1
|
Martinez-Pena y Valenzuela I, Akaaboune M. The Metabolic Stability of the Nicotinic Acetylcholine Receptor at the Neuromuscular Junction. Cells 2021; 10:cells10020358. [PMID: 33572348 PMCID: PMC7916148 DOI: 10.3390/cells10020358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
The clustering and maintenance of nicotinic acetylcholine receptors (AChRs) at high density in the postsynaptic membrane is a hallmark of the mammalian neuromuscular junction (NMJ). The regulation of receptor density/turnover rate at synapses is one of the main thrusts of neurobiology because it plays an important role in synaptic development and synaptic plasticity. The state-of-the-art imaging revealed that AChRs are highly dynamic despite the overall structural stability of the NMJ over the lifetime of the animal. This review highlights the work on the metabolic stability of AChRs at developing and mature NMJs and discusses the role of synaptic activity and the regulatory signaling pathways involved in the dynamics of AChRs.
Collapse
Affiliation(s)
| | - Mohammed Akaaboune
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
- Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-73-(46)-478512; Fax: +1-73-(46)-470884
| |
Collapse
|
2
|
Li R, Zhao X, Cai L, Gao WW. Up-regulation of GluR1 in paraventricular nucleus and greater expressions of synapse related proteins in the hypothalamus of chronic unpredictable stress-induced depressive rats. Physiol Behav 2017; 179:451-457. [DOI: 10.1016/j.physbeh.2017.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/13/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|
3
|
Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol 2013; 16:69-82. [PMID: 22339950 PMCID: PMC3414647 DOI: 10.1017/s1461145712000016] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) has been linked to changes in function and activity of the hippocampus, one of the central limbic regions involved in regulation of emotions and mood. The exact cellular and molecular mechanisms underlying hippocampal plasticity in response to stress are yet to be fully characterized. In this study, we examined the genetic profile of micro-dissected subfields of post-mortem hippocampus from subjects diagnosed with MDD and comparison subjects matched for sex, race and age. Gene expression profiles of the dentate gyrus and CA1 were assessed by 48K human HEEBO whole genome microarrays and a subgroup of identified genes was confirmed by real-time polymerase chain reaction (qPCR). Pathway analysis revealed altered expression of several gene families, including cytoskeletal proteins involved in rearrangement of neuronal processes. Based on this and evidence of hippocampal neuronal atrophy in MDD, we focused on the expression of cytoskeletal, synaptic and glutamate receptor genes. Our findings demonstrate significant dysregulation of synaptic function/structure related genes SNAP25, DLG2 (SAP93), and MAP1A, and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor subunit genes GLUR1 and GLUR3. Several of these human target genes were similarly dysregulated in a rat model of chronic unpredictable stress and the effects reversed by antidepressant treatment. Together, these studies provide new evidence that disruption of synaptic and glutamatergic signalling pathways contribute to the pathophysiology underlying MDD and provide interesting targets for novel therapeutic interventions.
Collapse
|
4
|
Dowling JJ, Joubert R, Low SE, Durban AN, Messaddeq N, Li X, Dulin-Smith AN, Snyder AD, Marshall ML, Marshall JT, Beggs AH, Buj-Bello A, Pierson CR. Myotubular myopathy and the neuromuscular junction: a novel therapeutic approach from mouse models. Dis Model Mech 2012; 5:852-9. [PMID: 22645112 PMCID: PMC3484867 DOI: 10.1242/dmm.009746] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myotubular myopathy (MTM) is a severe congenital muscle disease characterized by profound weakness, early respiratory failure and premature lethality. MTM is defined by muscle biopsy findings that include centralized nuclei and disorganization of perinuclear organelles. No treatments currently exist for MTM. We hypothesized that aberrant neuromuscular junction (NMJ) transmission is an important and potentially treatable aspect of the disease pathogenesis. We tested this hypothesis in two murine models of MTM. In both models we uncovered evidence of a disorder of NMJ transmission: fatigable weakness, improved strength with neostigmine, and electrodecrement with repetitive nerve stimulation. Histopathological analysis revealed abnormalities in the organization, appearance and size of individual NMJs, abnormalities that correlated with changes in acetylcholine receptor gene expression and subcellular localization. We additionally determined the ability of pyridostigmine, an acetylcholinesterase inhibitor, to ameliorate aspects of the behavioral phenotype related to NMJ dysfunction. Pyridostigmine treatment resulted in significant improvement in fatigable weakness and treadmill endurance. In all, these results describe a newly identified pathological abnormality in MTM, and uncover a potential disease-modifying therapy for this devastating disorder.
Collapse
Affiliation(s)
- James J Dowling
- Department of Pediatrics, Taubman Medical Research Institute, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Duric V, Duman RS. Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes. Cell Mol Life Sci 2012; 70:39-53. [PMID: 22585060 DOI: 10.1007/s00018-012-1020-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 01/15/2023]
Abstract
Since the 1960s, when the first tricyclic and monoamine oxidase inhibitor antidepressant drugs were introduced, most of the ensuing agents were designed to target similar brain pathways that elevate serotonin and/or norepinephrine signaling. Fifty years later, the main goal of the current depression research is to develop faster-acting, more effective therapeutic agents with fewer side effects, as currently available antidepressants are plagued by delayed therapeutic onset and low response rates. Clinical and basic science research studies have made significant progress towards deciphering the pathophysiological events within the brain involved in development, maintenance, and treatment of major depressive disorder. Imaging and postmortem brain studies in depressed human subjects, in combination with animal behavioral models of depression, have identified a number of different cellular events, intracellular signaling pathways, proteins, and target genes that are modulated by stress and are potentially vital mediators of antidepressant action. In this review, we focus on several neural mechanisms, primarily within the hippocampus and prefrontal cortex, which have recently been implicated in depression and treatment response.
Collapse
Affiliation(s)
- Vanja Duric
- Department of Psychiatry, Yale University, 34 Park Street, New Haven, CT 06508, USA
| | | |
Collapse
|
6
|
Strack S, Petersen Y, Wagner A, Röder IV, Albrizio M, Reischl M, Wacker IU, Wilhelm C, Rudolf R. A novel labeling approach identifies three stability levels of acetylcholine receptors in the mouse neuromuscular junction in vivo. PLoS One 2011; 6:e20524. [PMID: 21655100 PMCID: PMC3107218 DOI: 10.1371/journal.pone.0020524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/02/2011] [Indexed: 11/23/2022] Open
Abstract
Background The turnover of acetylcholine receptors at the neuromuscular junction is regulated in an activity-dependent manner. Upon denervation and under various other pathological conditions, receptor half-life is decreased. Methodology/Principal Findings We demonstrate a novel approach to follow the kinetics of acetylcholine receptor lifetimes upon pulse labeling of mouse muscles with 125I-α-bungarotoxin in vivo. In contrast to previous assays where residual activity was measured ex vivo, in our setup the same animals are used throughout the whole measurement period, thereby permitting a dramatic reduction of animal numbers at increased data quality. We identified three stability levels of acetylcholine receptors depending on the presence or absence of innervation: one pool of receptors with a long half-life of ∼13 days, a second with an intermediate half-life of ∼8 days, and a third with a short half-life of ∼1 day. Data were highly reproducible from animal to animal and followed simple exponential terms. The principal outcomes of these measurements were reproduced by an optical pulse-labeling assay introduced recently. Conclusions/Significance A novel assay to determine kinetics of acetylcholine receptor turnover with small animal numbers is presented. Our data show that nerve activity acts on muscle acetylcholine receptor stability by at least two different means, one shifting receptor lifetime from short to intermediate and another, which further increases receptor stability to a long lifetime. We hypothesize on possible molecular mechanisms.
Collapse
Affiliation(s)
- Siegfried Strack
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yvonne Petersen
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anika Wagner
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ira V. Röder
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marina Albrizio
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Markus Reischl
- Institut für Angewandte Informatik, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Irene U. Wacker
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christoph Wilhelm
- Sicherheitsmanagement Analytische Labore, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rüdiger Rudolf
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
7
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.
Collapse
|
8
|
Rapid and modifiable neurotransmitter receptor dynamics at a neuronal synapse in vivo. Nat Neurosci 2008; 11:807-15. [PMID: 18568021 DOI: 10.1038/nn.2145] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/23/2008] [Indexed: 12/22/2022]
Abstract
Synaptic plasticity underlies the adaptability of the mammalian brain, but has been difficult to study in living animals. Here we imaged the synapses between pre- and postganglionic neurons in the mouse submandibular ganglion in vivo, focusing on the mechanisms that maintain and regulate neurotransmitter receptor density at postsynaptic sites. Normally, synaptic receptor densities were maintained by rapid exchange of receptors with nonsynaptic regions (over minutes) and by continual turnover of cell surface receptors (over hours). However, after ganglion cell axons were crushed, synaptic receptors showed greater lateral mobility and there was a precipitous decline in insertion. These changes led to near-complete loss of synaptic receptors and synaptic depression. Disappearance of postsynaptic spines and presynaptic terminals followed this acute synaptic depression. Therefore, neurotransmitter receptor dynamism associated with rapid changes in synaptic efficacy precedes long-lasting structural changes in synaptic connectivity.
Collapse
|
9
|
Muller E, Le-Corronc H, Legendre P. Extrasynaptic and postsynaptic receptors in glycinergic and GABAergic neurotransmission: a division of labor? Front Mol Neurosci 2008; 1:3. [PMID: 18946536 PMCID: PMC2526000 DOI: 10.3389/neuro.02.003.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 01/07/2023] Open
Abstract
Glycine and GABA mediate inhibitory neurotransmission in the spinal cord and central nervous system. The general concept of neurotransmission is now challenged by the contribution of both phasic activation of postsynaptic glycine and GABA(A) receptors (GlyRs and GABA(A)Rs, respectively) and tonic activity of these receptors located at extrasynaptic sites. GlyR and GABA(A)R kinetics depend on several parameters, including subunit composition, subsynaptic localization and activation mode. Postsynaptic and extrasynaptic receptors display different subunit compositions and are activated by fast presynaptic and slow paracrine release of neurotransmitters, respectively. GlyR and GABA(A)R functional properties also rely on their aggregation level, which is higher at postsynaptic densities than at extrasynaptic loci. Finally, these receptors can co-aggregate at mixed inhibitory postsynaptic densities where they cross-modulate their activity, providing another parameter of functional complexity. GlyR and GABA(A)R density at postsynaptic sites results from the balance between their internalization and insertion in the plasma membrane, but also on their lateral diffusion from and to the postsynaptic loci. The dynamic exchange of receptors between synaptic and extrasynaptic sites and their functional adaptation in terms of kinetics point out a new adaptive process of inhibitory neurotransmission.
Collapse
Affiliation(s)
- Emilie Muller
- UMR 7102 - Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie Paris, France
| | | | | |
Collapse
|
10
|
Dynamic changes in level influence spatial coding in the lateral superior olive. Hear Res 2007; 238:58-67. [PMID: 18162347 DOI: 10.1016/j.heares.2007.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 10/25/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
It is well established that the responses of binaural auditory neurons can adapt and change dramatically depending on the nature of a preceding sound. Examples of how the effects of ensuing stimuli play a functional role in auditory processing include motion sensitivity and precedence-like effects. To date, these types of effects have been documented at the level of the midbrain and above. Little is known about sensitivity to ensuing stimuli below in the superior olivary nuclei where binaural response properties are first established. Here we report on single cell responses in the gerbil lateral superior olive, the initial site where sensitivity to interaural level differences is established. In contrast to our expectations we found a robust sensitivity to ensuing stimuli. The majority of the cells we tested (86%), showed substantial suppression and/or enhancement to a designated target stimulus, depending on the nature of a preceding stimulus. Hence, sensitivity to ensuing stimuli is already established at the first synaptic station of binaural processing.
Collapse
|
11
|
Bruneau E, Akaaboune M. The dynamics of the rapsyn scaffolding protein at individual acetylcholine receptor clusters. J Biol Chem 2007; 282:9932-9940. [PMID: 17283077 DOI: 10.1074/jbc.m608714200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapsyn, a cytoplasmic receptor-associated protein, is required for the clustering of acetylcholine receptors (AChRs). Although AChR dynamics have been extensively studied, little is known about the dynamics of rapsyn. Here, we used a rapsyn-green fluorescent protein (GFP) fusion protein and quantitative fluorescent imaging to study the dynamics of rapsyn in transfected C2C12 myotubes. First, we found that rapsyn-GFP expression at clusters did not alter AChR aggregation, function, or turnover. Quantification of rapsyn immunofluorescence indicated that the expression of rapsyn-GFP proteins at clusters does not increase the overall rapsyn density compared with untransfected myotube clusters. Using time lapse imaging and fluorescence recovery after photobleaching, we demonstrated that the recovery of rapsyn-GFP fluorescence at clusters was very fast, with a halftime of about approximately 1.5 h (approximately 3 times faster than AChRs). Inhibition of protein kinase C significantly altered receptor insertion, but it had no effect on rapsyn insertion. When cells were treated with the broad spectrum kinase inhibitor staurosporine, receptor insertion was decreased even further. However, inhibition of protein kinase A had no effect on insertion of either rapsyn or receptors. Finally, when cells were treated with neural agrin, rapsyn and AChRs were both directed away from preexisting clusters and accumulated together in new small clusters. These results demonstrate the remarkable dynamism of rapsyn, which may underlie the stability and maintenance of the postsynaptic scaffold and suggest that the insertion of different postsynaptic proteins may be operating independently.
Collapse
Affiliation(s)
- Emile Bruneau
- Department of Molecular, Cellular and Developmental Biology and Program in Neuroscience, University of Michigan, Ann Arbor, Michigan 48109
| | - Mohammed Akaaboune
- Department of Molecular, Cellular and Developmental Biology and Program in Neuroscience, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|