1
|
Ahmed J, Chard LS, Yuan M, Wang J, Howells A, Li Y, Li H, Zhang Z, Lu S, Gao D, Wang P, Chu Y, Al Yaghchi C, Schwartz J, Alusi G, Lemoine N, Wang Y. A new oncolytic V accinia virus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer 2021; 8:jitc-2019-000415. [PMID: 32217766 PMCID: PMC7206973 DOI: 10.1136/jitc-2019-000415] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Background Local recurrence and remote metastasis are major challenges to overcome in order to improve the survival of patients with cancer after surgery. Oncolytic viruses are a particularly attractive option for prevention of postsurgical disease as they offer a non-toxic treatment option that can directly target residual tumor deposits and beneficially modulate the systemic immune environment that is suppressed post surgery and allows residual disease escape from control. Here, we report that a novel Vaccinia virus (VV), VVΔTKΔN1L (with deletion of both thymidine kinase (TK) and N1L genes) armed with interleukin 12 (IL-12), can prolong postoperative survival when used as a neoadjuvant treatment in different murine and hamster surgical models of cancer. Methods A tumor-targeted replicating VV with deletion of TK gene and N1L gene (VVΔTKΔN1L) was created. This virus was armed rationally with IL-12. The effect of VVΔTKΔN1L and VVΔTKΔN1L-IL12 on modulation of the tumor microenvironment and induction of tumor-specific immunity as well the feasibility and safety as a neoadjuvant agent for preventing recurrence and metastasis after surgery were assessed in several clinically relevant models. Results VVΔTKΔN1L can significantly prolong postoperative survival when used as a neoadjuvant treatment in three different surgery-induced metastatic models of cancer. Efficacy was critically dependent on elevation of circulating natural killer cells that was achieved by virus-induced cytokine production from cells infected with N1L-deleted, but not N1L-intact VV. This effect was further enhanced by arming VVΔTKΔN1L with IL-12, a potent antitumor cytokine. Five daily treatments with VVΔTKΔN1L-IL12 before surgery dramatically improved postsurgical survival. VVΔTKΔN1L armed with human IL-12 completely prevented tumor recurrence in surgical models of head and neck cancer in Syrian hamsters. Conclusions These data provide a proof of concept for translation of the regime into clinical trials. VVΔTKΔN1L-IL12 is a promising agent for use as an adjuvant to surgical treatment of solid tumors.
Collapse
Affiliation(s)
- Jahangir Ahmed
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S Chard
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ming Yuan
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jiwei Wang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Anwen Howells
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yuenan Li
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Haoze Li
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuangshuang Lu
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongling Gao
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Chadwan Al Yaghchi
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Joel Schwartz
- University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ghassan Alusi
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas Lemoine
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yaohe Wang
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Wang N, Wang J, Zhang Z, Cao H, Yan W, Chu Y, Chard Dunmall LS, Wang Y. A novel vaccinia virus enhances anti-tumor efficacy and promotes a long-term anti-tumor response in a murine model of colorectal cancer. Mol Ther Oncolytics 2021; 20:71-81. [PMID: 33575472 PMCID: PMC7851495 DOI: 10.1016/j.omto.2020.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world, and there remains an urgent need to develop long-lasting therapies to treat CRC and prevent recurrence in patients. Oncolytic virus therapy (OVT) has demonstrated remarkable efficacy in a number of different cancer models. Here, we report a novel vaccinia virus (VV)-based OVT for treatment of CRC. The novel VV, based on the recently reported novel VVLΔTKΔN1L virus, was armed with the pleiotropic cytokine interleukin-21 (IL-21) to enhance anti-tumor immune responses stimulated after viral infection of tumor cells. Compared with an unarmed virus, VVLΔTKΔN1L-mIL-21 had a superior anti-tumor efficacy in murine CMT93 subcutaneous CRC models in vivo, mediated mainly by CD8+ T cells. Treatment resulted in development of long-term immunity against CMT93 tumor cells, as evidenced by prevention of disease recurrence. These results demonstrate that VVLΔTKΔN1L-mIL-21 is a promising therapeutic agent for treatment of CRC.
Collapse
Affiliation(s)
- Na Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jiwei Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhe Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Hua Cao
- ENT Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Wenli Yan
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Louisa S. Chard Dunmall
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
3
|
Marelli G, Chard Dunmall LS, Yuan M, Di Gioia C, Miao J, Cheng Z, Zhang Z, Liu P, Ahmed J, Gangeswaran R, Lemoine N, Wang Y. A systemically deliverable Vaccinia virus with increased capacity for intertumoral and intratumoral spread effectively treats pancreatic cancer. J Immunother Cancer 2021; 9:e001624. [PMID: 33500259 PMCID: PMC7839893 DOI: 10.1136/jitc-2020-001624] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic cancer remains one of the most lethal cancers and is refractory to immunotherapeutic interventions. Oncolytic viruses are a promising new treatment option, but current platforms demonstrate limited efficacy, especially for inaccessible and metastatic cancers that require systemically deliverable therapies. We recently described an oncolytic vaccinia virus (VV), VVLΔTKΔN1L, which has potent antitumor activity, and a regime to enhance intravenous delivery of VV by pharmacological inhibition of pharmacological inhibition of PI3 Kinase δ (PI3Kδ) to prevent virus uptake by macrophages. While these platforms improve the clinical prospects of VV, antitumor efficacy must be improved. METHODS VVLΔTKΔN1L was modified to improve viral spread within and between tumors via viral B5R protein modification, which enhanced production of the extracellular enveloped virus form of VV. Antitumor immunity evoked by viral treatment was improved by arming the virus with interleukin-21, creating VVL-21. Efficacy, functional activity and synergy with α-programmed cell death protein 1 (α-PD1) were assessed after systemic delivery to murine and Syrian hamster models of pancreatic cancer. RESULTS VVL-21 could reach tumors after systemic delivery and demonstrated antitumor efficacy in subcutaneous, orthotopic and disseminated models of pancreatic cancer. The incorporation of modified B5R improved intratumoural accumulation of VV. VVL-21 treatment increased the numbers of effector CD8+ T cells within the tumor, increased circulating natural killer cells and was able to polarize macrophages to an M1 phenotype in vivo and in vitro. Importantly, treatment with VVL-21 sensitized tumors to the immune checkpoint inhibitor α-PD1. CONCLUSIONS Intravenously administered VVL-21 successfully remodeled the suppressive tumor-microenvironment to promote antitumor immune responses and improve long-term survival in animal models of pancreatic cancer. Importantly, treatment with VVL-21 sensitized tumors to the immune checkpoint inhibitor α-PD1. Combination of PI3Kδ inhibition, VVL-21 and α-PD1 creates an effective platform for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Giulia Marelli
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ming Yuan
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Carmela Di Gioia
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jinxin Miao
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, People's Republic of China
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Liu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jahangir Ahmed
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rathi Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas Lemoine
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Zhang Z, Lu S, Dunmall LSC, Wang Z, Cheng Z, Zhang Z, Yan W, Chu Y, Gao D, Wang N, Li Y, Wang J, Li Y, Ji Y, Shan D, Li K, Wang P, Dong Y, Dong J, Lemoine NR, Pei D, Zhang L, Wang Y. Treatment and Prevention of Lung Cancer Using a Virus-Infected Reprogrammed Somatic Cell-Derived Tumor Cell Vaccination (VIReST) Regime. Front Immunol 2020; 11:1996. [PMID: 32903551 PMCID: PMC7438408 DOI: 10.3389/fimmu.2020.01996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is one of the most commonly diagnosed cancer and despite therapeutic advances, mortality remains high. The long period of clinical latency associated with lung cancer provides an ideal window of opportunity to administer vaccines to at-risk individuals that can prevent tumor progression and initiate long-term anti-tumor immune surveillance. Here we describe a personalized vaccination regime that could be applied for both therapeutic and prophylactic prevention of lung cancer, based on the derivation of lung cancer cells from induced pluripotent stem cells. Stem cells from healthy mice were modified to express Cre-dependent KRASG12D and Trp53R172H prior to differentiation to lung progenitor cells. Subsequent viral delivery of Cre caused activation of exogenous driver mutations, resulting in transformation and development of lung cancer cells. iPSC-derived lung cancer cells were highly antigenically related to lung cancer cells induced in LSL-KRASG12D/+; Trp53R172H/+ transgenic mice and were antigenically unrelated to original pluripotent stem cells or pancreatic cancer cells derived using the same technological platform. For vaccination, induced lung cancer cells were infected with oncolytic Adenovirus or Vaccinia virus, to act as vaccine adjuvants, prior to delivery of vaccines sequentially to a murine inducible transgenic model of lung cancer. Application of this Virus-Infected, Reprogrammed Somatic cell-derived Tumor cell (VIReST) regime primed tumor-specific T cell responses that significantly prolonged survival in both subcutaneous post-vaccine challenge models and induced transgenic models of lung cancer, demonstrating that stem cell-derived prophylactic vaccines may be a feasible intervention for treatment or prevention of lung cancer development in at-risk individuals.
Collapse
Affiliation(s)
- Zhe Zhang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard Dunmall
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhizhong Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenli Yan
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongchao Chu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongling Gao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Li
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiwei Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuenan Li
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yupei Ji
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danyang Shan
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Keke Li
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Panpan Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunshu Dong
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nick R. Lemoine
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lirong Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Ferguson MS, Chard Dunmall LS, Gangeswaran R, Marelli G, Tysome JR, Burns E, Whitehead MA, Aksoy E, Alusi G, Hiley C, Ahmed J, Vanhaesebroeck B, Lemoine NR, Wang Y. Transient Inhibition of PI3Kδ Enhances the Therapeutic Effect of Intravenous Delivery of Oncolytic Vaccinia Virus. Mol Ther 2020; 28:1263-1275. [PMID: 32145202 PMCID: PMC7210704 DOI: 10.1016/j.ymthe.2020.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/21/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Tumor-targeting oncolytic viruses such as vaccinia virus (VV) are attractive cancer therapeutic agents that act through multiple mechanisms to provoke both tumor lysis and anti-tumor immune responses. However, delivery of these agents remains restricted to intra-tumoral administration, which prevents effective targeting of inaccessible and disseminated tumor cells. In the present study we have identified transient pharmacological inhibition of the leukocyte-enriched phosphoinositide 3-kinase δ (PI3Kδ) as a novel mechanism to potentiate intravenous delivery of oncolytic VV to tumors. Pre-treatment of immunocompetent mice with the PI3Kδ-selective inhibitor IC87114 or the clinically approved idelalisib (CAL-101), prior to intravenous delivery of a tumor-tropic VV, dramatically improved viral delivery to tumors. This occurred via an inhibition of viral attachment to, but not internalization by, systemic macrophages through perturbation of signaling pathways involving RhoA/ROCK, AKT, and Rac. Pre-treatment using PI3Kδ-selective inhibitors prior to intravenous delivery of VV resulted in enhanced anti-tumor efficacy and significantly prolonged survival compared to delivery without PI3Kδ inhibition. These results indicate that effective intravenous delivery of oncolytic VV may be clinically achievable and could be useful in improving anti-tumor efficacy of oncolytic virotherapy.
Collapse
Affiliation(s)
- Mark S Ferguson
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S Chard Dunmall
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rathi Gangeswaran
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giulia Marelli
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - James R Tysome
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; Otolaryngology Department, Cambridge University Hospitals, Cambridge, UK
| | - Emily Burns
- Centre for Cell Signalling, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Maria A Whitehead
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Ezra Aksoy
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ghassan Alusi
- Department of Otolaryngology, Head & Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Road, Whitechapel, London E1 1BB, UK
| | - Crispin Hiley
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jay Ahmed
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Lu S, Zhang Z, Du P, Chard LS, Yan W, El Khouri M, Wang Z, Zhang Z, Chu Y, Gao D, Zhang Q, Zhang L, Nagano A, Wang J, Chelala C, Liu J, Chen J, Liu P, Dong Y, Wang S, Li X, Dong J, Lemoine NR, Pei D, Wang Y. A Virus-Infected, Reprogrammed Somatic Cell-Derived Tumor Cell (VIReST) Vaccination Regime Can Prevent Initiation and Progression of Pancreatic Cancer. Clin Cancer Res 2019; 26:465-476. [PMID: 31767564 DOI: 10.1158/1078-0432.ccr-19-1395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic cancer remains one of the most lethal cancers, and late detection renders most tumors refractory to conventional therapies. Development of cancer prophylaxis may be the most realistic option for improving mortality associated with this disease. Here, we develop a novel individualized prophylactic and therapeutic vaccination regimen using induced pluripotent stem cells (iPSC), gene editing, and tumor-targeted replicating oncolytic viruses. EXPERIMENTAL DESIGN We created a Virus-Infected, Reprogrammed Somatic cell-derived Tumor cell (VIReST) regime. iPSCs from healthy cells were induced to pancreatic tumor cells using in situ gene editing via stable provision of KRas G12D and p53 R172H tumor driver mutations. These cells were preinfected with oncolytic Adenovirus (AdV) as prime or Vaccinia virus (VV) as boost, to improve vaccine immunogenicity, prior to delivery of vaccines in a sequential regime to young KPC transgenic mice, genetically programmed to develop pancreatic cancer, to prevent and delay disease development. RESULTS Tumor cells preinfected with oncolytic AdV as prime or VV as boost were the best regime to induce tumor-specific immunity. iPSC-derived tumor cells were highly related in antigen repertoire to pancreatic cancer cells of KPC transgenic mice, suggesting that an individual's stem cells can provide an antigenically matched whole tumor cell vaccine. The VIReST vaccination primed tumor-specific T-cell responses, resulting in delayed disease emergence and progression and significantly prolonged survival of KPC transgenic mice. Importantly, this regime was well-tolerated and nontoxic. CONCLUSIONS These results provide both proof of concept and a robust technology platform for the development of personalized prophylactic cancer vaccines to prevent pancreatic malignancies in at-risk individuals.
Collapse
Affiliation(s)
- Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Zhang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pan Du
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Wenli Yan
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Margueritte El Khouri
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhizhong Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongchao Chu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongling Gao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qinxian Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lirong Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ai Nagano
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yunshu Dong
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaozhu Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nick R Lemoine
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China. .,Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Mechanism of chimeric vaccine stimulation of indoleamine 2,3-dioxygenase biosynthesis in human dendritic cells is independent of TGF-β signaling. Cell Immunol 2017; 319:43-52. [PMID: 28864263 DOI: 10.1016/j.cellimm.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/27/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023]
Abstract
Cholera toxin B subunit fusion to autoantigens such as proinsulin (CTB-INS) down regulate dendritic cell (DC) activation and stimulate synthesis of DC immunosuppressive cytokines. Recent studies of CTB-INS induction of immune tolerance in human DCs indicate that increased biosynthesis of indoleamine 2,3-dioxygenase (IDO1) may play an important role in CTB-INS vaccine suppression of DC activation. Studies in murine models suggest a role for transforming growth factor beta (TGF-β) in the stimulation of IDO1 biosynthesis, for the induction of tolerance in DCs. Here, we investigated the contribution of TGF-β superfamily proteins to CTB-INS induction of IDO1 biosynthesis in human monocyte-derived DCs (moDCs). We show that CTB-INS upregulates the level of TGF-β1, activin-A and the TGF-β activator, integrin αvβ8 in human DCs. However, inhibition of endogenous TGF-β, activin-A or addition of biologically active TGF-β1, and activin-A, did not inhibit or stimulate IDO1 biosynthesis in human DCs treated with CTB-INS. While inhibition with the kinase inhibitor, RepSox, blocked SMAD2/3 phosphorylation and diminished IDO1 biosynthesis in a concentration dependent manner. Specific blocking of the TGF-β type 1 kinase receptor with SB-431542 did not arrest IDO1 biosynthesis, suggesting the involvement of a different kinase pathway other than TGF-β type 1 receptor kinase in CTB-INS induction of IDO1 in human moDCs. Together, our experimental findings identify additional immunoregulatory proteins induced by the CTB-INS fusion protein, suggesting CTB-INS may utilize multiple mechanisms in the induction of tolerance in human moDCs.
Collapse
|
8
|
Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WHR. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines (Basel) 2015; 3:703-29. [PMID: 26378585 PMCID: PMC4586474 DOI: 10.3390/vaccines3030703] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase (IDO) is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called "kynurenines" that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells.
Collapse
Affiliation(s)
- Jacques C Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Dequina A Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | | | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju 54896, Korea.
| | - Anthony F Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA.
| | - William H R Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
9
|
Mbongue JC, Nicholas DA, Zhang K, Kim NS, Hamilton BN, Larios M, Zhang G, Umezawa K, Firek AF, Langridge WHR. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine. PLoS One 2015; 10:e0118562. [PMID: 25714914 PMCID: PMC4340906 DOI: 10.1371/journal.pone.0118562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/20/2015] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1 diabetes autoimmunity.
Collapse
Affiliation(s)
- Jacques C. Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Physiology, Loma Linda, CA, United States of America
| | - Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
| | - Kangling Zhang
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju, Republic of Korea
| | - Brittany N. Hamilton
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Microbiology and Molecular Genetics, Loma Linda, CA, United States of America
| | - Marco Larios
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Guangyu Zhang
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
| | - Kazuo Umezawa
- Aichi Medical University, School of Medicine, Department of Molecular Target Medicine Screening, Nagakute, Aichi, Japan
| | - Anthony F. Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chard LS, Maniati E, Wang P, Zhang Z, Gao D, Wang J, Cao F, Ahmed J, El Khouri M, Hughes J, Wang S, Li X, Denes B, Fodor I, Hagemann T, Lemoine NR, Wang Y. A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer. Clin Cancer Res 2014; 21:405-16. [PMID: 25416195 DOI: 10.1158/1078-0432.ccr-14-0464] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Vaccinia virus has strong potential as a novel therapeutic agent for treatment of pancreatic cancer. We investigated whether arming vaccinia virus with interleukin-10 (IL10) could enhance the antitumor efficacy with the view that IL10 might dampen the host immunity to the virus, increasing viral persistence, thus maximizing the oncolytic effect and antitumor immunity associated with vaccinia virus. EXPERIMENTAL DESIGN The antitumor efficacy of IL10-armed vaccinia virus (VVLΔTK-IL10) and control VVΔTK was assessed in pancreatic cancer cell lines, mice bearing subcutaneous pancreatic cancer tumors and a pancreatic cancer transgenic mouse model. Viral persistence within the tumors was examined and immune depletion experiments as well as immunophenotyping of splenocytes were carried out to dissect the functional mechanisms associated with the viral efficacy. RESULTS Compared with unarmed VVLΔTK, VVLΔTK-IL10 had a similar level of cytotoxicity and replication in vitro in murine pancreatic cancer cell lines, but rendered a superior antitumor efficacy in the subcutaneous pancreatic cancer model and a K-ras-p53 mutant-transgenic pancreatic cancer model after systemic delivery, with induction of long-term antitumor immunity. The antitumor efficacy of VVLΔTK-IL10 was dependent on CD4(+) and CD8(+), but not NK cells. Clearance of VVLΔTK-IL10 was reduced at early time points compared with the control virus. Treatment with VVLΔTK-IL10 resulted in a reduction in virus-specific, but not tumor-specific CD8(+) cells compared with VVLΔTK. CONCLUSIONS These results suggest that VVLΔTK-IL10 has strong potential as an antitumor therapeutic for pancreatic cancer.
Collapse
Affiliation(s)
- Louisa S Chard
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Eleni Maniati
- Center for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Dongling Gao
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Jiwei Wang
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Fengyu Cao
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Jahangir Ahmed
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Margueritte El Khouri
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan Hughes
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaozhu Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bela Denes
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Istvan Fodor
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Thorsten Hagemann
- Center for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R Lemoine
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China.
| | - Yaohe Wang
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Husseiny MI, Rawson J, Kaye A, Nair I, Todorov I, Hensel M, Kandeel F, Ferreri K. An oral vaccine for type 1 diabetes based on live attenuated Salmonella. Vaccine 2014; 32:2300-7. [PMID: 24631074 DOI: 10.1016/j.vaccine.2014.02.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/24/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes (T1D) is a metabolic disease that is initiated by the autoimmune destruction of pancreatic insulin-producing beta cells that is accompanied by the development of antigen-specific antibodies and cytotoxic T lymphocytes (CTLs). Several studies have shown that vaccination with diabetic autoantigens provides some protection against this process. In this report we describe a new oral vaccine that utilizes live attenuated Salmonella for simultaneous delivery of autoantigens in conjunction with immunomodulatory cytokine genes to immune cells in the gut mucosa. Recent data showed that live attenuated Salmonella is a safe, simple and effective vector for expression of antigens and cytokines by antigen-presenting cells (APCs) of gut-associated lymphatic tissue (GALT). This novel strategy was tested by fusion of the diabetic autoantigen preproinsulin with Salmonella secretory effector protein (SseF) of pathogenicity island-2 (SPI2). In this way the autoantigen is only expressed inside the host immune cells and translocated to the host cell cytosol. In addition Salmonella was used to deliver the gene for the immunomodulatory cytokine transforming growth factor beta (TGFβ) for host cell expression. Oral co-vaccination of 8 week-old non-obese diabetic (NOD) mice with three weekly doses of both the autoantigen and cytokine significantly reduced the development of diabetes, improved the response to glucose challenge, preserved beta cell mass, and reduced the severity of insulitis compared with controls and autoantigen alone. Combination therapy also resulted in increased circulating levels of IL10 four weeks post-vaccination and IL2 for 12 weeks post-vaccination, but without effect on proinflammatory cytokines IL6, IL12(p70), IL17 and IFNγ. However, in non-responders there was a significant rise in IL12 compared with responders. Future studies will examine the mechanism of this vaccination strategy in more detail. In conclusion, Salmonella-based oral vaccines expressing autoantigens combined with imunomodulatory cytokines appears to be a promising therapy for prevention of T1D.
Collapse
Affiliation(s)
- Mohamed I Husseiny
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA; Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Jeffrey Rawson
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Alexander Kaye
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Indu Nair
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Ivan Todorov
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Fouad Kandeel
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Kevin Ferreri
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
12
|
Odumosu O, Nicholas D, Payne K, Langridge W. Cholera toxin B subunit linked to glutamic acid decarboxylase suppresses dendritic cell maturation and function. Vaccine 2011; 29:8451-8. [PMID: 21807047 DOI: 10.1016/j.vaccine.2011.07.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 06/29/2011] [Accepted: 07/18/2011] [Indexed: 12/16/2022]
Abstract
Dendritic cells are the largest population of antigen presenting cells in the body. One of their main functions is to regulate the delicate balance between immunity and tolerance responsible for maintenance of immunological homeostasis. Disruption of this delicate balance often results in chronic inflammation responsible for initiation of organ specific autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes. The cholera toxin B subunit (CTB) is a weak mucosal adjuvant known for its ability to stimulate immunity to antigenic proteins. However, conjugation of CTB to many autoantigens can induce immunological tolerance resulting in suppression of autoimmunity. In this study, we examined whether linkage of CTB to a 5kDa C-terminal protein fragment of the major diabetes autoantigen glutamic acid decarboxylase (GAD(35)), can block dendritic cell (DC) functions such as biosynthesis of co-stimulatory factor proteins CD86, CD83, CD80 and CD40 and secretion of inflammatory cytokines. The results of human umbilical cord blood monocyte-derived DC-GAD(35) autoantigen incubation experiments showed that inoculation of immature DCs (iDCs), with CTB-GAD(35) protein dramatically suppressed levels of CD86, CD83, CD80 and CD40 co-stimulatory factor protein biosynthesis in comparison with GAD(35) alone inoculated iDCs. Surprisingly, incubation of iDCs in the presence of the CTB-autoantigen and the strong immunostimulatory molecules PMA and Ionomycin revealed that CTB-GAD(35) was capable of arresting PMA+Ionomycin induced DC maturation. Consistent with this finding, CTB-GAD(35) mediated suppression of DC maturation was accompanied by a dramatic decrease in the secretion of the pro-inflammatory cytokines IL-12/23p40 and IL-6 and a significant increase in secretion of the immunosuppressive cytokine IL-10. Taken together, our experimental data suggest that linkage of the weak adjuvant CTB to the dominant type 1 diabetes autoantigen GAD strongly inhibits DC maturation through the down regulation of major co-stimulatory factors and inflammatory cytokine biosynthesis. These results emphasize the possibility that CTB-autoantigen fusion proteins enhance DC priming of naïve Th0 cell development in the direction of immunosuppressive T lymphocytes. The immunological phenomena observed here establish a basis for improvement of adjuvant augmented multi-component subunit vaccine strategies capable of complete suppression of organ-specific autoimmune diseases in vivo.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND Recombinant vaccinia virus (rVV) strains expressing the immunomodulatory cholera toxin B subunit (CTB) fused to the autoantigen glutamic acid decarboxylase (GAD) or the immunosuppressive cytokine interleukin-10 (IL-10) were independently able to generate only low levels of immune suppression of type 1 diabetes mellitus (T1DM). Here we suggest that a vaccinia virus (VV)-mediated combination of CTB::GAD fusion and IL-10 proteins promises a effective and durable immunotherapeutic strategy for T1DM. METHODS To explore this hypothesis, a CTB::GAD fusion gene was co-delivered with a gene encoding IL-10 by rVV infection (rVV-CTB::GAD + rVV-IL10) into 5-7-week-old non-obese diabetic (NOD) mice. The mice were assessed for vaccine protection against development of hyperglycemia from 12 to 64 weeks of age by assessment of pancreatic inflammation (insulitis) and splenocyte-secreted interferon-gamma and IL-10 cytokine levels. RESULTS By 36 weeks of age, from 54% to 80% of the mice in the negative control animal groups (either mock-infected or inoculated with unrelated plasmid or VV) had developed hyperglycemia. Similarly, no statistically significant improvement in protection against diabetes onset was achieved by inoculation with VV expressing CTB::GAD or IL-10 independently. Surprisingly, only 20% of mice co-inoculated with rVV-CTB::GAD + rVV-IL10 developed hyperglycemia by 28 weeks of age. Other treatment groups developed hyperglycemia by 32-36 weeks. After 36 weeks, diabetes incidence no longer increased in any groups until the end of experiment at 64 weeks of age. Histological analysis of pancreatic tissues of hyperglycemic mice revealed high levels of intra-islet insulitis. Analysis of insulitis at termination of the experiment showed that euglycemic mice co-inoculated with VV expressing CTB::GAD and IL-10 had more effectively reduced inflammation in comparison with the other groups. CONCLUSIONS A combinatorial vaccination strategy based on VV co-delivery of genes encoding the immunoenhanced autoantigen CTB::GAD and the anti-inflammatory cytokine IL-10 can maintain effective and durable euglycemia and immunological homeostasis in NOD mice with prediabetes.
Collapse
Affiliation(s)
- Béla Dénes
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California
- Department of Immunology, Central Veterinary Institute, Budapest, Hungary
| | - István Fodor
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California
| | - William H.R. Langridge
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California
| |
Collapse
|
14
|
Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. SELF NONSELF 2010; 1:165-175. [PMID: 21487475 DOI: 10.4161/self.1.3.12643] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease, whereby auto-reactive cytotoxic T cells target and destroy insulin-secreting β-cells in pancreatic islets leading to insulin deficiency and subsequent hyperglycemia. These individuals require multiple daily insulin injections every day of their life without which they will develop life-threatening diabetic ketoacidosis (DKA) and die. Gene therapy by viral vector and non-viral transduction may be useful techniques to treat T1D as it can be applied from many different angles; such as the suppression of autoreactive T cells to prevent islet destruction (prophylactic) or the replacement of the insulin gene (post-disease). The need for a better method for providing euglycemia arose from insufficient numbers of cadaver islets for transplantation and the immunosuppression required post-transplant. Ectopic expression of insulin or islet modification have been examined, but not perfected. This review examines the various gene transfer methods, gene therapy techniques used to date and promising novel techniques for the maintenance of euglycemia in the treatment of T1D.
Collapse
Affiliation(s)
- Mary S Wong
- Department of Rheumatology; University of Sydney; Sydney, NSW Australia
| | | | | |
Collapse
|
15
|
Gebe JA, Unrath KA, Yue BB, Miyake T, Falk BA, Nepom GT. Autoreactive human T-cell receptor initiates insulitis and impaired glucose tolerance in HLA DR4 transgenic mice. J Autoimmun 2007; 30:197-206. [PMID: 17949947 DOI: 10.1016/j.jaut.2007.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 02/09/2023]
Abstract
A human T-cell receptor (TcR) derived from an autoreactive T-cell specific for GAD65, from a subject at high risk for autoimmune diabetes, was introduced into HLA-DR4 transgenic mice. The source of TcR was a CD4(+) T(H)1(+) T-cell clone which responded to an immunodominant epitope of the human islet protein GAD65, an epitope shared with both GAD65 and GAD67 in the mouse. The resulting HLA-DR4/GAD-TcR transgenic mice on a Rag2(o/o)/I-Ab(o/o)/B6 background exhibited a CD4(+) infiltrate into pancreatic islets that correlated with a loss of insulin in infiltrated islets. These mice also exhibited a subclinical impaired tolerance to exogenously fed glucose as assayed by an intraperitoneal glucose tolerance test. T cells containing the GAD65/67 (555-567) responsive TcR undergo strong negative selection as evidenced by a 10-fold lower thymocyte cellularity compared to non-TcR transgenic mice, and clonotype peripheral T cells represented approximately 1% of CD4(+) T cells in Rag2 sufficient mice. Upon in vitro stimulation, GAD65/67 555-567 responsive T cells secrete interferon-gamma, minimal interleukin (IL)-2 and tumor necrosis factor-alpha, and no IL-4, IL-5, IL-10, or IL-17, consistent with a T(H)1 profile. These data demonstrate that CD4(+) T cells specific for a naturally processed epitope within GAD can specifically home to pancreatic islets and lead to impaired islet beta-cell function in diabetes-associated HLA-DR4 transgenic mice on the relatively non-autoimmune C57BL/6 background. The relatively slow progression and patchy insulitis are reminiscent of the chronic pre-clinical phase similar to a majority of human at-risk subjects, and models these indolent features of human T1D.
Collapse
Affiliation(s)
- John A Gebe
- Department of Diabetes, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA.
| | | | | | | | | | | |
Collapse
|