1
|
Sims SG, Meares GP. Janus Kinase 1 Is Required for Transcriptional Reprograming of Murine Astrocytes in Response to Endoplasmic Reticulum Stress. Front Cell Neurosci 2019; 13:446. [PMID: 31680865 PMCID: PMC6797841 DOI: 10.3389/fncel.2019.00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases are associated with the accumulation of misfolded proteins in the endoplasmic reticulum (ER), leading to ER stress. To adapt, cells initiate the unfolded protein response (UPR). However, severe or unresolved UPR activation leads to cell death and inflammation. The UPR is initiated, in part, by the trans-ER membrane kinase PKR-like ER kinase (PERK). Recent evidence indicates ER stress and inflammation are linked, and we have shown that this involves PERK-dependent signaling via Janus Kinase (JAK) 1. This signaling provokes the production of soluble inflammatory mediators such as interleukin-6 (IL-6) and chemokine C-C motif ligand 2 (CCL2). We, therefore, hypothesized that JAK1 may control widespread transcriptional changes in response to ER stress. Here, using RNA sequencing of primary murine astrocytes, we demonstrate that JAK1 regulates approximately 10% of ER stress-induced gene expression and is required for a subset of PERK-dependent genes. Additionally, ER stress synergizes with tumor necrosis factor-α (TNF-α) to drive inflammatory gene expression in a JAK1-dependent fashion. We identified that JAK1 contributes to activating transcription factor (ATF) 4-dependent gene expression, including expression of the genes growth arrest and DNA damage (GADD) 45α and tribbles (TRIB) 3 that have not previously been associated with JAK signaling. While these genes are JAK1 dependent in response to ER stress, expression of GADD45α and TRIB3 are not induced by the JAK1-activating cytokine, oncostatin M (OSM). Transcriptomic analysis revealed that JAK1 drives distinct transcriptional programs in response to OSM stimulation versus ER stress. Interestingly, JAK1-dependent genes induced by ER stress in an ATF4-dependent mechanism were unaffected by small molecule inhibition of JAK1, suggesting that, in response to UPR activation, JAK1 initiates gene expression using non-canonical mechanisms. Overall, we have identified that JAK1 is a major regulator of ER stress-induced gene expression.
Collapse
Affiliation(s)
- Savannah G. Sims
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Gordon P. Meares
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
2
|
Gergics P, Christian HC, Choo MS, Ajmal A, Camper SA. Gene Expression in Mouse Thyrotrope Adenoma: Transcription Elongation Factor Stimulates Proliferation. Endocrinology 2016; 157:3631-46. [PMID: 27580811 PMCID: PMC5007889 DOI: 10.1210/en.2016-1183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyrotrope hyperplasia and hypertrophy are common responses to primary hypothyroidism. To understand the genetic regulation of these processes, we studied gene expression changes in the pituitaries of Cga(-/-) mice, which are deficient in the common α-subunit of TSH, LH, and FSH. These mice have thyrotrope hypertrophy and hyperplasia and develop thyrotrope adenoma. We report that cell proliferation is increased, but the expression of most stem cell markers is unchanged. The α-subunit is required for secretion of the glycoprotein hormone β-subunits, and mutants exhibit elevated expression of many genes involved in the unfolded protein response, consistent with dilation and stress of the endoplasmic reticulum. Mutants have elevated expression of transcription factors that are important in thyrotrope function, such as Gata2 and Islet 1, and those that stimulate proliferation, including Nupr1, E2f1, and Etv5. We characterized the expression and function of a novel, overexpressed gene, transcription elongation factor A (SII)-like 5 (Tceal5). Stable expression of Tceal5 in a pituitary progenitor cell line is sufficient to increase cell proliferation. Thus, Tceal5 may act as a proto-oncogene. This study provides a rich resource for comparing pituitary transcriptomes and an analysis of gene expression networks.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Helen C Christian
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Monica S Choo
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Adnan Ajmal
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Sally A Camper
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
3
|
Barbosa-Sampaio HC, Liu B, Drynda R, Rodriguez de Ledesma AM, King AJ, Bowe JE, Malicet C, Iovanna JL, Jones PM, Persaud SJ, Muller DS. Nupr1 deletion protects against glucose intolerance by increasing beta cell mass. Diabetologia 2013; 56:2477-86. [PMID: 23900510 DOI: 10.1007/s00125-013-3006-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/05/2013] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS The stress-activated nuclear protein transcription regulator 1 (NUPR1) is induced in response to glucose and TNF-α, both of which are elevated in type 2 diabetes, and Nupr1 has been implicated in cell proliferation and apoptosis cascades. We used Nupr1(-/-) mice to study the role of Nupr1 in glucose homeostasis under normal conditions and following maintenance on a high-fat diet (HFD). METHODS Glucose homeostasis in vivo was determined by measuring glucose tolerance, insulin sensitivity and insulin secretion. Islet number, morphology and beta cell area were assessed by immunofluorescence and morphometric analysis, and islet cell proliferation was quantified by analysis of BrdU incorporation. Islet gene expression was measured by gene arrays and quantitative RT-PCR, and gene promoter activities were monitored by measuring luciferase activity. RESULTS Nupr1(-/-) mice had increased beta cell mass as a consequence of enhanced islet cell proliferation. Nupr1-dependent suppression of beta cell Ccna2 and Tcf19 promoter activities was identified as a mechanism through which Nupr1 may regulate beta cell cycle progression. Nupr1(-/-) mice maintained on a normal diet were mildly insulin resistant, but were normoglycaemic with normal glucose tolerance because of compensatory increases in basal and glucose-induced insulin secretion. Nupr1 deletion was protective against HFD-induced obesity, insulin resistance and glucose intolerance. CONCLUSIONS/INTERPRETATION Inhibition of NUPR1 expression or activity has the potential to protect against the metabolic defects associated with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Helena C Barbosa-Sampaio
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, King's College London, 2.9N Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hamidi T, Algül H, Cano CE, Sandi MJ, Molejon MI, Riemann M, Calvo EL, Lomberk G, Dagorn JC, Weih F, Urrutia R, Schmid RM, Iovanna JL. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J Clin Invest 2012; 122:2092-103. [PMID: 22565310 DOI: 10.1172/jci60144] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/14/2012] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all cancers and shows remarkable resistance to cell stress. Nuclear protein 1 (Nupr1), which mediates stress response in the pancreas, is frequently upregulated in pancreatic cancer. Here, we report that Nupr1 plays an essential role in pancreatic tumorigenesis. In a mouse model of pancreatic cancer with constitutively expressed oncogenic Kras(G12D), we found that loss of Nupr1 protected from the development of pancreatic intraepithelial neoplasias (PanINs). Further, in cultured pancreatic cells, nutrient deprivation activated Nupr1 expression, which we found to be required for cell survival. We found that Nupr1 protected cells from stress-induced death by inhibiting apoptosis through a pathway dependent on transcription factor RelB and immediate early response 3 (IER3). NUPR1, RELB, and IER3 proteins were coexpressed in mouse PanINs from Kras(G12D)-expressing pancreas. Moreover, pancreas-specific deletion of Relb in a Kras(G12D) background resulted in delayed in PanIN development associated with a lack of IER3 expression. Thus, efficient PanIN formation was dependent on the expression of Nupr1 and Relb, with likely involvement of IER3. Finally, in patients with PDAC, expression of NUPR1, RELB, and IER3 was significantly correlated with a poor prognosis. Cumulatively, these results reveal a NUPR1/RELB/IER3 stress-related pathway that is required for oncogenic Kras(G12D)-dependent transformation of the pancreas.
Collapse
Affiliation(s)
- Tewfik Hamidi
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kovacs WJ, Charles KN, Walter KM, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, Krisans SK, Faust PL. Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:895-907. [PMID: 22441164 DOI: 10.1016/j.bbalip.2012.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/20/2012] [Accepted: 02/29/2012] [Indexed: 12/26/2022]
Abstract
Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2(-/-) mice on a hybrid Swiss Webster×129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2(-/-) mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2(-/-) mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2(-/-) livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2(-/-) livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2(-/-) mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2(-/-) mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions.
Collapse
Affiliation(s)
- Werner J Kovacs
- Institute of Cell Biology, ETH Zuerich, CH-8093 Zuerich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Averous J, Lambert-Langlais S, Cherasse Y, Carraro V, Parry L, B'chir W, Jousse C, Maurin AC, Bruhat A, Fafournoux P. Amino acid deprivation regulates the stress-inducible gene p8 via the GCN2/ATF4 pathway. Biochem Biophys Res Commun 2011; 413:24-9. [PMID: 21867687 DOI: 10.1016/j.bbrc.2011.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/07/2011] [Indexed: 11/25/2022]
Abstract
In mammals, the GCN2/ATF4 pathway has been described as the main pathway involved in the regulation of gene expression upon amino acid limitation. This regulation is notably conferred by the presence of a cis-element called Amino Acid Response Element (AARE) in the promoter of specific genes. In vivo, the notion of amino acid limitation is not limited to nutritional context, indeed several pathological situations are associated with alteration of endogenous amino acid availability. This is notably true in the context of tumour in which the alteration of the microenvironment can lead to a perturbation in nutrient availability. P8 is a small weakly folded multifunctional protein that is overexpressed in several kinds of cancers and whose expression is induced by different stresses. In this study we have demonstrated that amino acid starvation was also able to induce p8 expression. Moreover, we brought the evidence, in vitro and in vivo, that the GCN2/ATF4 pathway is involved in this regulation through the presence of an AARE in p8 promoter.
Collapse
Affiliation(s)
- J Averous
- Unité de Nutrition Humaine, UMR1019, INRA de Theix, 63122 Saint-Genès Champanelle, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Huang J, Viswakarma N, Yu S, Jia Y, Bai L, Vluggens A, Cherkaoui-Malki M, Khan M, Singh I, Yang G, Rao MS, Borensztajn J, Reddy JK. Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-CoA oxidase 1-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:703-13. [PMID: 21801867 DOI: 10.1016/j.ajpath.2011.04.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 02/08/2023]
Abstract
Fatty acyl-coenzyme A oxidase 1 (ACOX1) knockout (ACOX1(-/-)) mice manifest hepatic metabolic derangements that lead to the development of steatohepatitis, hepatocellular regeneration, spontaneous peroxisome proliferation, and hepatocellular carcinomas. Deficiency of ACOX1 results in unmetabolized substrates of this enzyme that function as biological ligands for peroxisome proliferator-activated receptor-α (PPARα) in liver. Here we demonstrate that sustained activation of PPARα in ACOX1(-/-) mouse liver by these ACOX1 substrates results in endoplasmic reticulum (ER) stress. Overexpression of transcriptional regulator p8 and its ER stress-related effectors such as the pseudokinase tribbles homolog 3, activating transcription factor 4, and transcription factor CCAAT/-enhancer-binding protein homologous protein as well as phosphorylation of eukaryotic translation initiation factor 2α, indicate the induction of unfolded protein response signaling in the ACOX1(-/-) mouse liver. We also show here that, in the liver, p8 is a target for all three PPAR isoforms (-α, -β, and -γ), which interact with peroxisome proliferator response elements in p8 promoter. Sustained activation of p8 and unfolded protein response-associated ER stress in ACOX1(-/-) mouse liver contributes to hepatocyte apoptosis and liver cell proliferation culminating in the development of hepatocarcinogenesis. We also demonstrate that human ACOX1 transgene is functional in ACOX1(-/-) mice and effectively prevents metabolic dysfunctions that lead to ER stress and carcinogenic effects. Taken together, our data indicate that progressive PPARα- and p8-mediated ER stress contribute to the hepatocarcinogenesis in ACOX1(-/-) mice.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kovacs WJ, Tape KN, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, Krisans SK, Faust PL. Peroxisome deficiency causes a complex phenotype because of hepatic SREBP/Insig dysregulation associated with endoplasmic reticulum stress. J Biol Chem 2008; 284:7232-45. [PMID: 19110480 DOI: 10.1074/jbc.m809064200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of hepatic cholesterol biosynthesis, lipogenesis, and insulin signaling intersect at the transcriptional level by control of SREBP and Insig genes. We previously demonstrated that peroxisome-deficient PEX2-/- mice activate SREBP-2 pathways but are unable to maintain normal cholesterol homeostasis. In this study, we demonstrate that oral bile acid treatment normalized hepatic and plasma cholesterol levels and hepatic cholesterol synthesis in early postnatal PEX2 mutants, but SREBP-2 and its target gene expressions remained increased. SREBP-2 pathway induction was also observed in neonatal and longer surviving PEX2 mutants, where hepatic cholesterol levels were normal. Abnormal expression patterns for SREBP-1c and Insig-2a, and novel regulation of Insig-2b, further demonstrate that peroxisome deficiency widely affects the regulation of related metabolic pathways. We have provided the first demonstration that peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, especially the integrated stress response mediated by PERK and ATF4 signaling. Our studies suggest a mechanism whereby ER stress leads to dysregulation of the endogenous sterol response mechanism and concordantly activates oxidative stress pathways. Several metabolic derangements in peroxisome-deficient PEX2-/- liver are likely to trigger ER stress, including perturbed flux of mevalonate metabolites, altered bile acid homeostasis, changes in fatty acid levels and composition, and oxidative stress.
Collapse
Affiliation(s)
- Werner J Kovacs
- Institute of Cell Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Brannon KM, Million Passe CM, White CR, Bade NA, King MW, Quirk CC. Expression of the high mobility group A family member p8 is essential to maintaining tumorigenic potential by promoting cell cycle dysregulation in LbetaT2 cells. Cancer Lett 2007; 254:146-55. [PMID: 17451874 DOI: 10.1016/j.canlet.2007.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
The mechanism by which the HMGA protein p8 facilitates tumorigenesis may be cell cycle dysregulation. Control- (C) LbetaT2 cells, which express p8, form tumors at a rate five-times faster than p8-knockdown (p8-KD)-LbetaT2 cells. In association with this heightened tumorigenic potential, p8-expressing C-LbetaT2 cells avoid G(0)/G(1) arrest and become genetically unstable while p8-KD-LbetaT2 cells arrest in G(0)/G(1), become senescent upon overgrowth, and maintain a diploid population. These phenotypic changes correspond to altered cell cycle regulation at the G(1)-to-S transition that may be due to p8-mediated changes in expression of the Cip/Kip family members of cell cycle inhibitors, p21, p27, and p57.
Collapse
Affiliation(s)
- K M Brannon
- Department of Biology, Indiana University, Bloomington, IN 47405-4401, USA
| | | | | | | | | | | |
Collapse
|