1
|
Begum F, Kristof J, Alam MJ, Sadiq AH, Hasan M, Soichiro K, Shimizu K. Exploring the Role of Microplasma for Controlling Cellular Senescence in Saccharomyces cerevisiae. Molecules 2025; 30:1970. [PMID: 40363776 PMCID: PMC12073758 DOI: 10.3390/molecules30091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Cellular senescence plays a pivotal role in aging and stress response mechanisms. Controlling cellular senescence is essential for developing novel techniques to prevent aging or aging-related diseases and promote a healthy lifespan. This study explores the efficiency of cold atmospheric microplasma (CAM) for controlling cellular senescence in yeast Saccharomyces cerevisiae. Reactive oxygen and nitrogen species (RONS) generated by CAM influence key processes, such as the regulation of oxidative stress, alterations in membrane potential, and senescence-related epigenetic modifications. As a marker of cellular senescence, the expression of β-galactosidase was assessed in response to different plasma treatments. At a frequency of 1 kHz and a discharge voltage of 5 kVp-p, a significant reduction in β-galactosidase activity was observed in cells treated for 10 s and 30 s compared to the control, indicating a reduction in cellular senescence. Additionally, cell viability, metabolic activity, and plasma membrane potential were also found to be higher for the treated cells compared to the control under the same conditions. This study confirms that a physiologically tolerable level of ROS and RNS is sufficient for cellular signaling, but not for damage induction. The findings from this study provide insights on the potential of microplasma as a tool for controlling cellular senescence and the development of therapeutic innovations involving eukaryotic cells.
Collapse
Affiliation(s)
- Farhana Begum
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu 832-8561, Japan; (J.K.); (M.J.A.)
| | - Jaroslav Kristof
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu 832-8561, Japan; (J.K.); (M.J.A.)
| | - Md Jahangir Alam
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu 832-8561, Japan; (J.K.); (M.J.A.)
| | - Abubakar Hamza Sadiq
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
| | - Mahedi Hasan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
| | - Kinoshita Soichiro
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan;
| | - Kazuo Shimizu
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu 832-8561, Japan; (J.K.); (M.J.A.)
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan;
| |
Collapse
|
2
|
Sarygina E, Kliuchnikova A, Tarbeeva S, Ilgisonis E, Ponomarenko E. Model Organisms in Aging Research: Evolution of Database Annotation and Ortholog Discovery. Genes (Basel) 2024; 16:8. [PMID: 39858555 PMCID: PMC11765380 DOI: 10.3390/genes16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND This study aims to analyze the exploration degree of popular model organisms by utilizing annotations from the UniProtKB (Swiss-Prot) knowledge base. The research focuses on understanding the genomic and post-genomic data of various organisms, particularly in relation to aging as an integral model for studying the molecular mechanisms underlying pathological processes and physiological states. METHODS Having characterized the organisms by selected parameters (numbers of gene splice variants, post-translational modifications, etc.) using previously developed information models, we calculated proteome sizes: the number of possible proteoforms for each species. Our analysis also involved searching for orthologs of human aging genes within these model species. RESULTS Our findings indicate that genomic and post-genomic data for more primitive species, such as bacteria and fungi, are more comprehensively characterized compared to other organisms. This is attributed to their experimental accessibility and simplicity. Additionally, we discovered that the genomes of the most studied model organisms allow for a detailed analysis of the aging process, revealing a greater number of orthologous genes related to aging. CONCLUSIONS The results highlight the importance of annotating the genomes of less-studied species to identify orthologs of marker genes associated with complex physiological processes, including aging. Species that potentially possess unique traits associated with longevity and resilience to age-related changes require comprehensive genomic studies.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Ilgisonis
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.S.); (A.K.); (S.T.)
| | | |
Collapse
|
3
|
Liang J, Chen Q, Yong J, Suyama H, Biazik J, Njegic B, Rawal A, Liang K. Covalent-organic framework nanobionics for robust cytoprotection. Chem Sci 2024; 15:991-1002. [PMID: 38239683 PMCID: PMC10793206 DOI: 10.1039/d3sc04973f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
We present a novel study introducing a durable and robust covalent-organic framework (COF) nanocoating, developed in situ on living cells. This COF nanocoating demonstrates remarkable resistance against a diverse range of lethal stressors, including high temperature, extreme pH, ultraviolet radiation, toxic metal ions, organic pollutants, and strong oxidative stress. Notably, the nanocoating exhibits exceptional cell survival enhancement under high temperature and strongly acidic conditions, an aspect yet unexplored in the case of metal-organic framework nanocoatings and other nanomaterials. Moreover, functionalization of the nanocoating with an exogenous enzyme catalase enables yeast fermentation and ethanol production even under strong oxidative stress. Our findings establish the durable and robust COF nanocoating as a reliable platform for safeguarding vulnerable microorganisms to allow their utilisation in a wide range of adverse environments.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
| | - Qianfan Chen
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
| | - Hiroki Suyama
- UNSW RNA Institute, The University of New South Wales Sydney NSW 2052 Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales Sydney NSW 2052 Australia
| | - Bosiljka Njegic
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
4
|
Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints. Nat Commun 2022; 13:2969. [PMID: 35624178 PMCID: PMC9142503 DOI: 10.1038/s41467-022-30689-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/12/2022] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic cells are used as cell factories to produce and secrete multitudes of recombinant pharmaceutical proteins, including several of the current top-selling drugs. Due to the essential role and complexity of the secretory pathway, improvement for recombinant protein production through metabolic engineering has traditionally been relatively ad-hoc; and a more systematic approach is required to generate novel design principles. Here, we present the proteome-constrained genome-scale protein secretory model of yeast Saccharomyces cerevisiae (pcSecYeast), which enables us to simulate and explain phenotypes caused by limited secretory capacity. We further apply the pcSecYeast model to predict overexpression targets for the production of several recombinant proteins. We experimentally validate many of the predicted targets for α-amylase production to demonstrate pcSecYeast application as a computational tool in guiding yeast engineering and improving recombinant protein production. Due to the complexity of the protein secretory pathway, strategy suitable for the production of a certain recombination protein cannot be generalized. Here, the authors construct a proteome-constrained genome-scale protein secretory model for yeast and show its application in the production of different misfolded or recombinant proteins.
Collapse
|
5
|
Galvin J, Curran E, Arteaga F, Goossens A, Aubuchon-Endsley N, McMurray MA, Moore J, Hansen KC, Chial HJ, Potter H, Brodsky JL, Coughlan CM. Proteasome activity modulates amyloid toxicity. FEMS Yeast Res 2022; 22:foac004. [PMID: 35150241 PMCID: PMC8906389 DOI: 10.1093/femsyr/foac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is responsible for 60%-80% of identified cases of dementia. While the generation and accumulation of amyloid precursor protein (APP) fragments is accepted as a key step in AD pathogenesis, the precise role of these fragments remains poorly understood. To overcome this deficit, we induced the expression of the soluble C-terminal fragment of APP (C99), the rate-limiting peptide for the generation of amyloid fragments, in yeast that contain thermosensitive mutations in genes encoding proteasome subunits. Our previous work with this system demonstrated that these proteasome-deficient yeast cells, expressing C99 when proteasome activity was blunted, generated amyloid fragments similar to those observed in AD patients. We now report the phenotypic repercussions of inducing C99 expression in proteasome-deficient cells. We show increased levels of protein aggregates, cellular stress and chaperone expression, electron-dense accumulations in the nuclear envelope/ER, abnormal DNA condensation, and an induction of apoptosis. Taken together, these findings suggest that the generation of C99 and its associated fragments in yeast cells with compromised proteasomal activity results in phenotypes that may be relevant to the neuropathological processes observed in AD patients. These data also suggest that this yeast model should be useful for testing therapeutics that target AD-associated amyloid, since it allows for the assessment of the reversal of the perturbed cellular physiology observed when degradation pathways are dysfunctional.
Collapse
Affiliation(s)
- John Galvin
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Elizabeth Curran
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Francisco Arteaga
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Alicia Goossens
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Nicki Aubuchon-Endsley
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Michael A McMurray
- Department of Cell and Developmental Biology, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Jeffrey Moore
- Department of Cell and Developmental Biology, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Heidi J Chial
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| | - Huntington Potter
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Christina M Coughlan
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| |
Collapse
|
6
|
Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: Lesson from Model Organisms. Genes (Basel) 2019; 10:genes10070518. [PMID: 31324014 PMCID: PMC6678192 DOI: 10.3390/genes10070518] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Research on longevity and healthy aging promises to increase our lifespan and decrease the burden of degenerative diseases with important social and economic effects. Many aging theories have been proposed, and important aging pathways have been discovered. Model organisms have had a crucial role in this process because of their short lifespan, cheap maintenance, and manipulation possibilities. Yeasts, worms, fruit flies, or mammalian models such as mice, monkeys, and recently, dogs, have helped shed light on aging processes. Genes and molecular mechanisms that were found to be critical in simple eukaryotic cells and species have been confirmed in humans mainly by the functional analysis of mammalian orthologues. Here, we review conserved aging mechanisms discovered in different model systems that are implicated in human longevity as well and that could be the target of anti-aging interventions in human.
Collapse
Affiliation(s)
- Giusi Taormina
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Federica Ferrante
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Salvatore Vieni
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Nello Grassi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Antonio Russo
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Mario G Mirisola
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy.
| |
Collapse
|
7
|
Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D. Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front Mol Neurosci 2018; 11:318. [PMID: 30233317 PMCID: PMC6131589 DOI: 10.3389/fnmol.2018.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that leads to progressive neuronal loss, provoking impaired motor control, cognitive decline, and dementia. So far, HD remains incurable, and available drugs are effective only for symptomatic management. HD is caused by a mutant form of the huntingtin protein, which harbors an elongated polyglutamine domain and is highly prone to aggregation. However, many aspects underlying the cytotoxicity of mutant huntingtin (mHTT) remain elusive, hindering the efficient development of applicable interventions to counteract HD. An important strategy to obtain molecular insights into human disorders in general is the use of eukaryotic model organisms, which are easy to genetically manipulate and display a high degree of conservation regarding disease-relevant cellular processes. The budding yeast Saccharomyces cerevisiae has a long-standing and successful history in modeling a plethora of human maladies and has recently emerged as an effective tool to study neurodegenerative disorders, including HD. Here, we summarize some of the most important contributions of yeast to HD research, specifically concerning the elucidation of mechanistic features of mHTT cytotoxicity and the potential of yeast as a platform to screen for pharmacological agents against HD.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
8
|
Bastos P, Trindade F, Leite-Moreira A, Falcão-Pires I, Ferreira R, Vitorino R. Methodological approaches and insights on protein aggregation in biological systems. Expert Rev Proteomics 2016; 14:55-68. [DOI: 10.1080/14789450.2017.1264877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Kumar N, Gaur D, Gupta A, Puri A, Sharma D. Hsp90-Associated Immunophilin Homolog Cpr7 Is Required for the Mitotic Stability of [URE3] Prion in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005567. [PMID: 26473735 PMCID: PMC4608684 DOI: 10.1371/journal.pgen.1005567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
The role of Hsp70 chaperones in yeast prion propagation is well established. Highly conserved Hsp90 chaperones participate in a number of cellular processes, such as client protein maturation, protein degradation, cellular signalling and apoptosis, but little is known about their role in propagation of infectious prion like aggregates. Here, we examine the influence of Hsp90 in the maintenance of yeast prion [URE3] which is a prion form of native protein Ure2, and reveal a previously unknown role of Hsp90 as an important regulator of [URE3] stability. We show that the C-terminal MEEVD pentapeptide motif, but not the client maturation activity of Hsp90, is essential for [URE3] prion stability. In testing deletions of various Hsp90 co-chaperones known to bind this motif, we find the immunophilin homolog Cpr7 is essential for [URE3] propagation. We show that Cpr7 interacts with Ure2 and enhances its fibrillation. The requirement of Cpr7 is specific for [URE3] as its deletion does not antagonize both strong and weak variant of another yeast prion [PSI+], suggesting a distinct role of the Hsp90 co-chaperone with different yeast prions. Our data show that, similar to the Hsp70 family, the Hsp90 chaperones also influence yeast prion maintenance, and that immunophilins could regulate protein multimerization independently of their activity as peptidyl-prolyl isomerases.
Collapse
Affiliation(s)
- Navinder Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Deepika Gaur
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Arpit Gupta
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Anuradhika Puri
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
10
|
Mirisola MG, Braun RJ, Petranovic D. Approaches to study yeast cell aging and death. FEMS Yeast Res 2013; 14:109-18. [DOI: 10.1111/1567-1364.12112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Ralf J. Braun
- Institut für Zellbiologie; Universität Bayreuth; Bayreuth Germany
| | - Dina Petranovic
- Department of Chemical and Biological Engineering, Systems and Synthetic Biology; Chalmers University of Technology; Göteborg Sweden
| |
Collapse
|
11
|
Yarimizu T, Nonklang S, Nakamura J, Tokuda S, Nakagawa T, Lorreungsil S, Sutthikhumpha S, Pukahuta C, Kitagawa T, Nakamura M, Cha-aim K, Limtong S, Hoshida H, Akada R. Identification of auxotrophic mutants of the yeastKluyveromyces marxianusby non-homologous end joining-mediated integrative transformation with genes fromSaccharomyces cerevisiae. Yeast 2013; 30:485-500. [DOI: 10.1002/yea.2985] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/23/2022] Open
Affiliation(s)
- Tohru Yarimizu
- Department of Applied Molecular Bioscience, Graduate School of Medicine; Yamaguchi University; Tokiwadai Ube Japan
| | - Sanom Nonklang
- Department of Biological Science, Faculty of Science; Ubonratchathani University; Warinchumrap Ubonratchathani Thailand
| | - Junpei Nakamura
- Department of Applied Molecular Bioscience, Graduate School of Medicine; Yamaguchi University; Tokiwadai Ube Japan
| | - Shuya Tokuda
- Department of Applied Molecular Bioscience, Graduate School of Medicine; Yamaguchi University; Tokiwadai Ube Japan
| | - Takaaki Nakagawa
- Department of Applied Molecular Bioscience, Graduate School of Medicine; Yamaguchi University; Tokiwadai Ube Japan
| | - Sasithorn Lorreungsil
- Department of Biological Science, Faculty of Science; Ubonratchathani University; Warinchumrap Ubonratchathani Thailand
| | - Surasit Sutthikhumpha
- Department of Biological Science, Faculty of Science; Ubonratchathani University; Warinchumrap Ubonratchathani Thailand
| | - Charida Pukahuta
- Department of Biological Science, Faculty of Science; Ubonratchathani University; Warinchumrap Ubonratchathani Thailand
| | - Takao Kitagawa
- Department of Applied Molecular Bioscience, Graduate School of Medicine; Yamaguchi University; Tokiwadai Ube Japan
| | - Mikiko Nakamura
- Innovation Center; Yamaguchi University; Tokiwadai Ube Japan
| | - Kamonchai Cha-aim
- Faculty of Agricultural Product Innovation and Technology; Srinakharinwirot University; Wattana Bangkok Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science; Kasetsart University; Bangkok Thailand
| | - Hisashi Hoshida
- Department of Applied Molecular Bioscience, Graduate School of Medicine; Yamaguchi University; Tokiwadai Ube Japan
| | - Rinji Akada
- Department of Applied Molecular Bioscience, Graduate School of Medicine; Yamaguchi University; Tokiwadai Ube Japan
| |
Collapse
|
12
|
Rubel AA, Ryzhova TA, Antonets KS, Chernoff YO, Galkin A. Identification of PrP sequences essential for the interaction between the PrP polymers and Aβ peptide in a yeast-based assay. Prion 2013; 7:469-76. [PMID: 24152606 DOI: 10.4161/pri.26867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alzheimer disease is associated with the accumulation of oligomeric amyloid β peptide (Aβ), accompanied by synaptic dysfunction and neuronal death. Polymeric form of prion protein (PrP), PrP(Sc), is implicated in transmissible spongiform encephalopathies (TSEs). Recently, it was shown that the monomeric cellular form of PrP (PrP(C)), located on the neuron surface, binds Aβ oligomers (and possibly other β-rich conformers) via the PrP(23-27) and PrP(90-110) segments, acting as Aβ receptor. On the other hand, PrP(Sc) polymers efficiently bind to Aβ monomers and accelerate their oligomerization. To identify specific PrP sequences that are essential for the interaction between PrP polymers and Aβ peptide, we have co-expressed Aβ and PrP (or its shortened derivatives), fused to different fluorophores, in the yeast cell. Our data show that the 90-110 and 28-89 regions of PrP control the binding of proteinase-resistant PrP polymers to the Aβ peptide, whereas the 23-27 segment of PrP is dispensable for this interaction. This indicates that the set of PrP fragments involved in the interaction with Aβ depends on PrP conformational state.
Collapse
Affiliation(s)
- Aleksandr A Rubel
- St. Petersburg Branch of Vavilov Institute of Genetics (Russian Academy of Science); Universitetskaya nab. 7/9; St. Petersburg, Russia; Department of Genetics and Biotechnology; St. Petersburg State University; Universitetskaya nab. 7/9; St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
13
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
14
|
McCorvie TJ, Gleason TJ, Fridovich-Keil JL, Timson DJ. Misfolding of galactose 1-phosphate uridylyltransferase can result in type I galactosemia. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1279-93. [PMID: 23583749 DOI: 10.1016/j.bbadis.2013.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 11/17/2022]
Abstract
Type I galactosemia is a genetic disorder that is caused by the impairment of galactose-1-phosphate uridylyltransferase (GALT; EC 2.7.7.12). Although a large number of mutations have been detected through genetic screening of the human GALT (hGALT) locus, for many it is not known how they cause their effects. The majority of these mutations are missense, with predicted substitutions scattered throughout the enzyme structure and thus causing impairment by other means rather than direct alterations to the active site. To clarify the fundamental, molecular basis of hGALT impairment we studied five disease-associated variants p.D28Y, p.L74P, p.F171S, p.F194L and p.R333G using both a yeast model and purified, recombinant proteins. In a yeast expression system there was a correlation between lysate activity and the ability to rescue growth in the presence of galactose, except for p.R333G. Kinetic analysis of the purified proteins quantified each variant's level of enzymatic impairment and demonstrated that this was largely due to altered substrate binding. Increased surface hydrophobicity, altered thermal stability and changes in proteolytic sensitivity were also detected. Our results demonstrate that hGALT requires a level of flexibility to function optimally and that altered folding is the underlying reason of impairment in all the variants tested here. This indicates that misfolding is a common, molecular basis of hGALT deficiency and suggests the potential of pharmacological chaperones and proteostasis regulators as novel therapeutic approaches for type I galactosemia.
Collapse
Affiliation(s)
- Thomas J McCorvie
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | | | | |
Collapse
|
15
|
Abstract
The aggregation of misfolded proteins is associated with the perturbation of cellular function, ageing and various human disorders. Mounting evidence suggests that protein aggregation is often part of the cellular response to an imbalanced protein homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated process in cells from bacteria to humans, leading to the deposition of aggregates at specific sites. The sequestration of misfolded proteins in such a way is protective for cell function as it allows for their efficient solubilization and refolding or degradation by components of the protein quality-control network. The organized aggregation of misfolded proteins might also allow their asymmetric distribution to daughter cells during cell division.
Collapse
|
16
|
Neef DW, Turski ML, Thiele DJ. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol 2010; 8:e1000291. [PMID: 20098725 PMCID: PMC2808216 DOI: 10.1371/journal.pbio.1000291] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/11/2009] [Indexed: 11/18/2022] Open
Abstract
A yeast-based small molecule screen identifies a novel activator of human HSF1 and protein chaperone expression and which appears to alleviate the toxicity of protein misfolding diseases. Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease. The misfolding of proteins into a toxic state contributes to a variety of neurodegenerative diseases such as Huntington, Alzheimer, and Parkinson disease. Although no known cure exists for these afflictions, many studies have shown that increasing the levels of protein chaperones, proteins that assist in the correct folding of other proteins, can suppress the neurotoxicity of the misfolded proteins. As such, increasing the cellular concentration of protein chaperones might serve as a powerful therapeutic approach in treating protein misfolding diseases. Because the levels of protein chaperones in the cell are primarily controlled by the heat shock transcription factor 1 [HSF1], we have designed and implemented a pharmacological screen to identify small molecules that can promote human HSF1 activation and increase the expression of protein chaperones. Through these studies, we have identified HSF1A, a molecule capable of activating human HSF1, increasing the levels of protein chaperones and alleviating the toxicity of misfolded proteins in both cell culture as well as fruit fly models of neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel W. Neef
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Michelle L. Turski
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Moreno C, Lazar J, Jacob HJ, Kwitek AE. Comparative genomics for detecting human disease genes. ADVANCES IN GENETICS 2008; 60:655-97. [PMID: 18358336 DOI: 10.1016/s0065-2660(07)00423-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Originally, comparative genomics was geared toward defining the synteny of genes between species. As the human genome project accelerated, there was an increase in the number of tools and means to make comparisons culminating in having the genomic sequence for a large number of organisms spanning the evolutionary tree. With this level of resolution and a long history of comparative biology and comparative genetics, it is now possible to use comparative genomics to build or select better animal models and to facilitate gene discovery. Comparative genomics takes advantage of the functional genetic information from other organisms, (vertebrates and invertebrates), to apply it to the study of human physiology and disease. It allows for the identification of genes and regulatory regions, and for acquiring knowledge about gene function. In this chapter, the current state of comparative genomics and the available tools are discussed in the context of developing animal model systems that reflect the clinical picture.
Collapse
Affiliation(s)
- Carol Moreno
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
18
|
Williams RB, Gutekunst WR, Joyner PM, Duan W, Li Q, Ross CA, Williams TD, Cichewicz RH. Bioactivity profiling with parallel mass spectrometry reveals an assemblage of green tea metabolites affording protection against human huntingtin and alpha-synuclein toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9450-9456. [PMID: 17944533 DOI: 10.1021/jf072241x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Aberrant protein aggregation and misfolding are key pathological features of many neurodegenerative disorders, including Huntington's and Parkinson's diseases. Compounds that offer protection from toxicity associated with aggregation-prone neurodegenerative proteins may have applications for the treatment of a multitude of disorders. A high-throughput bioassay system with parallel electrospray ionization mass spectrometry screening has been designed for critical evaluation of milligram quantities of natural product extracts, including dietary substances, for compounds of pharmacological relevance to the treatment of human neurodegenerative diseases. Using Saccharomyces cerevisiae strains engineered to express mutant human huntingtin and alpha-synuclein, we are able to identify extracts and compounds that protect cells from toxicity associated with these proteins. Applying this screening paradigm, we determined that a bioactive green tea extract contains an assemblage of catechins that were individually characterized for their respective protective effects against huntingtin and alpha-synuclein toxicity.
Collapse
Affiliation(s)
- Russell B Williams
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mirisola MG, Colomba L, Gallo A, Amodeo R, De Leo G. Yeast vectors for the integration/expression of any sequence at the TYR1 locus. Yeast 2007; 24:761-6. [PMID: 17597490 DOI: 10.1002/yea.1511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have constructed new yeast vectors for targeted integration and conditional expression of any sequence at the Saccharomyces cerevisiae TYR1 locus which becomes disrupted. We show that vector integration is not neutral, causing prototrophy for tyrosine and auxotrophy for the vector's selectable marker (uracil or leucine, depending on the vector used). This feature allows a double screening of transformed yeast cells, improving the identification of colonies with the desired chromosomal structure. The GAL10 gene promoter has been added to drive conditional expression of cloned sequences. Using these vectors, chromosomal structure verification of recombinant clones is no longer necessary, since the noise of non-homologous recombination, as well as spontaneous reversion of the selected phenotype, can easily be identified. The ability of the vector to conditionally control gene expression has been confirmed using the gene for the green fluorescent protein (GFP) as a reporter.
Collapse
Affiliation(s)
- Mario G Mirisola
- Dipartimento di Biopatologia e Metodologie Biomediche, Università degli Studi di Palermo, Via Divisi 83, 90133 Palermo, Italy.
| | | | | | | | | |
Collapse
|
20
|
Sparvero LJ, Patz S, Brodsky JL, Coughlan CM. Proteomic analysis of the amyloid precursor protein fragment C99: expression in yeast. Anal Biochem 2007; 370:162-70. [PMID: 17869211 PMCID: PMC2220045 DOI: 10.1016/j.ab.2007.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/24/2007] [Accepted: 07/30/2007] [Indexed: 11/25/2022]
Abstract
The accumulation and aggregation of fragments of amyloid precursor protein (APP) are central to the development of Alzheimer's disease. The production of the small fragment C99 is thought to form the rate-limiting step in the APP processing pathway, which can lead to the production of the toxic Abeta peptide. It has also been suggested that the proteasome contributes to APP catabolism. While the identities and aggregation propensities of many APP fragments have been studied in vitro, the sequences, structures, and cellular sources of fragments generated in vivo remains poorly elucidated. To better identify the specific APP fragments generated in vivo and to elucidate the role of the proteasome in APP processing, we developed a C99 yeast expression system. Using Zip Tip immunocapture, a specific anti-Abeta antiserum (6E10), and matrix-assisted laser desorption ionization- time of flight mass spectrometry, we identified over one dozen APP-generated peptide fragments in wild-type yeast (PRE1PRE2) and over three dozen unique fragments in proteasome mutant cells (pre1- 1pre2-1) expressing C99. Based on the identities of the immunocaptured species, we propose that defects in proteasome function are compensated by other proteases and that the combination of techniques described here will be invaluable to further delineate the APP processing pathway in vivo.
Collapse
Affiliation(s)
- Louis J. Sparvero
- Department of Surgery, Center for Bioengineering, Mass Spectrometry Facility, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah Patz
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christina M. Coughlan
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
- Corresponding author. Fax: +1 303 871 3471. E-mail address: (C.M. Coughlan)
| |
Collapse
|
21
|
|
22
|
Forgue P, Halouska S, Werth M, Xu K, Harris S, Powers R. NMR metabolic profiling of Aspergillus nidulans to monitor drug and protein activity. J Proteome Res 2007; 5:1916-23. [PMID: 16889413 DOI: 10.1021/pr060114v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a general protocol for using comparative NMR metabolomics data to infer in vivo efficacy, specificity and toxicity of chemical leads within a drug discovery program. The methodology is demonstrated using Aspergillus nidulans to monitor the activity of urate oxidase and orotidine-5'-phosphate decarboxylase and the impact of 8-azaxanthine, an inhibitor of urate oxidase. 8-azaxanthine is shown to inhibit A. nidulans hyphal growth by in vivo inactivation of urate oxidase.
Collapse
Affiliation(s)
- Paxton Forgue
- Department of Chemistry and Plant Pathology, University of Nebraska-Lincoln, 68588, USA
| | | | | | | | | | | |
Collapse
|
23
|
Waterham HR, Wanders RJA. 23 as a Tool for Human Gene Function Discovery. METHODS IN MICROBIOLOGY 2007. [DOI: 10.1016/s0580-9517(06)36023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Apodaca J, Kim I, Rao H. Cellular tolerance of prion protein PrP in yeast involves proteolysis and the unfolded protein response. Biochem Biophys Res Commun 2006; 347:319-26. [PMID: 16808901 DOI: 10.1016/j.bbrc.2006.06.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/15/2006] [Indexed: 11/28/2022]
Abstract
Secretory proteins undergo a stringent quality control process in the endoplasmic reticulum (ER). Misfolded ER proteins are returned to the cytosol and destroyed by the proteasome. Prion protein PrP is degraded by the proteasome in mammalian cells. However, the significance of proteolysis on PrP-induced cell death is controversial. Moreover, the specific pathway involved in PrP degradation remains unknown. Here, we demonstrate that the unglycosylated form of human PrP is subjected to the ER-associated protein degradation (ERAD) process in the yeast Saccharomyces cerevisiae. We also show that unglycosylated PrP is degraded by the Hrd1-Hrd3 pathway. Accumulation of misfolded proteins triggers the unfolded protein response (UPR), which promotes substrate refolding. Interestingly, we find that the expression of PrP leads to growth impairment in cells deficient in UPR and ERAD. These findings raise the possibility that decreased UPR activity and proteolysis may contribute to the pathogenesis of some prion-related diseases.
Collapse
Affiliation(s)
- Jennifer Apodaca
- Institute of Biotechnology, Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, 78245, USA
| | | | | |
Collapse
|
25
|
Kruse KB, Dear A, Kaltenbrun ER, Crum BE, George PM, Brennan SO, McCracken AA. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1299-308; quiz 1404-5. [PMID: 16565503 PMCID: PMC1606570 DOI: 10.2353/ajpath.2006.051097] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endoplasmic reticulum (ER) quality control processes recognize and remove aberrant proteins from the secretory pathway. Several variants of the plasma protein fibrinogen are recognized as aberrant and degraded by ER-associated protein degradation (ERAD), thus leading to hypofibrinogenemia. A subset of patients with hypofibrinogenemia exhibit hepatic ER accumulation of the variant fibrinogens and develop liver cirrhosis. One such variant named Aguadilla has a substitution of Arg375 to Trp in the gamma-chain. To understand the cellular mechanisms behind clearance of the aberrant Aguadilla gamma-chain, we expressed the mutant gammaD domain in yeast and found that it was cleared from the ER via ERAD. In addition, we discovered that when ERAD was saturated, aggregated Aguadilla gammaD accumulated within the ER while a soluble form of the polypeptide transited the secretory pathway to the trans-Golgi network where it was targeted to the vacuole for degradation. Examination of Aguadilla gammaD in an autophagy-deficient yeast strain showed stabilization of the aggregated ER form, indicating that these aggregates are normally cleared from the ER via the autophagic pathway. These findings have clinical relevance in the understanding of and treatment for ER storage diseases.
Collapse
|
26
|
Efficient inefficiency: biochemical "junk" may represent molecular bridesmaids awaiting emergent function as a buffer against environmental fluctuation. Med Hypotheses 2006; 67:914-21. [PMID: 16581198 DOI: 10.1016/j.mehy.2006.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
The biochemical function of many parts of the genome, transcriptome, proteome, and interactome remain largely unknown. We propose that portions of these fundamental building blocks of life have no current biochemical function per se. Rather, sections of these "omes" may contribute to an inventory of biochemical parts and circuits that participate in the development of emergent functions. Low fidelity deoxyribonucleic acid replication, transcription, translation, and post-translational modification all represent potential mechanisms to produce an inventory of parts. Stochastic processes that influence the conformations of ribonucleic acid molecules and proteins may also contribute to potential biochemical inventory. Some components of the biochemical inventory may enable future adaptations, some may produce disease, and some may remain useless. The function of many of these components await discovery, not by science, but by evolution. While carrying such purposeless biochemical units may appear to dilute fitness by exacting a thermodynamic cost, we argue that net fitness becomes enhanced when considering the value for potential future innovations. One can envision components that intermingle, interact, and act out mock pathways, but in most cases remain molecular bridesmaids. Given sufficiently low thermodynamic cost, such stochastic cycling may persist until a markedly advantageous or cataclysmically disadvantageous trait emerges. Maladaptive screening and utilization of inventory content can lead to disease phenotypes, a process buffered and regulated in part by the heat shock protein and stress response network. Whereas failure of the ubiquitin pathway to recycle misfolded proteins has become increasingly recognized as a source of disease, protein misfolding may itself represent one step in a process that maximizes functional innovation through increasing proteomic diversity. Fractal correlates of these processes occur at the organizational level of cells and organisms. That the abnormal accumulation of units induces local collapse may serve to limit the extension of damage to the greater system at large. The immune and cognitive systems that selectively sample and prune environmental content may serve as additional portals for innovation.
Collapse
|
27
|
Outeiro TF, Giorgini F. Yeast as a drug discovery platform in Huntington's and Parkinson's diseases. Biotechnol J 2006; 1:258-69. [PMID: 16897706 DOI: 10.1002/biot.200500043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The high degree of conservation of cellular and molecular processes between the budding yeast Saccharomyces cerevisiae and higher eukaryotes have made it a valuable system for numerous studies of the basic mechanisms behind devastating illnesses such as cancer, infectious disease, and neurodegenerative disorders. Several studies in yeast have already contributed to our basic understanding of cellular dysfunction in both Huntington's and Parkinson's disease. Functional genomics approaches currently being undertaken in yeast may lead to novel insights into the genes and pathways that modulate neuronal cell dysfunction and death in these diseases. In addition, the budding yeast constitutes a valuable system for identification of new drug targets, both via target-based and non-target-based drug screening. Importantly, yeast can be used as a cellular platform to analyze the cellular effects of candidate compounds, which is critical for the development of effective therapeutics. While the molecular mechanisms that underlie neurodegeneration will ultimately have to be tested in neuronal and animal models, there are several distinct advantages to using simple model organisms to elucidate fundamental aspects of protein aggregation, amyloid toxicity, and cellular dysfunction. Here, we review recent studies that have shown that amyloid formation by disease-causing proteins and many of the resulting cellular deficits can be faithfully recapitulated in yeast. In addition, we discuss new yeast-based techniques for screening candidate therapeutic compounds for Huntington's and Parkinson's diseases.
Collapse
|
28
|
Slepak T, Tang M, Addo F, Lai K. Intracellular galactose-1-phosphate accumulation leads to environmental stress response in yeast model. Mol Genet Metab 2005; 86:360-71. [PMID: 16169270 DOI: 10.1016/j.ymgme.2005.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/29/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
In humans, deficiency of galactose-1-phosphate uridyltransferase (GALT) can lead a metabolic disorder Classic Galactosemia. Although the biochemical abnormalities associated with this disease have been described in detail, few attempts have been made to characterize the pathogenic mechanisms of this disorder at the molecular level. Here we report the use of high-throughput DNA microarray to examine how galactose affects gene expression in isogenic yeast models that are deficient in either galactokinase (GALK) or GALT, two enzymes which are essential for normal galactose metabolism. We confirmed that the growth of our GALT-deficient, but not GALK-deficient yeast strain ceased 4 h after challenge with 0.2% galactose. Such inhibition was not associated with a reduction of ATP content and was reversible after removal of galactose from medium. We compared the gene expression profiles of the GALT-deficient and GALK-deficient cells in the presence/absence of galactose. We revealed that in the absence of galactose challenge, a subset of genes involved in RNA metabolism was expressed at a level 3-fold lower in the GALT-deficient cells. Upon galactose challenge, significantly more genes involved in various aspects of RNA metabolism and almost all ribosomal protein genes were downregulated in the GALT-deficient, but not GALK-deficient cells. Remarkably, genes involved in inositol biosynthesis and turnover were exclusively induced at high level in the galactose-intoxicated GALT-deficient cells. Our data thus suggested that RNA metabolism, ribosome biogenesis, and inositol metabolism were likely targets for galactose-1-phosphate, a toxic intermediate that is uniquely accumulated under GALT-deficiency.
Collapse
Affiliation(s)
- Tatiana Slepak
- The Dr. John T. Macdonald Foundation Center for Medical Genetics, Department of Pediatrics, University of Miami Miller School of Medicine, P.O. Box 016820D-20, Miami, FL 33101, USA
| | | | | | | |
Collapse
|