1
|
Coleman O, Henry M, O'Neill F, Roche S, Swan N, Boyle L, Murphy J, Meiller J, Conlon NT, Geoghegan J, Conlon KC, Lynch V, Straubinger NL, Straubinger RM, McVey G, Moriarty M, Meleady P, Clynes M. A Comparative Quantitative LC-MS/MS Profiling Analysis of Human Pancreatic Adenocarcinoma, Adjacent-Normal Tissue, and Patient-Derived Tumour Xenografts. Proteomes 2018; 6:proteomes6040045. [PMID: 30404163 PMCID: PMC6313850 DOI: 10.3390/proteomes6040045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide; it develops in a relatively symptom-free manner, leading to rapid disease progression and metastasis, leading to a 5-year survival rate of less than 5%. A lack of dependable diagnostic markers and rapid development of resistance to conventional therapies are among the problems associated with management of the disease. A better understanding of pancreatic tumour biology and discovery of new potential therapeutic targets are important goals in pancreatic cancer research. This study describes the comparative quantitative LC-MS/MS proteomic analysis of the membrane-enriched proteome of 10 human pancreatic ductal adenocarcinomas, 9 matched adjacent-normal pancreas and patient-derived xenografts (PDXs) in mice (10 at F1 generation and 10 F2). Quantitative label-free LC-MS/MS data analysis identified 129 proteins upregulated, and 109 downregulated, in PDAC, compared to adjacent-normal tissue. In this study, analysing peptide MS/MS data from the xenografts, great care was taken to distinguish species-specific peptides definitively derived from human sequences, or from mice, which could not be distinguished. The human-only peptides from the PDXs are of particular value, since only human tumour cells survive, and stromal cells are replaced during engraftment in the mouse; this list is, therefore, enriched in tumour-associated proteins, some of which might be potential therapeutic or diagnostic targets. Using human-specific sequences, 32 proteins were found to be upregulated, and 113 downregulated in PDX F1 tumours, compared to primary PDAC. Differential expression of CD55 between PDAC and normal pancreas, and expression across PDX generations, was confirmed by Western blotting. These data indicate the value of using PDX models in PDAC research. This study is the first comparative proteomic analysis of PDAC which employs PDX models to identify patient tumour cell-associated proteins, in an effort to find robust targets for therapeutic treatment of PDAC.
Collapse
Affiliation(s)
- Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Sandra Roche
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Niall Swan
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | | | - Jean Murphy
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Justine Meiller
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Neil T Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | - Kevin C Conlon
- St. Vincent's University Hospital, Dublin 4, Ireland.
- Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Vincent Lynch
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Ninfa L Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | - Gerard McVey
- St. Vincent's University Hospital, Dublin 4, Ireland.
- St. Luke's Hospital, Highfield Road, Rathgar, Dublin 6, Ireland.
| | - Michael Moriarty
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- St. Luke's Hospital, Highfield Road, Rathgar, Dublin 6, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
4
|
Amiri M, Janssen F, Kunst AE. The decline in stomach cancer mortality: exploration of future trends in seven European countries. Eur J Epidemiol 2011; 26:23-28. [PMID: 21086022 PMCID: PMC3018592 DOI: 10.1007/s10654-010-9522-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/02/2010] [Indexed: 02/08/2023]
Abstract
Mortality from stomach cancer has fallen steadily during the past decades. The aim of this paper is to assess the implication of a possible continuation of the decline in stomach cancer mortality until the year 2030. Annual rates of decline in stomach cancer mortality from 1980 to 2005 were determined for the Netherlands, United Kingdom, France, and four Nordic countries on the basis of regression analysis. Mortality rates were extrapolated until 2030, assuming the same rate of decline as in the past, using three possible scenarios. The absolute numbers of deaths were projected taking into account data on the ageing of national populations. Stomach cancer mortality rates declined between 1980 and 2005 at about the same rate (3.6-4.9% per year) for both men and women in all countries. The rate of decline did not level off in recent years, and it was not smaller in countries with lower overall mortality rates in 1980. If this decline were to continue into the future, stomach cancer mortality rates would decline with about 66% between 2005 and 2030 in most populations, while the absolute number of stomach cancer deaths would diminish by about 50%. Thus, in view of the strong, stable and consistent mortality declines in recent decades, and despite population ageing, stomach cancer is likely to become far less important as a cause of death in Europe in the future.
Collapse
Affiliation(s)
- Masoud Amiri
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|