII), monomethylarsonous acid (MMAIII), or dimethylarsinous acid (DMAIII) for 72 h to evaluate cytotoxicity, and for 24, 48 or 72 h to evaluate cell proliferation. Both cell lines showed similar LC50 values, from 0.1 to 2.4 μM, for all three trivalent arsenicals. The endothelial cells treated with1 nM to 1 μM concentrations of the three trivalent arsenicals did not show increased cell proliferation at 24, 48 or 72 h or increased rate of proliferation at 72 h of exposure. Overall, cytotoxicity of trivalent arsenicals to microvascular endothelial cells is similar to their cytotoxicity to epithelial cells, and that these compounds are not mitogenic.
Collapse
Affiliation(s)
- Puttappa R Dodmane
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center Omaha, NE 68198-3135, USA
| | - Lora L Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center Omaha, NE 68198-3135, USA
| | - Karen L Pennington
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center Omaha, NE 68198-3135, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center Omaha, NE 68198-3135, USA
| | - Ana Paula Ferragut Cardoso
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center Omaha, NE 68198-3135, USA
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center Omaha, NE 68198-3135, USA
| |
Collapse
|
19
|
Joshi MS, Williams D, Horlock D, Samarasinghe T, Andrews KL, Jefferis AM, Berger PJ, Chin-Dusting JP, Kaye DM. Role of mitochondrial dysfunction in hyperglycaemia-induced coronary microvascular dysfunction: Protective role of resveratrol. Diab Vasc Dis Res 2015; 12:208-16. [PMID: 25767181 DOI: 10.1177/1479164114565629] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microvascular complications are now recognized to play a major role in diabetic complications, and understanding the mechanisms is critical. Endothelial dysfunction occurs early in the course of the development of complications; the precise mechanisms remain poorly understood. Mitochondrial dysfunction may occur in a diabetic rat heart and may act as a source of the oxidative stress. However, the role of endothelial cell-specific mitochondrial dysfunction in diabetic vascular complications is poorly studied. Here, we studied the role of diabetes-induced abnormal endothelial mitochondrial function and the resultant endothelial dysfunction. Understanding the role of endothelial mitochondrial dysfunction in diabetic vasculature is critical in order to develop new therapies. We demonstrate that hyperglycaemia leads to mitochondrial dysfunction in microvascular endothelial cells, and that mitochondrial inhibition induces endothelial dysfunction. Additionally, we show that resveratrol acts as a protective agent; resveratrol-mediated mitochondrial protection may be used to prevent long-term diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Mandar S Joshi
- Heart Failure Research Group, Cardiology Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia The Ritchie Centre, Monash University, Melbourne, VIC, Australia Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - David Williams
- Heart Failure Research Group, Cardiology Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Duncan Horlock
- Heart Failure Research Group, Cardiology Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Karen L Andrews
- Vascular Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ann-Maree Jefferis
- Vascular Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Philip J Berger
- The Ritchie Centre, Monash University, Melbourne, VIC, Australia
| | - Jaye P Chin-Dusting
- Vascular Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David M Kaye
- Heart Failure Research Group, Cardiology Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia Heart Failure Unit, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
20
|
A potential synergy between incomplete arsenic methylation capacity and demographic characteristics on the risk of hypertension: findings from a cross-sectional study in an arsenic-endemic area of inner Mongolia, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:3615-32. [PMID: 25837203 PMCID: PMC4410206 DOI: 10.3390/ijerph120403615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022]
Abstract
Inefficient arsenic methylation capacity has been associated with various health hazards induced by arsenic. In this study, we aimed to explore the interaction effect of lower arsenic methylation capacity with demographic characteristics on hypertension risk. A total of 512 adult participants (126 hypertension subjects and 386 non-hypertension subjects) residing in an arsenic-endemic area in Inner Mongolia, China were included. Urinary levels of inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were measured for all subjects. The percentage of urinary arsenic metabolites (iAs%, MMA%, and DMA%), primary methylation index (PMI) and secondary methylation index (SMI) were calculated to assess arsenic methylation capacity of individuals. Results showed that participants carrying a lower methylation capacity, which is characterized by lower DMA% and SMI, have a higher risk of hypertension compared to their corresponding references after adjusting for multiple confounders. A potential synergy between poor arsenic methylation capacity (higher MMA%, lower DMA% and SMI) and older age or higher BMI were detected. The joint effects of higher MMA% and lower SMI with cigarette smoking also suggest some evidence of synergism. The findings of present study indicated that inefficient arsenic methylation capacity was associated with hypertension and the effect might be enhanced by certain demographic factors.
Collapse
|
21
|
Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology 2015; 331:78-99. [PMID: 25771173 DOI: 10.1016/j.tox.2015.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/09/2015] [Accepted: 02/27/2015] [Indexed: 11/20/2022]
Abstract
The possibility of an association between inorganic arsenic (iAs) exposure and cardiovascular outcomes has received increasing attention in the literature over the past decade. The United States Environmental Protection Agency (US EPA) is currently revising its Integrated Risk Assessment System (IRIS) review of iAs, and one of the non-cancer endpoints of interest is cardiovascular disease (CVD). Despite the increased interest in this area, substantial gaps remain in the available information, particularly regarding the mechanism of action (MOA) by which iAs could cause or exacerbate CVD. Few studies specifically address the plausibility of an association between iAs and CVD at the low exposure levels which are typical in the United States (i.e., below 100 μg As/L in drinking water). We have conducted a review and evaluation of the animal, mechanistic, and human data relevant to the potential MOAs of iAs and CVD. Specifically, we evaluated the most common proposed MOAs, which include disturbance of endothelial function and hepatic dysfunction. Our analysis of the available evidence indicates that there is not a well-established MOA for iAs in the development or progression of CVD. Few human studies of the potential MOAs have addressed plausibility at low doses and the applicability of extrapolation from animal studies to humans is questionable. However, the available evidence indicates that regardless of the specific MOA, the effects of iAs on physiological processes at the cellular level appear to operate via a threshold mechanism. This finding is consistent with the lack of association of CVD with iAs exposure in humans at levels below 100 μg/L, particularly when considering important exposure and risk modifiers such as nutrition and genetics. Based on this analysis, we conclude that there are no data supporting a linear dose-response relationship between iAs and CVD, indicating this relationship has a threshold.
Collapse
|
22
|
Fabrisia A, Elke B, Donna S, Ricardo F, Bret G, Bridget D, Giovanna D, Alexandra R, Amin C, Yesica G, Aaron B. Arsenic induces sustained impairment of skeletal muscle and muscle progenitor cell ultrastructure and bioenergetics. Free Radic Biol Med 2014; 74:64-73. [PMID: 24960579 PMCID: PMC4159748 DOI: 10.1016/j.freeradbiomed.2014.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/20/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Over 4 million individuals in the United States, and over 140 million individuals worldwide, are exposed daily to arsenic-contaminated drinking water. Human exposures can range from below the current limit of 10 μg/L to over 1mg/L, with 100 μg/L promoting disease in a large portion of those exposed. Although increased attention has recently been paid to myopathy following arsenic exposure, the pathogenic mechanisms underlying clinical symptoms remain poorly understood. This study tested the hypothesis that arsenic induces lasting muscle mitochondrial dysfunction and impairs metabolism. Compared to nonexposed controls, mice exposed to drinking water containing 100 μg/L arsenite for 5 weeks demonstrated impaired muscle function, mitochondrial myopathy, and altered oxygen consumption that were concomitant with increased mitochondrial fusion gene transcription. There were no differences in the levels of inorganic arsenic or its monomethyl and dimethyl metabolites between controls and exposed muscles, confirming that arsenic does not accumulate in muscle. Nevertheless, muscle progenitor cells isolated from exposed mice recapitulated the aberrant myofiber phenotype and were more resistant to oxidative stress, generated more reactive oxygen species, and displayed autophagic mitochondrial morphology, compared to cells isolated from nonexposed mice. These pathological changes from a possible maladaptive oxidative stress response provide insight into declines in muscle functioning caused by exposure to this common environmental contaminant.
Collapse
Affiliation(s)
- Ambrosio Fabrisia
- Department of Physical Medicine & Rehabilitation,
University of Pittsburgh, Pittsburgh, PA 15219
| | - Brown Elke
- Department of Physical Medicine & Rehabilitation,
University of Pittsburgh, Pittsburgh, PA 15219,
| | - Stolz Donna
- Department of Cell Biology, University of Pittsburgh, Pittsburgh,
PA 15213,
| | - Ferrari Ricardo
- Department of Physical Medicine & Rehabilitation,
University of Pittsburgh, Pittsburgh, PA,
| | - Goodpaster Bret
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
15213,
| | - Deasy Bridget
- Department of Orthopaedic Surgery, University of Pittsburgh,
Pittsburgh, PA 15213,
| | - Distefano Giovanna
- Department of Physical Therapy, University of Pittsburgh,
Pittsburgh, PA, 15213,
| | - Roperti Alexandra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh,
PA, 15213,
| | - Cheikhi Amin
- Department of Environmental and Occupational Health, University of
Pittsburgh, Pittsburgh, PA, 15219,
| | - Garciafigueroa Yesica
- Department of Environmental and Occupational Health, University of
Pittsburgh, Pittsburgh, PA, 15219,
| | - Barchowsky Aaron
- Department of Environmental and Occupational Health, University of
Pittsburgh, Pittsburgh, PA, 15219,
| |
Collapse
|
23
|
McCollum CW, Hans C, Shah S, Merchant FA, Gustafsson JÅ, Bondesson M. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:152-163. [PMID: 24768856 DOI: 10.1016/j.aquatox.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems.
Collapse
Affiliation(s)
- Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Charu Hans
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Shishir Shah
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Fatima A Merchant
- Department of Computer Science, University of Houston, Houston, TX 77204, USA; Department of Engineering Technology, University of Houston, Houston, TX 77204, USA
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
24
|
Watcharasit P, Suntararuks S, Visitnonthachai D, Thiantanawat A, Satayavivad J. β-catenin involvement in arsenite-induced VEGF expression in neuroblastoma SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:672-678. [PMID: 22859221 DOI: 10.1002/tox.21794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/28/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
Arsenic is a widespread contaminant in the environment especially in drinking water. Although it is a known carcinogen in human, the mechanism by which arsenic induces carcinogenesis is not well understood. Among several effects of arsenic, it has been suggested that arsenic-induced vascular endothelial growth factor (VEGF) expression plays a critical role in arsenic carcinogenesis. In the present study, we demonstrated that arsenite induced VEGF expression in neuroblastoma SH-SY5Y cells without induction of HIF-1α, a well-known transcriptional activator for VEGF suggesting that arsenite-induced VEGF expression in SH-SY5Y cells may not require HIF-1α activation. It has been reported that VEGF expression is regulated by multiple transcription factors including β-catenin. We therefore investigated whether β-catenin was involved in arsenite-induced VEGF expression in SH-SY5Y cells. Treatment of arsenite caused β-catenin accumulation in the nucleus. Additionally, arsenite treatment decreased the activity of GSK3, an enzyme that phosphorylates and targets β-catenin for degradation by proteasome, without activation of its upstream kinase, Akt. Inhibition of PI3K/Akt which negatively regulates GSK3 activity by LY294002 resulted in a decrease in arsenite-mediated β-catenin nuclear accumulation, and VEGF expression. These results suggested that β-catenin plays a role in arsenite-induced VEGF in SH-SY5Y cells, and the induction of β-catenin by arsenite is mediated by inhibition of GSK3 without activating its upstream kinase Akt.
Collapse
Affiliation(s)
- Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Rd, Bangkok 10210, Thailand; Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Rd, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Higher Education Commission, Thailand
| | | | | | | | | |
Collapse
|
25
|
Wu F, Molinaro P, Chen Y. Arsenic Exposure and Subclinical Endpoints of Cardiovascular Diseases. Curr Environ Health Rep 2014; 1:148-162. [PMID: 25013752 DOI: 10.1007/s40572-014-0011-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mechanistic evidence suggests that arsenic exposure from drinking water increases the production of reactive oxygen species and influences inflammatory responses and endothelial nitric oxide homeostasis. These arsenic-induced events may lead to endothelial dysfunction that increases the risk of atherosclerosis and cardiovascular disease. We reviewed accumulating epidemiologic evidence that evaluated the association between arsenic exposure and intermediate markers and subclinical measures that predict future cardiovascular risk. Cross-sectional studies have indicated positive associations between high or low-to-moderate levels of arsenic exposure with indices of subclinical atherosclerosis, QT interval prolongation, and circulating markers of endothelial dysfunction. The evidence is limited for other intermediate endpoints such as markers of oxidative stress and inflammation, QT dispersion, and lipid profiles. Prospective studies are needed to enhance the causal inferences of arsenic's effects on subclinical endpoints of cardiovascular disease, especially at lower arsenic exposure levels.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Peter Molinaro
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY
| |
Collapse
|
26
|
Prasanna N, Rasool M. Modulation of Gene-Expression Profiles Associated with Sodium Arsenite-Induced Cardiotoxicity by p-Coumaric Acid, a Common Dietary Polyphenol. J Biochem Mol Toxicol 2014; 28:174-80. [DOI: 10.1002/jbt.21550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/15/2013] [Accepted: 01/04/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Nagalakshmi Prasanna
- Immunopathology Laboratory; School of Bio Sciences and Technology, VIT University; Vellore 632 014 India
| | - Mahaboobkhan Rasool
- Immunopathology Laboratory; School of Bio Sciences and Technology, VIT University; Vellore 632 014 India
| |
Collapse
|
27
|
Farzan SF, Karagas MR, Chen Y. In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol 2013; 272:384-90. [PMID: 23859881 PMCID: PMC3783578 DOI: 10.1016/j.taap.2013.06.030] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is a growing body of evidence that prenatal and early childhood exposure to arsenic from drinking water can have serious long-term health implications. OBJECTIVES Our goal was to understand the potential long-term health and disease risks associated with in utero and early life exposure to arsenic, as well as to examine parallels between findings from epidemiological studies with those from experimental animal models. METHODS We examined the current literature and identified relevant studies through PubMed by using combinations of the search terms "arsenic", "in utero", "transplacental", "prenatal" and "fetal". DISCUSSION Ecological studies have indicated associations between in utero and/or early life exposure to arsenic at high levels and increases in mortality from cancer, cardiovascular disease and respiratory disease. Additional data from epidemiologic studies suggest intermediate effects in early life that are related to risk of these and other outcomes in adulthood. Experimental animal studies largely support studies in humans, with strong evidence of transplacental carcinogenesis, atherosclerosis and respiratory disease, as well as insight into potential underlying mechanisms of arsenic's health effects. CONCLUSIONS As millions worldwide are exposed to arsenic and evidence continues to support a role for in utero arsenic exposure in the development of a range of later life diseases, there is a need for more prospective studies examining arsenic's relation to early indicators of disease and at lower exposure levels.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
| | - Margaret R. Karagas
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
28
|
Prasanna N, Krishnan DN, Rasool M. Sodium arsenite-induced cardiotoxicity in rats: protective role of p-coumaric acid, a common dietary polyphenol. Toxicol Mech Methods 2013. [PMID: 23194016 DOI: 10.3109/15376516.2012.748116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study was performed to investigate the ameliorative role of p-coumaric acid against sodium arsenite-induced cardiotoxicity in rats. Sodium arsenite (5 mg/kg/b.wt) was orally administered once a day for 30 days to the animals to induce cardiotoxicity. After the experimental period, cardiotoxicity was assessed by estimating the levels of lipid peroxidation, anti-oxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, total reduced glutathione, protein sulfyhydryl and non-protein sulfhydryl groups) and DNA fragmentation in the cardiac tissue of control and experimental rats. In addition, cardiac tissue specific serum markers (triacylglycerides, total cholesterol, low-density lipoprotein cholesterol and high density lipoprotein cholesterol) in serum and histopathological changes in the cardiac tissue were also evaluated. From the results obtained in our study, sodium arsenite administration to the rats increased lipid peroxidation, DNA fragmentation, triacylglycerides, total cholesterol and low-density lipoprotein cholesterol, whereas antioxidant status and high-density lipoprotein cholesterol were found to be reduced. However, p-coumaric acid (75 and100 mg/kg/b.wt) treatment orally once per day for 30 days, immediately before a daily administration of sodium arsenite protected the abnormal biochemical abnormalities observed in the cardiac tissue of sodium arsenite treated rats as evidenced by the cardiac histopathology. For comparison purpose, a standard antioxidant vitamin C (100 mg/kg/b.wt) was used. In conclusion, this study concluded that p-coumaric acid could be a promising candidate for protecting the sodium arsenite-induced cardiotoxicity in rats through its antioxidant character.
Collapse
Affiliation(s)
- Nagalakshmi Prasanna
- Immunopathology Laboratory, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | | | | |
Collapse
|
29
|
Wu F, Jasmine F, Kibriya MG, Liu M, Wójcik O, Parvez F, Rahaman R, Roy S, Paul-Brutus R, Segers S, Slavkovich V, Islam T, Levy D, Mey JL, van Geen A, Graziano JH, Ahsan H, Chen Y. Association between arsenic exposure from drinking water and plasma levels of cardiovascular markers. Am J Epidemiol 2012; 175:1252-61. [PMID: 22534204 PMCID: PMC3372314 DOI: 10.1093/aje/kwr464] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/14/2011] [Indexed: 01/20/2023] Open
Abstract
The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yu Chen
- Correspondence to Dr. Yu Chen, Departments of Environmental Medicine and Medicine, New York University School of Medicine, 650 First Avenue, Room 510, New York, NY 10016 (e-mail: )
| |
Collapse
|
30
|
Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways. Arch Toxicol 2012; 86:879-96. [DOI: 10.1007/s00204-012-0845-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
|
31
|
Elevated levels of plasma Big endothelin-1 and its relation to hypertension and skin lesions in individuals exposed to arsenic. Toxicol Appl Pharmacol 2012; 259:187-94. [DOI: 10.1016/j.taap.2011.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 12/26/2011] [Indexed: 11/19/2022]
|
32
|
Cui Y, Han Z, Hu Y, Song G, Hao C, Xia H, Ma X. MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J Cell Physiol 2012; 227:772-83. [PMID: 21503876 DOI: 10.1002/jcp.22789] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Environmental exposure to inorganic arsenic compounds has been reported to have serious health effects on humans. Recent studies reported that arsenic targets endothelial cells lining blood vessels, and endothelial cell activation or dysfunction, may underlie the pathogenesis of arsenic-induced diseases and developmental toxicity. It has been reported that microRNAs (miRNAs) may act as an angiogenic switch by regulating related genes. The present study was designed to test the hypothesis that arsenite-regulated miRNAs play pivotal roles in arsenic-induced toxicity. Fertilized eggs were injected via the yolk sac with 100 nM sodium arsenite at Hamburger-Hamilton (HH) stages 6, 9, and 12, and harvested at HH stage 18. To identify the individual miRNAs and mRNAs that may regulate the genetic network, the expression profiles of chick embryos were analyzed by microarray analysis. Microarray analyses revealed that the expression of a set of miRNAs changed after arsenite administration, especially miRNA-9, 181b, 124, 10b, and 125b, which exhibited a massive decrease in expression. Integrative analyses of the microarray data revealed that several miRNAs, including miR-9 and miR-181b, might target several key genes involved in arsenic-induced developmental toxicity. A luciferase reporter assay confirmed neuropilin-1 (Nrp1) as a target of mir-9 and mir-181b. Data from the transwell migration assay and the tube-formation assay indicated that miR-9 and mir-181b inhibited the arsenic-induced EA.hy926 cell migration and tube formation by targeting NRP1. Our study demonstrates that the environmental toxin, sodium arsenite, induced angiogenesis by altering the expression of miRNAs and their cognate mRNA targets.
Collapse
Affiliation(s)
- Yi Cui
- Department of Genetics, Graduate School of Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Increased myocardial prevalence of C-reactive protein in human coronary heart disease: direct effects on microvessel density and endothelial cell survival. Cardiovasc Pathol 2012; 21:428-35. [PMID: 22285194 DOI: 10.1016/j.carpath.2011.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/24/2011] [Accepted: 12/16/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Elevated plasma C-reactive protein (CRP) is a biomarker of cardiovascular diseases (CVDs), but its potential roles as a participant of the disease process are not well defined. Although early endothelial cell injury and dysfunction are recognized events in CVD, the initiating events are not well established. Here we investigated the local myocardial CRP levels and cardiac microvessel densities in control and CVD tissue samples. Using in vitro methodologies, we investigated the direct effects of CRP on human endothelial cells. METHODS Cardiac specimens were collected at autopsy within 4 h of death and were classified as normal controls or documented evidence of CVD. The regional prevalence of CRP and the cardiac microvessels (<40 μm) were investigated using immunohistochemistry. For in vitro experiments, human umbilical vein endothelial cells were incubated with CRP. Intracellular oxidant levels were assessed using 2',7'-dichlorofluorescein diacetate fluorescence microscopy, and cell survival was concurrently determined. Effects of chemical antioxidants on endothelial cell survival were also tested. RESULTS Myocardial CRP levels were elevated in CVD specimens. This was associated with reduced cardiac microvessels, and this rarefaction was inversely correlated to adjacent myocardial CRP prevalence. CRP caused concentration-dependent increases in oxidant production and cell apoptosis. CONCLUSIONS These findings provide evidence supporting myocardial CRP as a locally produced inflammatory marker and as a potential participant in endothelial toxicity and microvascular rarefaction.
Collapse
|
34
|
Sanchez-Soria P, Broka D, Monks SL, Camenisch TD. Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice. Toxicol Pathol 2012; 40:504-12. [PMID: 22215511 DOI: 10.1177/0192623311432297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is the leading cause of death in the United States and worldwide. High incidence of cardiovascular diseases has been linked to populations with elevated arsenic content in their drinking water. Although this correlation has been established in many epidemiological studies, a lack of experimental models to study mechanisms of arsenic-related cardiovascular pathogenesis has limited our understanding of how arsenic exposure predisposes for development of hypertension and increased cardiovascular mortality. Our studies show that mice chronically exposed to drinking water containing 100 parts per billion (ppb) sodium arsenite for 22 weeks show an increase in both systolic and diastolic blood pressure. Echocardiographic analyses as well as histological assessment show concentric left ventricular hypertrophy, a primary cardiac manifestation of chronic hypertension. Live imaging by echocardiography shows a 43% increase in left ventricular mass in arsenic-treated animals. Relative wall thickness (RWT) was calculated showing that all the arsenic-exposed animals show an RWT greater than 0.45, indicating concentric hypertrophy. Importantly, left ventricular hypertrophy, although often associated with chronic hypertension, is an independent risk factor for cardiovascular-related mortalities. These results suggest that chronic low-level arsenite exposure promotes the development of hypertension and the comorbidity of concentric hypertrophy.
Collapse
Affiliation(s)
- Pablo Sanchez-Soria
- Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA.
| | | | | | | |
Collapse
|
35
|
States JC, Barchowsky A, Cartwright IL, Reichard JF, Futscher BW, Lantz RC. Arsenic toxicology: translating between experimental models and human pathology. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1356-63. [PMID: 21684831 PMCID: PMC3230447 DOI: 10.1289/ehp.1103441] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/17/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chronic arsenic exposure is a worldwide health problem. How arsenic exposure promotes a variety of diseases is poorly understood, and specific relationships between experimental and human exposures are not established. We propose phenotypic anchoring as a means to unify experimental observations and disease outcomes. OBJECTIVES We examined the use of phenotypic anchors to translate experimental data to human pathology and investigated research needs for which phenotypic anchors need to be developed. METHODS During a workshop, we discussed experimental systems investigating arsenic dose/exposure and phenotypic expression relationships and human disease responses to chronic arsenic exposure and identified knowledge gaps. In a literature review, we identified areas where data exist to support phenotypic anchoring of experimental results to pathologies from specific human exposures. DISCUSSION Disease outcome is likely dependent on cell-type-specific responses and interaction with individual genetics, other toxicants, and infectious agents. Potential phenotypic anchors include target tissue dosimetry, gene expression and epigenetic profiles, and tissue biomarkers. CONCLUSIONS Translation to human populations requires more extensive profiling of human samples along with high-quality dosimetry. Anchoring results by gene expression and epigenetic profiling has great promise for data unification. Genetic predisposition of individuals affects disease outcome. Interactions with infectious agents, particularly viruses, may explain some species-specific differences between human pathologies and experimental animal pathologies. Invertebrate systems amenable to genetic manipulation offer potential for elaborating impacts of specific biochemical pathways. Anchoring experimental results to specific human exposures will accelerate understanding of mechanisms of arsenic-induced human disease.
Collapse
Affiliation(s)
- J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Lemaire M, Lemarié CA, Molina MF, Schiffrin EL, Lehoux S, Mann KK. Exposure to moderate arsenic concentrations increases atherosclerosis in ApoE-/- mouse model. Toxicol Sci 2011; 122:211-21. [PMID: 21512104 DOI: 10.1093/toxsci/kfr097] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a widespread environmental contaminant to which millions of people are exposed worldwide. Exposure to arsenic is epidemiologically linked to increased cardiovascular disease, such as atherosclerosis. However, the effects of moderate concentrations of arsenic on atherosclerosis formation are unknown. Therefore, we utilized an in vivo ApoE(-/-) mouse model to assess the effects of chronic moderate exposure to arsenic on plaque formation and composition in order to facilitate mechanistic investigations. Mice exposed to 200 ppb arsenic developed atherosclerotic lesions, a lower exposure than previously reported. In addition, arsenic modified the plaque content, rendering them potentially less stable and consequently, potentially more dangerous. Moreover, we observed that the lower exposure concentration was more atherogenic than the higher concentration. Arsenic-enhanced lesions correlated with several proatherogenic molecular changes, including decreased liver X receptor (LXR) target gene expression and increased proinflammatory cytokines. Significantly, our observations suggest that chronic moderate arsenic exposure may be a greater cardiovascular health risk than previously anticipated.
Collapse
Affiliation(s)
- Maryse Lemaire
- Deptartment of Oncology, Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Jutooru I, Chadalapaka G, Sreevalsan S, Lei P, Barhoumi R, Burghardt R, Safe S. Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Exp Cell Res 2010; 316:2174-2188. [PMID: 20435036 PMCID: PMC2900380 DOI: 10.1016/j.yexcr.2010.04.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/05/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022]
Abstract
Arsenic trioxide exhibits antiproliferative, antiangiogenic and proapoptotic activity in cancer cells, and many genes associated with these responses are regulated by specificity protein (Sp) transcription factors. Treatment of cancer cells derived from urologic (bladder and prostate) and gastrointestinal (pancreas and colon) tumors with arsenic trioxide demonstrated that these cells exhibited differential responsiveness to the antiproliferative effects of this agent and this paralleled their differential repression of Sp1, Sp3 and Sp4 proteins in the same cell lines. Using arsenic trioxide-responsive KU7 and non-responsive 253JB-V bladder cancer cells as models, we show that in KU7 cells, < or =5 microM arsenic trioxide decreased Sp1, Sp3 and Sp4 and several Sp-dependent genes and responses including cyclin D1, epidermal growth factor receptor, bcl-2, survivin and vascular endothelial growth factor, whereas at concentrations up to 15 microM, minimal effects were observed in 253JB-V cells. Arsenic trioxide also inhibited tumor growth in athymic mice bearing KU7 cells as xenografts, and expression of Sp1, Sp3 and Sp4 was significantly decreased. Inhibitors of oxidative stress such as glutathione or dithiothreitol protected KU7 cells from arsenic trioxide-induced antiproliferative activity and Sp repression, whereas glutathione depletion sensitized 253JB-V cells to arsenic trioxide. Mechanistic studies suggested that arsenic trioxide-dependent downregulation of Sp and Sp-dependent genes was due to decreased mitochondrial membrane potential and induction of reactive oxygen species, and the role of peroxides in mediating these responses was confirmed using hydrogen peroxide.
Collapse
Affiliation(s)
- Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Sandeep Sreevalsan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Ping Lei
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030-3303 USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Robert Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030-3303 USA
| |
Collapse
|
38
|
Medrano MAJ, Boix R, Pastor-Barriuso R, Palau M, Damián J, Ramis R, Del Barrio JL, Navas-Acien A. Arsenic in public water supplies and cardiovascular mortality in Spain. ENVIRONMENTAL RESEARCH 2010; 110:448-54. [PMID: 19880104 DOI: 10.1016/j.envres.2009.10.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/22/2009] [Accepted: 10/01/2009] [Indexed: 05/03/2023]
Abstract
BACKGROUND High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. METHODS Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. RESULTS Mean municipal drinking water arsenic concentrations ranged from <1 to 118 microg/L. Compared to the overall Spanish population, sex- and age-adjusted mortality rates for cardiovascular (SMR 1.10), coronary (SMR 1.18), and cerebrovascular (SMR 1.04) disease were increased in municipalities with arsenic concentrations in drinking water > 10 microg/L. Compared to municipalities with arsenic concentrations < 1 microg/L, fully adjusted cardiovascular mortality rates were increased by 2.2% (-0.9% to 5.5%) and 2.6% (-2.0% to 7.5%) in municipalities with arsenic concentrations between 1-10 and >10 microg/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. CONCLUSIONS In this ecological study, elevated low-to-moderate arsenic concentrations in drinking water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 microg/L.
Collapse
Affiliation(s)
- M A José Medrano
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Meng D, Wang X, Chang Q, Hitron A, Zhang Z, Xu M, Chen G, Luo J, Jiang B, Fang J, Shi X. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism. Toxicol Appl Pharmacol 2010; 244:291-9. [PMID: 20083128 DOI: 10.1016/j.taap.2010.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/08/2010] [Indexed: 12/21/2022]
Abstract
Angiogenesis and vessel remodeling are fundamental to the pathogenesis of a number of diseases caused by environmental arsenic exposure, including tumorigenesis and cardiovascular diseases. Arsenic (AsIII) has been shown to stimulate angiogenesis and vascular remodeling in vivo. However, the exact molecular mechanisms accounting for arsenic-induced angiogenesis are not clear. The present study investigates the role of heme oxygenase-1 (HO-1) in sodium arsenite-mediated angiogenesis in vitro. Transwell assay, three-dimensional Matrigel assay, RT-PCR, ELISA and immunoblotting were used to determine cell migration, vascular tube formation, mRNA and protein expression. Chromatin immunoprecipitation and luciferase assay were applied to examine the DNA binding with protein and HO-1 transcriptional activity. Here, we report that low concentrations of arsenite (0.1-1 muM) stimulated cell migration and vascular tube formation in human microvascular endothelial cells (HMVEC). Arsenite induced HO-1 mRNA and protein expression. Knock down of HO-1 expression decreased arsenite-induced VEGF expression, cell migration, and tube formation. We showed that arsenite promoted dissociation of Bach1 (a transcriptional repressor) from the HO-1 enhancers and increased Nrf2 binding to these elements. Site directed mutagenesis assay identified that Bach1 cysteine residues 557 and 574 were essential for the induction of HO-1 gene in response to arsenite. These findings demonstrate a role for HO-1 in arsenite-mediated angiogenesis in vitro.
Collapse
Affiliation(s)
- Dan Meng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai, 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Park JS, Seo J, Kim YO, Lee HS, Jo I. Coordinated regulation of angiopoietin-1 and vascular endothelial growth factor by arsenite in human brain microvascular pericytes: implications of arsenite-induced vascular dysfunction. Toxicology 2009; 264:26-31. [PMID: 19622383 DOI: 10.1016/j.tox.2009.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/13/2009] [Accepted: 07/13/2009] [Indexed: 01/15/2023]
Abstract
Arsenite is an environmental toxicant that is associated with vascular disease; however, the underlying mechanism of its toxicity has yet to be elucidated. Vascular stability appears to be tightly regulated by several vasoactive proteins produced by two adjacent vascular cells, endothelial cells (EC) and pericytes. The disruption of vascular stability may be involved in arsenite toxicity. The roles of angipoietins (Ang) and vascular endothelial growth factor (VEGF) in this process have been evaluated, but these studies have mostly been limited to EC. In this study, we used human brain microvascular pericytes (HBMP) to evaluate the effects of arsenite on Ang-1 and VEGF regulation. Ang-2 was reported to be not detected in HBMP. Arsenite decreased Ang-1 secretion in a time and dose-dependent manner, while it increased VEGF secretion. Although arsenite did not alter Ang-1 mRNA expression, it increased intracellular Ang-1 protein levels in a dose-dependent manner, suggesting a role for arsenite in the intracellular trapping of Ang-1. Contrary to Ang-1, the expression of VEGF mRNA was dose-dependently up-regulated by arsenite. Treatment with N-actyl-l:-cysteine (NAC) alone decreased the release of Ang-1, but failed to attenuate the arsenite-induced decrease in Ang-1 secretion, while NAC completely blocked the arsenite-stimulated VEGF secretion. These results indicate that reactive oxygen species are involved in the regulation of VEGF, but not of Ang-1, secretion in response to arsenite treatment in pericytes. Furthermore, immunocytochemical analysis using confocal microscopy revealed a colocalization of Ang-1 with actin filaments that occurred independently of tubulin. In conclusion, arsenite decreases Ang-1 secretion and increases VEGF secretion, which may offer new insight into understanding the arsenite toxicity associated with vascular instability and subsequent development of vascular disease.
Collapse
Affiliation(s)
- Jae-Sun Park
- Center for Biomedical Research, National Institute of Health, Seoul, South Korea
| | | | | | | | | |
Collapse
|
42
|
Han B, Baliga R, Huang H, Giannone PJ, Bauer JA. Decreased cardiac expression of vascular endothelial growth factor and redox imbalance in murine diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2009; 297:H829-35. [PMID: 19561313 DOI: 10.1152/ajpheart.00222.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type 1 diabetes is associated with a unique form of cardiomyopathy that is present without atherosclerosis. Redox imbalance and/or changes in vascular endothelial growth factor (VEGF) expression have been associated with diabetes-related cardiomyopathy. However, the mechanisms of these changes and their interrelationships remain unclear. Using a murine type 1 diabetes model, we tested the hypothesis that alterations in cardiac performance are associated with decreased cardiac microvascular prevalence, as well as downregulation of VEGF isoforms. We also investigated oxidative stress as a contributor to regulate individual VEGF isoforms and microvascular rarefaction. Significant and rapid hyperglycemia was observed at 1 wk post-streptozotocin (STZ) and persisted throughout the 5-wk study. Left ventricular (LV) fractional shortening was reduced at week 1 and 5 post-STZ insult relative to age-matched controls. We also observed the early reduction in E/A ratio at 1 wk. Immunostaining for CD31 and digital image analysis demonstrated a 35% reduction in microvessels/myocardial area, indicative of rarefaction, which was highly correlated with fractional shortening. Furthermore, a significant increase in the prevalence of protein 3-nitrotyrosine was observed in the diabetic cardiac tissue, which was inversely associated with microvascular rarefaction. The expressions of three VEGF isoforms were significantly reduced to different extents. The reduction of VEGF(164) was associated with GSSG accumulation. These data demonstrate that the mouse model of STZ-induced diabetes has hallmark features observed in humans with respect to nonischemic systolic and diastolic performance and microvascular rarefaction, which are associated with changes in VEGF isoform expression and redox imbalance in the myocardium.
Collapse
Affiliation(s)
- Bing Han
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | | | | | | | | |
Collapse
|
43
|
Straub AC, Klei LR, Stolz DB, Barchowsky A. Arsenic requires sphingosine-1-phosphate type 1 receptors to induce angiogenic genes and endothelial cell remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1949-58. [PMID: 19349368 DOI: 10.2353/ajpath.2009.081016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Arsenic in drinking water is a major public health concern as it increases risk and incidence of cardiovascular disease and cancer. Arsenic exposure affects multiple vascular beds, promoting liver sinusoidal capillarization and portal hypertension, ischemic heart disease, peripheral vascular disease, and tumor angiogenesis. While Rac1-GTPase and NADPH oxidase activities are essential for arsenic-stimulated endothelial cell signaling for angiogenesis or liver sinusoid capillarization, the mechanism for initiating these effects is unknown. We found that arsenic-stimulated cell signaling and angiogenic gene expression in human microvascular endothelial cells were Pertussis toxin sensitive, indicating a G-protein coupled signaling pathway. Incubating human microvascular endothelial cells with the sphingosine-1-phosphate type 1 receptor (S1P(1)) inhibitor VPC23019 or performing small interfering RNA knockdown of S1P(1) blocked arsenic-stimulated HMVEC angiogenic gene expression and tube formation, but did not affect induction of either HMOX1 or IL8. Liver sinusoidal endothelial cells (LSECs) defenestrate and capillarize in response to aging and environmental oxidant stresses. We found that S1P(1) was enriched on LSECs in vivo and in primary cell culture and that VPC23019 inhibited both sphingosine-1-phosphate-stimulated and arsenic-stimulated LSEC oxidant generation and defenestration. These studies identified novel roles for S1P(1) in mediating arsenic stimulation of both angiogenesis and pathogenic LSEC capillarization, as well as demonstrating a role for S1P(1) in mediating environmental responses in the liver vasculature, providing possible mechanistic insight into arsenic-induced vascular pathogenesis and disease.
Collapse
Affiliation(s)
- Adam C Straub
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
44
|
Straub AC, Clark KA, Ross MA, Chandra AG, Li S, Gao X, Pagano PJ, Stolz DB, Barchowsky A. Arsenic-stimulated liver sinusoidal capillarization in mice requires NADPH oxidase-generated superoxide. J Clin Invest 2008; 118:3980-9. [PMID: 19033667 DOI: 10.1172/jci35092] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 10/08/2008] [Indexed: 12/15/2022] Open
Abstract
Environmental arsenic exposure, through drinking contaminated water, is a significant risk factor for developing vascular diseases and is associated with liver portal hypertension, vascular shunting, and portal fibrosis through unknown mechanisms. We found that the addition of low doses of arsenite to the drinking water of mice resulted in marked pathologic remodeling in liver sinusoidal endothelial cells (SECs), including SEC defenestration, capillarization, increased junctional PECAM-1 expression, protein nitration, and decreased liver clearance of modified albumin. Furthermore, the pathologic changes observed after in vivo exposure were recapitulated in isolated mouse SECs exposed to arsenic in culture. To investigate the role of NADPH oxidase-generated ROS in this remodeling, we examined the effect of arsenite in the drinking water of mice deficient for the p47 subunit of the NADPH oxidase and found that knockout mice were protected from arsenite-induced capillarization and protein nitration. Furthermore, ex vivo arsenic exposure increased SEC superoxide generation, and this effect was inhibited by addition of a Nox2 inhibitor and quenched by the cell-permeant superoxide scavenger. In addition, inhibiting either oxidant generation or Rac1-GTPase blocked ex vivo arsenic-stimulated SEC differentiation and dysfunction. Our data indicate that a Nox2-based oxidase is required for SEC capillarization and that it may play a central role in vessel remodeling following environmentally relevant arsenic exposures.
Collapse
Affiliation(s)
- Adam C Straub
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Basu P, Ghosh RN, Grove LE, Klei L, Barchowsky A. Angiogenic potential of 3-nitro-4-hydroxy benzene arsonic acid (roxarsone). ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:520-3. [PMID: 18414637 PMCID: PMC2290980 DOI: 10.1289/ehp.10885] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/15/2008] [Indexed: 05/10/2023]
Abstract
BACKGROUND Roxarsone (3-nitro-4-hydroxy benzene arsonic acid) is an arsenic compound widely used in the poultry industry as a feed additive to prevent coccidiosis, stimulate growth, and to improve tissue pigmentation. Little is known about the potential human health effects from roxarsone released into the environment from chicken waste or from residual compound in chicken products. OBJECTIVE The growth potentiation and enhanced tissue pigmentation suggest that low levels of roxarsone exposure may have an angiogenic potential similar to that of inorganic arsenite (As(III)). The goal of this investigation was to test the hypothesis described above using cultured human aortic and lung microvascular endothelial cells in high-content imaging tube-forming assays and begin developing a molecular level understanding of the process. METHODS We used a three-dimensional Matrigel assay for probing angiogenesis in cultured human endothelial cells, and a polymerase chain reaction (PCR) array to probe the gene changes as a function of roxarsone or As(III) treatment. In addition, we used Western blot analysis for changes in protein concentration and activation. RESULTS Roxarsone was found to exhibit a higher angiogenic index than As(III) at lower concentrations. Increased endothelial nitric oxide synthase (eNOS) activity was observed for roxarsone but not for As(III)-induced angiogenesis. However, As(III) caused more rapid and pronounced phosphorylation of eNOS. Quantitative PCR array on select genes revealed that the two compounds have different and often opposite effects on angiogenic gene expression. CONCLUSIONS The results demonstrate that roxarsone and As(III) promote angiogenic phenotype in human endothelial cells through distinctly different signaling mechanisms.
Collapse
Affiliation(s)
- Partha Basu
- Department of Chemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | | | | | |
Collapse
|
46
|
Banerjee N, Banerjee M, Ganguly S, Bandyopadhyay S, Das JK, Bandyopadhay A, Chatterjee M, Giri AK. Arsenic-induced mitochondrial instability leading to programmed cell death in the exposed individuals. Toxicology 2008; 246:101-11. [DOI: 10.1016/j.tox.2007.12.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 01/29/2023]
|
47
|
Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD. The vascular system as a target of metal toxicity. Toxicol Sci 2008; 102:207-18. [PMID: 17947343 PMCID: PMC2752624 DOI: 10.1093/toxsci/kfm263] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vascular system function involves complex interactions among the vascular endothelium, smooth muscle, the immune system, and the nervous system. The toxic metals cadmium (Cd), arsenic (As), and lead (Pb) can target the vascular system in a variety of ways, ranging from hemorrhagic injury to subtle pathogenic remodeling and metabolic changes. Acute Cd exposure results in hemorrhagic injury to the testis, although some strains of animals are resistant to this effect. A comparison of Cd-sensitive with Cd-resistant mouse strains showed that expression of the Slc39a8 gene, encoding the ZIP8 transporter, in the testis vasculature endothelium is responsible for this difference. Endogenously, ZIP8 is a Mn(2+)/HCO(3)(-)symporter that may also contribute to Cd damage in the kidney. Chronic Cd exposure is associated with various cardiovascular disorders such as hypertension and cardiomyopathy and it is reported to have both carcinogenic and anticarcinogenic activities. At noncytotoxic concentrations of 10-100nM, Cd can inhibit chemotaxis and tube formation of vascular endothelial cells. These angiostatic effects may be mediated through disruption of vascular endothelial cadherin, a Ca(2+)-dependent cell adhesion molecule. With regard to As, ingestion of water containing disease-promoting concentrations of As promotes capillarization of the liver sinusoidal endothelium. Because capillarization is a hallmark precursor for liver fibrosis and contributes to an imbalance of lipid metabolism, this As effect on hepatic endothelial cells may be a pathogenic mechanism underlying As-related vascular diseases. With regard to Pb, perinatal exposure may cause sustained elevations in adult blood pressure, and genetically susceptible animals may show enhanced sensitivity to this effect. Taken together, these data indicate that the vascular system is a critical target of metal toxicity and that actions of metals on the vascular system may play important roles in mediating the pathophysiologic effects of metals in specific target organs.
Collapse
Affiliation(s)
- Walter C Prozialeck
- Department of Pharmacology, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Klei LR, Barchowsky A. Positive signaling interactions between arsenic and ethanol for angiogenic gene induction in human microvascular endothelial cells. Toxicol Sci 2008; 102:319-27. [PMID: 18182400 DOI: 10.1093/toxsci/kfn003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arsenic in the drinking water may promote vascular diseases in millions of people worldwide through unresolved mechanisms. In addition, little is known of the effects of coexposures to arsenic and other common vasculature toxicants, such as alcohol. To investigate signaling interactions between arsenic and alcohols, primary human microvascular endothelial (HMVEC) cells were exposed to noncytotoxic concentrations of arsenite (1-5 microM) in the presence or absence of 0.1% ethanol (EtOH). Coexposure, but not exposure to either agent alone, rapidly increased active Fyn tyrosine kinase, tyrosine phosphorylation of a 109-kDa protein and serine phosphorylation of protein kinase C (PKC)delta. The 109-kDa protein was identified as PYK2, a regulator of vascular integrin signaling and an upstream activator of PKCdelta. Membrane localization of phospholipase Cgamma1 was increased by coexposure within 15 min, but not by either agent alone. In contrast, both agents equally increased membrane localization of Rac1-GTPase. Coexposure, but not exposure to either agent alone, induced transcript levels for the angiogenic genes, vascular endothelial cell growth factor (Vegfa) and insulin-like growth factor-1 (Igf1). However, EtOH inhibited arsenic-induced, nuclear factor-kappaB-driven interleukin-8 and collagen-1 expression. Differential effects of selective PKC inhibitors on induced gene expression combined with a lack of interaction for induction of hemeoxygenase-1 further demonstrated that arsenic-responsive signaling pathways differ in sensitivity to EtOH interactions. Finally, coexposure enhanced endothelial tube formation in in vitro angiogenesis assays. These data indicate that complex interactions occur between arsenic and EtOH exposures that functionally affect endothelial signaling for gene induction and remodeling stimuli.
Collapse
Affiliation(s)
- Linda R Klei
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15219, USA
| | | |
Collapse
|
49
|
Straub AC, Stolz DB, Ross MA, Hernández-Zavala A, Soucy NV, Klei LR, Barchowsky A. Arsenic stimulates sinusoidal endothelial cell capillarization and vessel remodeling in mouse liver. Hepatology 2007; 45:205-12. [PMID: 17187425 PMCID: PMC1764828 DOI: 10.1002/hep.21444] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Trivalent arsenic [As(III)] is a well-known environmental toxicant that causes a wide range of organ-specific diseases and cancers. In the human liver, As(III) promotes vascular remodeling, portal fibrosis, and hypertension, but the pathogenesis of these As(III)-induced vascular changes is unknown. To investigate the hypothesis that As(III) targets the hepatic endothelium to initiate pathogenic change, mice were exposed to 0 or 250 parts per billion (ppb) of As(III) in their drinking water for 5 weeks. Arsenic(III) exposure did not affect the overall health of the animals, the general structure of the liver, or hepatocyte morphology. There was no change in the total tissue arsenic levels, indicating that arsenic does not accumulate in the liver at this level of exposure. However, there was significant vascular remodeling with increased sinusoidal endothelial cell (SEC) capillarization, vascularization of the peribiliary vascular plexus (PBVP), and constriction of hepatic arterioles in As(III)-exposed mice. In addition to ultrastructural demonstration of SEC defenestration and capillarization, quantitative immunofluorescence analysis revealed increased sinusoidal PECAM-1 and laminin-1 protein expression, suggesting gain of adherens junctions and a basement membrane. Conversion of SECs to a capillarized, dedifferentiated endothelium was confirmed at the cellular level with demonstration of increased caveolin-1 expression and SEC caveolae, as well as increased membrane-bound Rac1-GTPase. CONCLUSION These data demonstrate that exposure to As(III) causes functional changes in SEC signaling for sinusoidal capillarization that may be initial events in pathogenic changes in the liver.
Collapse
Affiliation(s)
- Adam C. Straub
- From the Department of Occupational and Environmental Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Mark A. Ross
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Araceli Hernández-Zavala
- Center for Environmental and Molecular Biology of the Lung, University of North Carolina, Chapel Hill, NC; and
| | | | - Linda R. Klei
- From the Department of Occupational and Environmental Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Aaron Barchowsky
- From the Department of Occupational and Environmental Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
- Address reprint requests to: Aaron Barchowsky, Ph.D., University of Pittsburgh Graduate School of Public Health, Department of Occupational and Environmental Health, Bridgeside Point, 100 Technology Drive, Rm 332, Pittsburgh, PA 15219. E-mail: ; fax: 412-624-9361
| |
Collapse
|
50
|
Straub AC, Stolz DB, Vin H, Ross MA, Soucy NV, Klei LR, Barchowsky A. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice. Toxicol Appl Pharmacol 2006; 222:327-36. [PMID: 17123562 PMCID: PMC2084367 DOI: 10.1016/j.taap.2006.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/09/2006] [Indexed: 12/16/2022]
Abstract
The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.
Collapse
Affiliation(s)
- Adam C. Straub
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine
| | - Harina Vin
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health
- Department of Cell Biology, University of Pittsburgh School of Medicine
| | - Mark A. Ross
- Department of Cell Biology, University of Pittsburgh School of Medicine
| | - Nicole V. Soucy
- Department of Pharmacology and Toxicology, Dartmouth Medical School
| | - Linda R. Klei
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health
| |
Collapse
|