1
|
Hamilton LE, Lion M, Aguila L, Suzuki J, Acteau G, Protopapas N, Xu W, Sutovsky P, Baker M, Oko R. Core Histones Are Constituents of the Perinuclear Theca of Murid Spermatozoa: An Assessment of Their Synthesis and Assembly during Spermiogenesis and Function after Gametic Fusion. Int J Mol Sci 2021; 22:ijms22158119. [PMID: 34360885 PMCID: PMC8347300 DOI: 10.3390/ijms22158119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The perinuclear theca (PT) of the eutherian sperm head is a cytoskeletal-like structure that houses proteins involved in important cellular processes during spermiogenesis and fertilization. Building upon our novel discovery of non-nuclear histones in the bovine PT, we sought to investigate whether this PT localization was a conserved feature of eutherian sperm. Employing cell fractionation, immunodetection, mass spectrometry, qPCR, and intracytoplasmic sperm injections (ICSI), we examined the localization, developmental origin, and functional potential of histones from the murid PT. Immunodetection localized histones to the post-acrosomal sheath (PAS) and the perforatorium (PERF) of the PT but showed an absence in the sperm nucleus. MS/MS analysis of selectively extracted PT histones indicated that predominately core histones (i.e., H3, H3.3, H2B, H2A, H2AX, and H4) populate the murid PT. These core histones appear to be de novo-synthesized in round spermatids and assembled via the manchette during spermatid elongation. Mouse ICSI results suggest that early embryonic development is delayed in the absence of PT-derived core histones. Here, we provide evidence that core histones are de novo-synthesized prior to PT assembly and deposited in PT sub-compartments for subsequent involvement in chromatin remodeling of the male pronucleus post-fertilization.
Collapse
Affiliation(s)
- Lauren E. Hamilton
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| | - Morgan Lion
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Luis Aguila
- Center for Research in Reproduction and Fertility, Department of Veterinary Sciences, Université de Montreal, St. Hyacinthe, QC J2S 2M2, Canada; (L.A.); (J.S.)
| | - João Suzuki
- Center for Research in Reproduction and Fertility, Department of Veterinary Sciences, Université de Montreal, St. Hyacinthe, QC J2S 2M2, Canada; (L.A.); (J.S.)
| | - Genevieve Acteau
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Nicole Protopapas
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Peter Sutovsky
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA;
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mark Baker
- School of Environmental and Life Science, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
- Correspondence:
| |
Collapse
|
2
|
Simard O, Leduc F, Acteau G, Arguin M, Grégoire MC, Brazeau MA, Marois I, Richter MV, Boissonneault G. Step-specific Sorting of Mouse Spermatids by Flow Cytometry. J Vis Exp 2015:e53379. [PMID: 26780208 DOI: 10.3791/53379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The differentiation of mouse spermatids is one critical process for the production of a functional male gamete with an intact genome to be transmitted to the next generation. So far, molecular studies of this morphological transition have been hampered by the lack of a method allowing adequate separation of these important steps of spermatid differentiation for subsequent analyses. Earlier attempts at proper gating of these cells using flow cytometry may have been difficult because of a peculiar increase in DNA fluorescence in spermatids undergoing chromatin remodeling. Based on this observation, we provide details of a simple flow cytometry scheme, allowing reproducible purification of four populations of mouse spermatids fixed with ethanol, each representing a different state in the nuclear remodeling process. Population enrichment is confirmed using step-specific markers and morphological criterions. The purified spermatids can be used for genomic and proteomic analyses.
Collapse
Affiliation(s)
| | | | | | - Mélina Arguin
- Department of Biochemistry, Université de Sherbrooke
| | | | | | | | | | | |
Collapse
|
3
|
FACS selection of valuable mutant mouse round spermatids and strain rescue via round spermatid injection. ZYGOTE 2013; 23:336-41. [DOI: 10.1017/s0967199413000592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SummaryRound spermatid injection (ROSI) into mammalian oocytes can result in the development of viable embryos and offspring. One current limitation to this technique is the identification of suitable round spermatids. In the current paper, round spermatids were selected from testicular cells with phase contrast microscopy (PCM) and fluorescence-activated cell sorting (FACS), and ROSI was performed in two strains of mice. The rates of fertilization, embryonic development and offspring achieved were the same in all strains. Significantly, round spermatids selected by PCM and FACS were effectively used to rescue the infertile Pten-null mouse. The current results indicate that FACS selection of round spermatids can not only provide high-purity and viable round spermatids for use in ROSI, but also has no harmful effects on the developmental capacity of subsequently fertilized embryos. It was concluded that round spermatids selected by FACS are useful for mouse strain rederivation and rescue of infertile males; ROSI should be considered as a powerful addition to the armamentarium of assisted reproduction techniques applicable in the mouse.
Collapse
|
4
|
Lalancette C, Platts AE, Lu Y, Lu S, Krawetz SA. Computational identification of transcription frameworks of early committed spermatogenic cells. Mol Genet Genomics 2008; 280:263-74. [PMID: 18615256 DOI: 10.1007/s00438-008-0361-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/17/2008] [Indexed: 11/28/2022]
Abstract
It is known that transcription factors (TFs) work in cooperation with each other to govern gene expression and thus single TF studies may not always reflect the underlying biology. Using microarray data obtained from two independent studies of the first wave of spermatogenesis, we tested the hypothesis that co-expressed spermatogenic genes in cells committed to differentiation are regulated by a set of distinct combinations of TF modules. A computational approach was designed to identify over-represented module combinations in the promoter regions of genes associated with transcripts that either increase or decrease in abundance between the first two major spermatogenic cell types: spermatogonia and spermatocytes. We identified five TFs constituting four module combinations that were correlated with expression and repression of similarly regulated genes. These modules were biologically assessed in the context that they represent the key transcriptional mediators in the developmental transition from the spermatogonia to spermatocyte.
Collapse
Affiliation(s)
- Claudia Lalancette
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
5
|
Martins RP, Platts AE, Krawetz SA. Tracking chromatin states using controlled DNase I treatment and real-time PCR. Cell Mol Biol Lett 2007; 12:545-55. [PMID: 17588221 PMCID: PMC6275682 DOI: 10.2478/s11658-007-0024-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 05/22/2007] [Indexed: 11/22/2022] Open
Abstract
A novel approach to DNase I-sensitivity analysis was applied to examining genes of the spermatogenic pathway, reflective of the substantial morphological and genomic changes that occur during this program of differentiation. A new real-time PCR-based strategy that considers the nuances of response to nuclease treatment was used to assess the nuclease susceptibility through differentiation. Data analysis was automated with the K-Lab PCR algorithm, facilitating the rapid analysis of multiple samples while eliminating the subjectivity usually associated with Ct analyses. The utility of this assay and analytical paradigm as applied to nuclease-sensitivity mapping is presented.
Collapse
Affiliation(s)
- Rui Pires Martins
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Adrian E. Platts
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Stephen A. Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan USA
- Institute for Scientific Computing, Wayne State University, Detroit, Michigan USA
| |
Collapse
|
6
|
Martins RP, Krawetz SA. Decondensing the protamine domain for transcription. Proc Natl Acad Sci U S A 2007; 104:8340-5. [PMID: 17483471 PMCID: PMC1895951 DOI: 10.1073/pnas.0700076104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Potentiation is the transition from higher-order, transcriptionally silent chromatin to a less condensed state requisite to accommodating the molecular elements required for transcription. To examine the underlying mechanism of potentiation an approximately 13.7-kb mouse protamine domain of increased nuclease sensitivity flanked by 5' and 3' nuclear matrix attachment regions was defined. The potentiated DNase I-sensitive region is formed at the pachytene spermatocyte stage with the recruitment to the nuclear matrix of a large approximately 9.6-kb region just upstream of the domain. Attachment is then specified in the transcribing round spermatid, recapitulating the organization of the human cluster. In comparison to other modifiers that have no effect, i.e., histone methylation, HP1, and SATB1, topoisomerase engages nuclear matrix binding as minor marks of histone acetylation appear. Reorganization is marked by specific sites of topoisomerase II activity that are initially detected in leptotene-zygotene spermatocytes just preceding the formation of the DNase I-sensitive domain. This has provided a likely model of the events initiating potentiation, i.e., the opening of a chromatin domain.
Collapse
Affiliation(s)
| | - Stephen A. Krawetz
- *Center for Molecular Medicine and Genetics and
- Department of Obstetrics and Gynecology, School of Medicine and Institute for Scientific Computing, Wayne State University, Detroit, MI 48201
- To whom correspondence should be addressed at:
253 C. S. Mott Center, 275 East Hancock Avenue, Detroit, MI 48201. E-mail:
| |
Collapse
|
7
|
Martins RP, Ostermeier GC, Krawetz SA. Nuclear Matrix Interactions at the Human Protamine Domain. J Biol Chem 2004; 279:51862-8. [PMID: 15452126 DOI: 10.1074/jbc.m409415200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The compact eukaryotic genome must be selectively opened to grant trans-factor access to cis-regulatory elements to overcome the primary barrier to gene transcription. The mechanism that governs the selective opening of chromatin domains (i.e. potentiation) remains poorly understood. In the absence of a well defined locus control region, the nuclear matrix is considered the primary candidate regulating the opening of the multigenic PRM1 --> PRM2 --> TNP2 human protamine domain. To directly examine its role, four lines of transgenic mice with different configurations of flanking nuclear matrix attachment regions (MARs) encompassing the protamine domain were created. We show that upon removal of the MARs, the locus becomes subject to position effects. The 3' MAR alone may be sufficient to protect against silencing. In concert, the MARs bounding this domain likely synergize to regulate the expression of the various members of this gene cluster. Interestingly, the MARs may convey a selective reproductive advantage, such that constructs bearing both 5' and 3' MARs are passed to their offspring with greater frequency. Thus, the MARs bounding the PRM1 --> PRM2 --> TNP2 protamine domain have many and varied functions.
Collapse
Affiliation(s)
- Rui Pires Martins
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan 4820, USA
| | | | | |
Collapse
|