1
|
Kleinau G, Kalveram L, Köhrle J, Szkudlinski M, Schomburg L, Biebermann H, Grüters-Kieslich A. Minireview: Insights Into the Structural and Molecular Consequences of the TSH-β Mutation C105Vfs114X. Mol Endocrinol 2016; 30:954-64. [PMID: 27387040 DOI: 10.1210/me.2016-1065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Naturally occurring thyrotropin (TSH) mutations are rare, which is also the case for the homologous heterodimeric glycoprotein hormones (GPHs) follitropin (FSH), lutropin (LH), and choriogonadotropin (CG). Patients with TSH-inactivating mutations present with central congenital hypothyroidism. Here, we summarize insights into the most frequent loss-of-function β-subunit of TSH mutation C105Vfs114X, which is associated with isolated TSH deficiency. This review will address the following question. What is currently known on the molecular background of this TSH variant on a protein level? It has not yet been clarified how C105Vfs114X causes early symptoms in affected patients, which are comparably severe to those observed in newborns lacking any functional thyroid tissue (athyreosis). To better understand the mechanisms of this mutant, we have summarized published reports and complemented this information with a structural perspective on GPHs. By including the ancestral TSH receptor agonist thyrostimulin and pathogenic mutations reported for FSH, LH, and choriogonadotropin in the analysis, insightful structure function and evolutionary restrictions become apparent. However, comparisons of immunogenicity and bioactivity of different GPH variants is hindered by a lack of consensus for functional analysis and the diversity of used GPH assays. Accordingly, relevant gaps of knowledge concerning details of GPH mutation-related effects are identified and highlighted in this review. These issues are of general importance as several previous and recent studies point towards the high impact of GPH variants in differential signaling regulation at GPH receptors (GPHRs), both endogenously and under diseased conditions. Further improvement in this area is of decisive importance for the development of novel targeted therapies.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Laura Kalveram
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Josef Köhrle
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Mariusz Szkudlinski
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Lutz Schomburg
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Annette Grüters-Kieslich
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| |
Collapse
|
2
|
Szkudlinski MW. New Frontier in Glycoprotein Hormones and Their Receptors Structure-Function. Front Endocrinol (Lausanne) 2015; 6:155. [PMID: 26539160 PMCID: PMC4609891 DOI: 10.3389/fendo.2015.00155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/18/2015] [Indexed: 01/27/2023] Open
Abstract
Last two decades of structure-function studies performed in numerous laboratories provided substantial progress in understanding basic science, physiological, pathophysiological, pharmacological, and comparative aspects of glycoprotein hormones (GPHs) and their cognate receptors. Multiple concepts and models developed based on experimental data in the past stood the test of time and have been, at least in part, confirmed and/or remained compatible with the new structures resolved at the atomic level. Major advances in understanding of the ligand-receptor relationships are heralding the dawn of a new era for GPHs and their receptors, although many basic questions still remain unanswered. This article examines retrospectively several basic science aspects of GPH super-agonists and related "biosuperiors" in a broader context of the advances in the ligand-receptor structure-function relationships and new mechanistic models generated based on the structure elucidation. Due to selective focus of my comments and perspectives in certain parts, the reader is directed to the most relevant publications and reviews in the field for more comprehensive analyses.
Collapse
Affiliation(s)
- Mariusz W. Szkudlinski
- Trophogen Inc., Rockville, MD, USA
- *Correspondence: Mariusz W. Szkudlinski, Trophogen Inc., 9714 Medical Center Drive, Rockville, MD, USA,
| |
Collapse
|
3
|
Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34:691-724. [PMID: 23645907 PMCID: PMC3785642 DOI: 10.1210/er.2012-1072] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Ostring 3, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
4
|
Mueller S, Kleinau G, Szkudlinski MW, Jaeschke H, Krause G, Paschke R. The superagonistic activity of bovine thyroid-stimulating hormone (TSH) and the human TR1401 TSH analog is determined by specific amino acids in the hinge region of the human TSH receptor. J Biol Chem 2009; 284:16317-16324. [PMID: 19386596 DOI: 10.1074/jbc.m109.005710] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bovine TSH (bTSH) has a higher affinity to the human TSHR (hTSHR) and a higher signaling activity than human TSH (hTSH). The molecular reasons for these phenomena are unknown. Distinct negatively charged residues (Glu297, Glu303, and Asp382) in the hinge region of the hTSHR are known to be important for bTSH binding and signaling. To investigate the potential relevance of these positions for differences between bTSH and hTSH in the interaction to the hTSHR, we determined bTSH- and hTSH-mediated cAMP production of several substitutions at these three hinge residues. To examine specific variations of hTSH, we also investigated the superagonistic hTSH analog TR1401 (TR1401), whose sequence differs from hTSH by four additional positively charged amino acids that are also present in bTSH. To characterize possible interactions between the acidic hTSHR positions Glu297, Glu303, or Asp382 and the additional basic residues of TR1401, we investigated TR1401 binding and signaling properties. Our data reveal increased cAMP signaling of the hTSHR using TR1401 and bTSH compared with hTSH. Whereas Asp382 seems to be important for bTSH- and TR1401-mediated but not for hTSH-mediated signaling, the substitution E297K exhibits a decreased signaling for all three TSH variants. Interestingly, bTSH and TR1401 showed only a slightly different binding pattern. These observations imply that specific residues of the hinge region are mediators of the superagonistic activity of bTSH and TR1401 in contrast to hTSH. Moreover, the simultaneous localization of binding components in the glycoprotein hormone molecule and the receptor hinge region permits important reevaluation of interacting hormone receptor domains.
Collapse
Affiliation(s)
- Sandra Mueller
- From the III Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany
| | - Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, D-13125 Berlin, Germany
| | | | - Holger Jaeschke
- From the III Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, D-13125 Berlin, Germany
| | - Ralf Paschke
- From the III Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany.
| |
Collapse
|
5
|
Bonomi M, Busnelli M, Persani L, Vassart G, Costagliola S. Structural Differences in the Hinge Region of the Glycoprotein Hormone Receptors: Evidence from the Sulfated Tyrosine Residues. Mol Endocrinol 2006; 20:3351-63. [PMID: 16901970 DOI: 10.1210/me.2005-0521] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tyrosine sulfation is a late posttranslational modification of proteins that takes place in the Golgi network. In the past few years, this process has been identified as an important modulator of protein-protein interactions. Sulfated tyrosine residues have recently been identified in the C-terminal, so-called hinge region of the ectodomain of glycoprotein hormone receptors [TSH, LH/chorionic gonadotropin (CG), and FSH receptors] and were shown to play an important role in the interaction with their natural ligands. The position of two sulfated tyrosine residues in a Y-D/E-Y motif appears perfectly conserved in the alignment of TSH and LH receptors from different species, and site-directed mutagenesis experiments demonstrated that sulfation of the first residue of this motif was responsible for the functional effect on hormone binding. In contrast, the corresponding motif is not conserved in the FSH receptor, in which the first tyrosine residue is missing: the Y-D/E-Y motif is replaced by F(333)DY(335). We extend here our previous observation that, in this case, it is sulfation of the second sole tyrosine residue in the motif that is functionally important. An LH/CG receptor harboring an F(331)DY(333) motif (i.e. displaying decreased sensitivity to human CG) was used as a backbone in which short portions of the FSH receptor were substituted. Segments from the FSH receptor capable of restoring sensitivity to human CG were identified by transfection of the chimeras in COS-7 cells. These experiments identified key amino acid residues in the hinge region of the FSH receptor associated with the functional role of the second sulfated tyrosine residue in a Y-D/E-Y motif, allowing for efficient hormone binding. The experiments represent strong evidence that structural differences in the hinge regions of FSH and LH/CG receptors play a significant role in hormone-receptor-specific recognition.
Collapse
Affiliation(s)
- Marco Bonomi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|