1
|
Guerra-Castellano A, Aneas M, Tamargo-Azpilicueta J, Márquez I, Olloqui-Sariego JL, Calvente JJ, De la Rosa MA, Díaz-Moreno I. The two yeast cytochrome c isoforms differentially regulate supercomplex assembly and mitochondrial electron flow. Int J Biol Macromol 2025:144143. [PMID: 40373917 DOI: 10.1016/j.ijbiomac.2025.144143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Mitochondria play a crucial role in cellular energy production, signaling and homeostasis. Respiratory supercomplexes represent evolutionary well-conserved, stable associations between membrane complexes and molecules, including proteins and lipids, within the inner mitochondrial membrane. They dynamically respond to metabolic demands and enhance the electron transfer rate, thereby reducing the production of ROS. Recent research has unveiled cytochrome c, a mobile electron carrier between complexes III and IV, as a potential key player in orchestrating the formation of these supra-associations. This study centers on elucidating the role of cytochrome c in modulating the assembly of supercomplexes, using the Saccharomyces cerevisiae yeast as a model system for mitochondrial metabolism. BN-PAGE and mass spectrometry-based proteomic analysis were employed to examine supercomplex organization in yeast strains expressing different cytochrome c isoforms, grown under fermentative and respiratory conditions. Our results demonstrate that both isoforms of cytochrome c contribute to supercomplex assembly, with isoform-2 significantly improving electron transfer and lowering ROS levels. We propose a model in which cytochrome c acts as a scaffold for the recruitment of assembly factors, facilitating the formation of higher order supercomplexes such as III2IV2. This model highlights cytochrome c's role beyond electron transfer, as it regulates supercomplex assembly and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain.
| | - Manuel Aneas
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Joaquín Tamargo-Azpilicueta
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Inmaculada Márquez
- Departamento de Química Física, Universidad de Sevilla, Profesor García González 1, 41012 Sevilla, Spain
| | - José Luis Olloqui-Sariego
- Departamento de Química Física, Universidad de Sevilla, Profesor García González 1, 41012 Sevilla, Spain
| | - Juan José Calvente
- Departamento de Química Física, Universidad de Sevilla, Profesor García González 1, 41012 Sevilla, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain.
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
2
|
Chea M, Bouvier S, Gris JC. The hemostatic system in chronic brain diseases: A new challenging frontier? Thromb Res 2024; 243:109154. [PMID: 39305718 DOI: 10.1016/j.thromres.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Neurological diseases (ND), including neurodegenerative diseases (NDD) and psychiatric disorders (PD), present a significant public health challenge, ranking third in Europe for disability and premature death, following cardiovascular diseases and cancers. In 2017, approximately 540 million cases of ND were reported among Europe's 925 million people, with strokes, dementia, and headaches being most prevalent. Nowadays, more and more evidence highlight the hemostasis critical role in cerebral homeostasis and vascular events. Indeed, hemostasis, thrombosis, and brain abnormalities contributing to ND form a complex and poorly understood equilibrium. Alterations in vascular biology, particularly involving the blood-brain barrier, are implicated in ND, especially dementia, and PD. While the roles of key coagulation players such as thrombin and fibrinogen are established, the roles of other hemostasis components are less clear. Moreover, the involvement of these elements in psychiatric disease pathogenesis is virtually unstudied, except in specific pathological models such as antiphospholipid syndrome. Advanced imaging techniques, primarily functional magnetic resonance imaging and its derivatives like diffusion tensor imaging, have been developed to study brain areas affected by ND and to improve our understanding of the pathophysiology of these diseases. This literature review aims to clarify the current understanding of the connections between hemostasis, thrombosis, and neurological diseases, as well as explore potential future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mathias Chea
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France.
| | - Sylvie Bouvier
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France
| | - Jean-Christophe Gris
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
3
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Valles SL, Singh SK, Campos-Campos J, Colmena C, Campo-Palacio I, Alvarez-Gamez K, Caballero O, Jorda A. Functions of Astrocytes under Normal Conditions and after a Brain Disease. Int J Mol Sci 2023; 24:ijms24098434. [PMID: 37176144 PMCID: PMC10179527 DOI: 10.3390/ijms24098434] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
In the central nervous system (CNS) there are a greater number of glial cells than neurons (between five and ten times more). Furthermore, they have a greater number of functions (more than eight functions). Glia comprises different types of cells, those of neural origin (astrocytes, radial glia, and oligodendroglia) and differentiated blood monocytes (microglia). During ontogeny, neurons develop earlier (at fetal day 15 in the rat) and astrocytes develop later (at fetal day 21 in the rat), which could indicate their important and crucial role in the CNS. Analysis of the phylogeny reveals that reptiles have a lower number of astrocytes compared to neurons and in humans this is reversed, as there have a greater number of astrocytes compared to neurons. These data perhaps imply that astrocytes are important and special cells, involved in many vital functions, including memory, and learning processes. In addition, astrocytes are involved in different mechanisms that protect the CNS through the production of antioxidant and anti-inflammatory proteins and they clean the extracellular environment and help neurons to communicate correctly with each other. The production of inflammatory mediators is important to prevent changes in brain homeostasis. On the contrary, excessive, or continued production appears as a characteristic element in many diseases, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and in neurodevelopmental diseases, such as bipolar disorder, schizophrenia, and autism. Furthermore, different drugs and techniques have been developed to reverse oxidative stress and/or excess of inflammation that occurs in many CNS diseases, but much remains to be investigated. This review attempts to highlight the functional relevance of astrocytes in normal and neuropathological conditions by showing the molecular and cellular mechanisms of their role in the CNS.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Juan Campos-Campos
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| | - Carlos Colmena
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Ignacio Campo-Palacio
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Kenia Alvarez-Gamez
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Oscar Caballero
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
5
|
Cytochrome c in cancer therapy and prognosis. Biosci Rep 2022; 42:232225. [PMID: 36479932 PMCID: PMC9780037 DOI: 10.1042/bsr20222171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Cytochrome c (cyt c) is an electron transporter of the mitochondrial respiratory chain. Upon permeabilization of the mitochondrial outer membrane, cyt c is released into the cytoplasm, where it triggers the intrinsic pathway of apoptosis. Cytoplasmic cyt c can further reach the bloodstream. Apoptosis inhibition is one of the hallmarks of cancer and its induction in tumors is a widely used therapeutic approach. Apoptosis inhibition and induction correlate with decreased and increased serum levels of cyt c, respectively. The quantification of cyt c in the serum is useful in the monitoring of patient response to chemotherapy, with potential prognosis value. Several highly sensitive biosensors have been developed for the quantification of cyt c levels in human serum. Moreover, the delivery of exogenous cyt c to the cytoplasm of cancer cells is an effective approach for inducing their apoptosis. Similarly, several protein-based and nanoparticle-based systems have been developed for the therapeutic delivery of cyt c to cancer cells. As such, cyt c is a human protein with promising value in cancer prognosis and therapy. In addition, its thermal stability can be extended through PEGylation and ionic liquid storage. These processes could contribute to enhancing its therapeutic exploitation in clinical facilities with limited refrigeration conditions. Here, I discuss these research lines and how their timely conjunction can advance cancer therapy and prognosis.
Collapse
|
6
|
Moretti R, Giuffrè M, Merli N, Caruso P, Di Bella S, Tiribelli C, Crocè LS. Hepatitis C Virus-Related Central and Peripheral Nervous System Disorders. Brain Sci 2021; 11:1569. [PMID: 34942871 PMCID: PMC8699483 DOI: 10.3390/brainsci11121569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C Virus (HCV), despite being a hepatotropic virus, is the causative agent of many systemic disorders, such as vasculitis, autoimmune diseases, lymphoproliferative disorders, and a broad spectrum of neurological and psychiatric manifestations. Although symptoms have been misdiagnosed or underdiagnosed, only recently, evidence of direct (inflammatory) or indirect (immune-mediated) HCV-dependent cerebral effects has been established. HCV infection can promote acute inflammatory response, pro-coagulative status and ischemic disorders, and neurodegeneration. These effects rely on cerebral HCV replication, possibly mediated by blood-brain barrier alterations. Further study is needed to better understand the HCV-related mechanisms of brain damage.
Collapse
Affiliation(s)
- Rita Moretti
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Mauro Giuffrè
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Nicola Merli
- Department Neurological Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Paola Caruso
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Stefano Di Bella
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | | | - Lory Saveria Crocè
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| |
Collapse
|
7
|
Brain Region and Cell Compartment Dependent Regulation of Electron Transport System Components in Huntington's Disease Model Mice. Brain Sci 2021; 11:brainsci11101267. [PMID: 34679332 PMCID: PMC8533690 DOI: 10.3390/brainsci11101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
Huntington’s disease (HD) is a rare hereditary neurodegenerative disorder characterized by multiple metabolic dysfunctions including defects in mitochondrial homeostasis and functions. Although we have recently reported age-related changes in the respiratory capacities in different brain areas in HD mice, the precise mechanisms of how mitochondria become compromised in HD are still poorly understood. In this study, we investigated mRNA and protein levels of selected subunits of electron transport system (ETS) complexes and ATP-synthase in the cortex and striatum of symptomatic R6/2 mice. Our findings reveal a brain-region-specific differential expression of both nuclear and mitochondrial-encoded ETS components, indicating defects of transcription, translation and/or mitochondrial import of mitochondrial ETS components in R6/2 mouse brains.
Collapse
|
8
|
Avrutsky MI, Troy CM. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Front Pharmacol 2021; 12:701301. [PMID: 34305609 PMCID: PMC8299054 DOI: 10.3389/fphar.2021.701301] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Caspase-9, a cysteine-aspartic protease known for its role as an initiator of intrinsic apoptosis, regulates physiological cell death and pathological tissue degeneration. Its nonapoptotic functions, including regulation of cellular differentiation/maturation, innate immunity, mitochondrial homeostasis, and autophagy, reveal a multimodal landscape of caspase-9 functions in health and disease. Recent work has demonstrated that caspase-9 can drive neurovascular injury through nonapoptotic endothelial cell dysfunction. CASP9 polymorphisms have been linked with various cancers, neurological disorders, autoimmune pathologies and lumbar disc disease. Clinical reports suggest alterations in caspase-9 expression, activity or function may be associated with acute and chronic neurodegeneration, retinal neuropathy, slow-channel myasthenic syndrome, lumbar disc disease, cardiomyopathies, atherosclerosis and autoimmune disease. Healthy tissues maintain caspase-9 activity at low basal levels, rendering supraphysiological caspase-9 activation a tractable target for therapeutic interventions. Strategies for selective inhibition of caspase-9 include dominant negative caspase-9 mutants and pharmacological inhibitors derived from the XIAP protein, whose Bir3 domain is an endogenous highly selective caspase-9 inhibitor. However, the mechanistic implications of caspase-9 expression and activation remain indeterminate in many pathologies. By assembling clinical reports of caspase-9 genetics, signaling and cellular localization in human tissues, this review identifies gaps between experimental and clinical studies on caspase-9, and presents opportunities for further investigations to examine the consequences of caspase activity in human disease.
Collapse
Affiliation(s)
- Maria I Avrutsky
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol M Troy
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Li K, van Delft MF, Dewson G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO J 2021; 40:e107341. [PMID: 34037273 DOI: 10.15252/embj.2020107341] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell death is implicated in both physiological and pathological processes. Since many types of cancerous cells intrinsically evade apoptotic elimination, induction of apoptosis has become an attractive and often necessary cancer therapeutic approach. Conversely, some cells are extremely sensitive to apoptotic stimuli leading to neurodegenerative disease and immune pathologies. However, due to several challenges, pharmacological inhibition of apoptosis is still only a recently emerging strategy to combat pathological cell loss. Here, we describe several key steps in the intrinsic (mitochondrial) apoptosis pathway that represent potential targets for inhibitors in disease contexts. We also discuss the mechanisms of action, advantages and limitations of small-molecule and peptide-based inhibitors that have been developed to date. These inhibitors serve as important research tools to dissect apoptotic signalling and may foster new treatments to reduce unwanted cell loss.
Collapse
Affiliation(s)
- Kaiming Li
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Abdulhussein D, Kanda M, Aamir A, Manzar H, Yap TE, Cordeiro MF. Apoptosis in health and diseases of the eye and brain. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:279-306. [PMID: 34090617 DOI: 10.1016/bs.apcsb.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a form of programmed cell death (PCD) and enables the immunologically silent disposal of senescent or unwanted cells, causing minimal damage to the surrounding environment. Apoptosis can occur via intrinsic or extrinsic pathways that initiate a series of intracellular and extracellular signaling events. This ultimately leads to the clearance of the cell by phagocytes. This normal physiological mechanism may be accelerated in several diseases including those involving the eyes and brain, leading to loss of structure and function. This review presents the role of PCD in the health of the eyes and brain, and the evidence presented for its aberrant role in disease.
Collapse
Affiliation(s)
- Dalia Abdulhussein
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Mumta Kanda
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - Abdullah Aamir
- Whipps Cross Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - M Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom; Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
11
|
Sun X, Zhu J, Sun XY, Ji M, Yu XL, Liu RT. Ellagic acid rescues motor and cognitive deficits in the R6/2 mouse model of Huntington's disease by lowering mutant huntingtin protein. Food Funct 2020; 11:1334-1348. [PMID: 32043503 DOI: 10.1039/c9fo02131k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by a highly polymorphic CAG trinucleotide repeat expansion encoding an extended polyglutamine (polyQ) tract at the N-terminus of huntingtin protein (HTT). The polyQ tract promotes the formation of toxic oligomers and aggregates of HTT, which leads to neuronal dysfunction and death. Therapies to lower mutant HTT (mHTT) and its aggregates appear to be the most promising strategies. Ellagic acid (EA) has been marketed as a dietary supplement with various claimed benefits and neuroprotective effects on several neurodegenerative disorders, while its effect on mHTT pathology is still unknown. Here we reported that EA significantly attenuated motor and cognitive deficits in R6/2 mice. Moreover, EA significantly lowered mHTT levels, reduced neuroinflammation, rescued synapse loss, and decreased oxidative stress in R6/2 mouse brains. These findings indicated that EA has promising therapeutic potential for HD treatment.
Collapse
Affiliation(s)
- Xun Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
12
|
Cui Y, Shen G, Ma L, Lv Q. Overexpression of NDRG2 promotes the therapeutic effect of pazopanib on ovarian cancer. J Recept Signal Transduct Res 2020; 41:546-552. [PMID: 33050824 DOI: 10.1080/10799893.2020.1831536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Cui
- Department of Gynecology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Guihua Shen
- Department of Gynecology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Linlin Ma
- Department of Gynecology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Qiubo Lv
- Department of Gynecology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
13
|
Moretti R, Caruso P. An Iatrogenic Model of Brain Small-Vessel Disease: Post-Radiation Encephalopathy. Int J Mol Sci 2020; 21:6506. [PMID: 32899565 PMCID: PMC7555594 DOI: 10.3390/ijms21186506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
We studied 114 primitive cerebral neoplasia, that were surgically treated, and underwent radiotherapy (RT), and compared their results to those obtained by 190 patients diagnosed with subcortical vascular dementia (sVAD). Patients with any form of primitive cerebral neoplasia underwent whole-brain radiotherapy. All the tumor patients had regional field partial brain RT, which encompassed each tumor, with an average margin of 2.6 cm from the initial target tumor volume. We observed in our patients who have been exposed to a higher dose of RT (30-65 Gy) a cognitive and behavior decline similar to that observed in sVAD, with the frontal dysexecutive syndrome, apathy, and gait alterations, but with a more rapid onset and with an overwhelming effect. Multiple mechanisms are likely to be involved in radiation-induced cognitive impairment. The active site of RT brain damage is the white matter areas, particularly the internal capsule, basal ganglia, caudate, hippocampus, and subventricular zone. In all cases, radiation damage inside the brain mainly focuses on the cortical-subcortical frontal loops, which integrate and process the flow of information from the cortical areas, where executive functions are "elaborated" and prepared, towards the thalamus, subthalamus, and cerebellum, where they are continuously refined and executed. The active mechanisms that RT drives are similar to those observed in cerebral small vessel disease (SVD), leading to sVAD. The RT's primary targets, outside the tumor mass, are the blood-brain barrier (BBB), the small vessels, and putative mechanisms that can be taken into account are oxidative stress and neuro-inflammation, strongly associated with the alteration of NMDA receptor subunit composition.
Collapse
Affiliation(s)
- Rita Moretti
- Department Medical, Surgical, Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy;
- Neurological Clinic, Department of Internal Medicine and Neurology, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Paola Caruso
- Department Medical, Surgical, Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy;
- Neurological Clinic, Department of Internal Medicine and Neurology, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| |
Collapse
|
14
|
Neueder A, Orth M. Mitochondrial biology and the identification of biomarkers of Huntington's disease. Neurodegener Dis Manag 2020; 10:243-255. [PMID: 32746707 DOI: 10.2217/nmt-2019-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apart from finding novel compounds for treating Huntington's disease (HD) an important challenge at present consists in finding reliable read-outs or biomarkers that reflect key biological processes involved in HD pathogenesis. The core elements of HD biology, for example, HTT RNA levels or protein species can serve as biomarker, as could measures from biological systems or pathways in which Huntingtin plays an important role. Here we review the evidence for the involvement of mitochondrial biology in HD. The most consistent findings pertain to mitochondrial quality control, for example, fission/fusion. However, a convincing mitochondrial signature with biomarker potential is yet to emerge. This requires more research including in peripheral sources of human material, such as blood, or skeletal muscle.
Collapse
Affiliation(s)
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany.,SwissHuntington's Disease Centre, Neurozentrum Siloah, Worbstr. 312, 3073 Gümligenbei Bern, Switzerland
| |
Collapse
|
15
|
Moretti R, Caruso P. Small Vessel Disease-Related Dementia: An Invalid Neurovascular Coupling? Int J Mol Sci 2020; 21:1095. [PMID: 32046035 PMCID: PMC7036993 DOI: 10.3390/ijms21031095] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The arteriosclerosis-dependent alteration of brain perfusion is one of the major determinants in small vessel disease, since small vessels have a pivotal role in the brain's autoregulation. Nevertheless, as far as we know, endothelium distress can potentiate the flow dysregulation and lead to subcortical vascular dementia that is related to small vessel disease (SVD), also being defined as subcortical vascular dementia (sVAD), as well as microglia activation, chronic hypoxia and hypoperfusion, vessel-tone dysregulation, altered astrocytes, and pericytes functioning blood-brain barrier disruption. The molecular basis of this pathology remains controversial. The apparent consequence (or a first event, too) is the macroscopic alteration of the neurovascular coupling. Here, we examined the possible mechanisms that lead a healthy aging process towards subcortical dementia. We remarked that SVD and white matter abnormalities related to age could be accelerated and potentiated by different vascular risk factors. Vascular function changes can be heavily influenced by genetic and epigenetic factors, which are, to the best of our knowledge, mostly unknown. Metabolic demands, active neurovascular coupling, correct glymphatic process, and adequate oxidative and inflammatory responses could be bulwarks in defense of the correct aging process; their impairments lead to a potentially catastrophic and non-reversible condition.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
16
|
Mutant huntingtin disrupts mitochondrial proteostasis by interacting with TIM23. Proc Natl Acad Sci U S A 2019; 116:16593-16602. [PMID: 31346086 DOI: 10.1073/pnas.1904101116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutant huntingtin (mHTT), the causative protein in Huntington's disease (HD), associates with the translocase of mitochondrial inner membrane 23 (TIM23) complex, resulting in inhibition of synaptic mitochondrial protein import first detected in presymptomatic HD mice. The early timing of this event suggests that it is a relevant and direct pathophysiologic consequence of mHTT expression. We show that, of the 4 TIM23 complex proteins, mHTT specifically binds to the TIM23 subunit and that full-length wild-type huntingtin (wtHTT) and mHTT reside in the mitochondrial intermembrane space. We investigated differences in mitochondrial proteome between wtHTT and mHTT cells and found numerous proteomic disparities between mHTT and wtHTT mitochondria. We validated these data by quantitative immunoblotting in striatal cell lines and human HD brain tissue. The level of soluble matrix mitochondrial proteins imported through the TIM23 complex is lower in mHTT-expressing cell lines and brain tissues of HD patients compared with controls. In mHTT-expressing cell lines, membrane-bound TIM23-imported proteins have lower intramitochondrial levels, whereas inner membrane multispan proteins that are imported via the TIM22 pathway and proteins integrated into the outer membrane generally remain unchanged. In summary, we show that, in mitochondria, huntingtin is located in the intermembrane space, that mHTT binds with high-affinity to TIM23, and that mitochondria from mHTT-expressing cells and brain tissues of HD patients have reduced levels of nuclearly encoded proteins imported through TIM23. These data demonstrate the mechanism and biological significance of mHTT-mediated inhibition of mitochondrial protein import, a mechanism likely broadly relevant to other neurodegenerative diseases.
Collapse
|
17
|
Olfactory bulb atrophy and caspase activation observed in the BACHD rat models of Huntington disease. Neurobiol Dis 2019; 125:219-231. [DOI: 10.1016/j.nbd.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/14/2018] [Accepted: 02/04/2019] [Indexed: 01/08/2023] Open
|
18
|
Kwakye GF, Jiménez JA, Thomas MG, Kingsley BA, McIIvin M, Saito MA, Korley EM. Heterozygous huntingtin promotes cadmium neurotoxicity and neurodegeneration in striatal cells via altered metal transport and protein kinase C delta dependent oxidative stress and apoptosis signaling mechanisms. Neurotoxicology 2019; 70:48-61. [DOI: 10.1016/j.neuro.2018.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
|
19
|
Youssov K, Bachoud-Lévi AC. Malattia di Huntington: aspetti diagnostici attuali e applicazioni pratiche. Neurologia 2018. [DOI: 10.1016/s1634-7072(18)89403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Caspase-9 CARD : core domain interactions require a properly formed active site. Biochem J 2018; 475:1177-1196. [PMID: 29500231 DOI: 10.1042/bcj20170913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Caspase-9 is a critical factor in the initiation of apoptosis and as a result is tightly regulated by many mechanisms. Caspase-9 contains a Caspase Activation and Recruitment Domain (CARD), which enables caspase-9 to form a tight interaction with the apoptosome, a heptameric activating platform. The caspase-9 CARD has been thought to be principally involved in recruitment to the apoptosome, but its roles outside this interaction have yet to be uncovered. In this work, we show that the CARD is involved in physical interactions with the catalytic core of caspase-9 in the absence of the apoptosome; this interaction requires a properly formed caspase-9 active site. The active sites of caspases are composed of four extremely mobile loops. When the active-site loops are not properly ordered, the CARD and core domains of caspase-9 do not interact and behave independently, like loosely tethered beads. When the active-site loop bundle is properly ordered, the CARD domain interacts with the catalytic core, forming a single folding unit. Taken together, these findings provide mechanistic insights into a new level of caspase-9 regulation, prompting speculation that the CARD may also play a role in the recruitment or recognition of substrate.
Collapse
|
21
|
Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Caspase-9: structure, mechanisms and clinical application. Oncotarget 2017; 8:23996-24008. [PMID: 28177918 PMCID: PMC5410359 DOI: 10.18632/oncotarget.15098] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/22/2017] [Indexed: 12/27/2022] Open
Abstract
As the most intensively studied initiator caspase, caspase-9 is a key player in the intrinsic or mitochondrial pathway which is involved in various stimuli, including chemotherapies, stress agents and radiation. Caspase-9 is activated on the apoptosome complex to remain catalytic status and is thought of involving homo-dimerization monomeric zymogens. Failing to activate caspase-9 has profound physiological and pathophysiological outcomes, leading to degenerative and developmental disorders even cancer. To govern the apoptotic commitment process appropriately, plenty of proteins and small molecules involved in regulating caspase-9. Therefore, this review is to summarize recent pertinent literature on the comprehensive description of the molecular events implicated in caspase-9 activation and inhibition, as well as the clinical trials in progress to give deep insight into caspase-9 for suppressing cancer. We hope that our concerns will be helpful for further clinical studies addressing the roles of caspase-9 and its regulators demanded to identify more effective solutions to overcome intrinsic apoptosis-related diseases especially cancer.
Collapse
Affiliation(s)
- Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
22
|
Abstract
There is an increasing recognition that inflammation plays a critical role in neurodegenerative diseases of the CNS, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and the prototypic neuroinflammatory disease multiple sclerosis (MS). Differential immune responses involving the adaptive versus the innate immune system are observed at various stages of neurodegenerative diseases, and may not only drive disease processes but could serve as therapeutic targets. Ongoing investigations into the specific inflammatory mechanisms that play roles in disease causation and progression have revealed lessons about inflammation-driven neurodegeneration that can be applied to other neurodegenerative diseases. An increasing number of immunotherapeutic strategies that have been successful in MS are now being applied to other neurodegenerative diseases. Some approaches suppress CNS immune mechanisms, while others harness the immune system to clear deleterious products and cells. This Review focuses on the mechanisms by which inflammation, mediated either by the peripheral immune response or by endogenous CNS immune mechanisms, can affect CNS neurodegeneration.
Collapse
|
23
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|
24
|
Mitochondrial cristae remodelling is associated with disrupted OPA1 oligomerisation in the Huntington's disease R6/2 fragment model. Exp Neurol 2017; 288:167-175. [DOI: 10.1016/j.expneurol.2016.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 12/23/2022]
|
25
|
Chandrasekaran S, Bonchev D. Network analysis of human post-mortem microarrays reveals novel genes, microRNAs, and mechanistic scenarios of potential importance in fighting huntington's disease. Comput Struct Biotechnol J 2016; 14:117-130. [PMID: 27924190 PMCID: PMC5128196 DOI: 10.1016/j.csbj.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a progressive neurodegenerative disorder characterized by motor disturbances, cognitive decline, and neuropsychiatric symptoms. In this study, we utilized network-based analysis in an attempt to explore and understand the underlying molecular mechanism and to identify critical molecular players of this disease condition. Using human post-mortem microarrays from three brain regions (cerebellum, frontal cortex and caudate nucleus) we selected in a four-step procedure a seed set of highly modulated genes. Several protein-protein interaction networks, as well as microRNA-mRNA networks were constructed for these gene sets with the Elsevier Pathway Studio software and its associated ResNet database. We applied a gene prioritizing procedure based on vital network topological measures, such as high node connectivity and centrality. Adding to these criteria the guilt-by-association rule and exploring their innate biomolecular functions, we propose 19 novel genes from the analyzed microarrays, from which CEBPA, CDK1, CX3CL1, EGR1, E2F1, ERBB2, LRP1, HSP90AA1 and ZNF148 might be of particular interest for experimental validation. A possibility is discussed for dual-level gene regulation by both transcription factors and microRNAs in Huntington's disease mechanism. We propose several possible scenarios for experimental studies initiated via the extra-cellular ligands TGFB1, FGF2 and TNF aiming at restoring the cellular homeostasis in Huntington's disease.
Collapse
Affiliation(s)
- Sreedevi Chandrasekaran
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
26
|
Ma C, Pan Y, Yang Z, Meng Z, Sun R, Wang T, Fei Y, Fan W. Pre-administration of BAX-inhibiting peptides decrease the loss of the nigral dopaminergic neurons in rats. Life Sci 2016; 144:113-20. [DOI: 10.1016/j.lfs.2015.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023]
|
27
|
Tsai HC, Lee BY, Yen CM, Wann SR, Lee SSJ, Chen YS. Dexamethasone inhibits brain apoptosis in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection. Parasit Vectors 2015; 8:200. [PMID: 25890054 PMCID: PMC4382933 DOI: 10.1186/s13071-015-0792-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
Abstract
Background Angiostrongylus cantonensis, the rat lungworm, is the major cause of eosinophilic meningitis worldwide. Rats serve as the definitive host of the nematode, but humans can be infected incidentally, leading to eosinophilic meningitis. A previous BALB/c animal study has demonstrated increased apoptotic proteins and decreased anti-apoptotic proteins in mice infected with A. cantonensis. Steroids may be an effective treatment option for eosinophilic meningitis caused by A. cantonensis, but the involved mechanism is unclear. This study hypothesized that the beneficial effects of steroids on eosinophilic meningitis are mediated by decreased apoptosis. Methods In a BALB/c animal model, mice were orally infected with 50 A. cantonensis L3 via an oro-gastric tube and were sacrificed every week for 3 consecutive weeks after infection or until the end of the study. Dexamethasone was injected intra-peritoneally from the 7th day post-infection until the end of the 21-day study. Evans blue method was used to measure changes in the blood brain barrier, while western blotting, immuno-histochemistry, and TUNEL assay were used to analyze brain homogenates expression of apoptotic and anti-apoptotic proteins. Results There were increased amounts of Evans blue, apoptotic proteins (caspase-3, -8, and -9 and cytochrome C), and decreased anti-apoptotic proteins (bcl-2) after 2-3 weeks of infection. Dexamethasone administration significantly decreased Evans blue extravasations and apoptotic protein expressions. Conclusions Apoptosis of mice brain homogenates can be repressed by dexamethasone treatment.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan. .,National Defense Medical Center, Taipei, Taiwan.
| | - Bi-Yao Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.
| | - Chuan-Min Yen
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shue-Ren Wann
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.
| | - Susan Shin-Jung Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.
| | - Yao-Shen Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
28
|
Yuan Y, Jiang C, Hu F, Wang Q, Zhang K, Wang Y, Gu J, Liu X, Bian J, Liu Z. The role of mitogen-activated protein kinase in cadmium-induced primary rat cerebral cortical neurons apoptosis via a mitochondrial apoptotic pathway. J Trace Elem Med Biol 2015; 29:275-83. [PMID: 25043952 DOI: 10.1016/j.jtemb.2014.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/15/2014] [Accepted: 06/16/2014] [Indexed: 11/19/2022]
Abstract
Cadmium (Cd) is an extremely toxic metal capable of severely damaging several organs, including the brain. Studies have shown that Cd induces neuronal apoptosis partially by activating the mitogen-activated protein kinase (MAPK) pathways. However, the underlying mechanism of MAPK involving the mitochondrial apoptotic pathway in neurons remains unclear. In this study, primary rat cerebral cortical neurons were exposed to Cd, which significantly decreased cell viability and the B-cell lymphoma 2/Bcl-2 associate X protein (Bcl-2/Bax) ratio and increased the percentage of apoptotic cells, release of cytochrome c, cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and nuclear translocation of apoptosis-inducing factor (AIF). In addition, Cd induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2/Bax ratio, release of cytochrome c, cleavages of caspase-3 and PARP, and nuclear translocation of AIF. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathways play important roles in Cd-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Chenyang Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Feifei Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Qiwen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; Bijie Pilot Area Research Institute, Bijie University, Bijie 551700, PR China
| | - Kangbao Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
29
|
Schapira AHV, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet 2014; 384:545-55. [PMID: 24954676 DOI: 10.1016/s0140-6736(14)61010-2] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease and Huntington's disease. These advances have been informed by both direct analysis of the post-mortem brain and by study of the biological consequences of the genetic causes of these diseases. Some of the pathways that have been implicated so far include mitochondrial dysfunction, oxidative stress, kinase pathways, calcium dysregulation, inflammation, protein handling, and prion-like processes. Intriguingly, these pathways seem to be important in the pathogenesis of both diseases and have led to the identification of molecular targets for candidate interventions designed to slow or reverse their course. We review some recent advances that underlie putative therapies for neuroprotection in Parkinson's disease and Huntington's disease, and potential targets that might be exploited in the future. Although we will need to overcome important hurdles, especially in terms of clinical trial design, we propose several target pathways that merit further study. In Parkinson's disease, these targets include agents that might improve mitochondrial function or increase degradation of defective mitochondria, kinase inhibitors, calcium channel blockers, and approaches that interfere with the misfolding, templating, and transmission of α-synuclein. In Huntington's disease, strategies might also be directed at mitochondrial bioenergetics and turnover, the prevention of protein dysregulation, disruption of the interaction between huntingtin and p53 or huntingtin-interacting protein 1 to reduce apoptosis, and interference with expression of mutant huntingtin at both the nucleic acid and protein levels.
Collapse
Affiliation(s)
| | - C Warren Olanow
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| |
Collapse
|
30
|
Jiang C, Yuan Y, Hu F, Wang Q, Zhang K, Wang Y, Gu J, Liu X, Bian J, Liu Z. Cadmium induces PC12 cells apoptosis via an extracellular signal-regulated kinase and c-Jun N-terminal kinase-mediated mitochondrial apoptotic pathway. Biol Trace Elem Res 2014; 158:249-58. [PMID: 24577723 DOI: 10.1007/s12011-014-9918-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
To investigate the role of mitogen-activated protein kinase (MAPK) and downstream events in cadmium (Cd)-induced neuronal apoptosis executed via the mitochondrial apoptotic pathway, this study used the PC-12 cell line as a neuronal model. The result showed that Cd significantly decreased cell viability and the Bcl-2 / Bax ratio and increased the percentage of apoptotic cells, release of cytochrome c, caspase-3, and poly(ADP-ribose) polymerase cleavage, and nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G. In addition, exposure to Cd-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2 / Bax ratio and cytochrome c release and suppressed caspase-3 and poly(ADP-ribose) polymerase cleavage and AIF and endonuclease G nuclear translocation. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathway played an important role in Cd-induced PC12 cells apoptosis.
Collapse
Affiliation(s)
- Chenyang Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington's disease: therapeutic prospects. Mol Cell Biochem 2013; 389:277-91. [PMID: 24374792 DOI: 10.1007/s11010-013-1951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease, with overt movement dysfunctions. Despite focused research on the basis of neurodegeneration in HD for last few decades, the mechanism for the site-specific lesion of neurons in the brain is not clear. All the explanations that partially clarify the phenomenon of neurodegeneration leads to one organelle, mitochondrion, which is severely affected in HD at the level of electron transport chain, Ca(2+) buffering efficiency and morphology. But, with the existing knowledge, it is not clear whether the cell death processes in HD initiate from mitochondria, though the Huntingtin (Htt) aggregates show close proximity to this organelle, or do some extracellular stimuli like TNFα or FasL trigger the process. Mainly because of the disparity in the different available experimental models, the results are quite confusing or at least inconsistent to a great extent. The fact remains that the mutant Htt protein was seen to be associated with mitochondria directly, and as the striatum is highly enriched with dopamine and glutamate, it may make the striatal mitochondria more vulnerable because of the presence of dopa-quinones, and due to an imbalance in Ca(2+). The current therapeutic strategies are based on symptomatic relief, and, therefore, mainly target neurotransmitter(s) and their receptors to modulate behavioral outputs, but none of them targets mitochondria or try to address the basic molecular events that cause neurons to die in discrete regions of the brain, which could probably be resulting from grave mitochondrial dysfunctions. Therefore, targeting mitochondria for their protection, while addressing symptomatic recovery, holds a great potential to tone down the progression of the disease, and to provide better relief to the patients and caretakers.
Collapse
Affiliation(s)
- J Chakraborty
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Rooms 117&119, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | | | |
Collapse
|
32
|
Ribeiro M, Silva AC, Rodrigues J, Naia L, Rego AC. Oxidizing effects of exogenous stressors in Huntington's disease knock-in striatal cells--protective effect of cystamine and creatine. Toxicol Sci 2013; 136:487-99. [PMID: 24008831 DOI: 10.1093/toxsci/kft199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a polyglutamine-expansion disease associated to degeneration of striatal and cortical neurons. Previously, we showed that oxidative stress occurs in HD knock-in striatal cells, but little is known regarding cell antioxidant response against exogenous stimuli. Therefore, in the present study we analyzed cellular antioxidant profile following hydrogen peroxide (H2O2) and staurosporine (STS) exposure and tested the protective effect of cystamine and creatine in striatal cells expressing mutant huntingtin with 111 glutamines (STHdh (Q111/Q111); mutant cells) versus wild-type cells (STHdh (Q7/Q7)). Mutant cells displayed increased mitochondrial reactive oxygen species (ROS) and decreased NADPH oxidase and xanthine oxidase (XO) activities, reflecting lower superoxide cytosolic generation, along with increased superoxide dismutases (SODs) and components of glutathione redox cycle. Exposure to H2O2 and STS enhanced ROS in mutant cells and largely increased XO activity; STS further boosted the generation of mitochondrial ROS and caspase-3 activity. Both stimuli slightly increased SOD1 activity, without affecting SOD2 activity, and decreased glutathione reductase with a consequent rise in oxidized glutathione or glutathione disulfide in mutant cells, whereas H2O2 only increased glutathione peroxidase activity. Additionally, creatine and cystamine increased mutant cells viability and prevented ROS formation in HD cells subjected to H2O2 and STS. These results indicate that elevation of the antioxidant systems accompanies mitochondrial-driven ROS generation in mutant striatal cells and that exposure to noxious stimuli induces a higher susceptibility to oxidative stress by increasing XO activity and lowering the antioxidant response. Furthermore, creatine and cystamine are efficient in preventing H2O2- and STS-evoked ROS formation in HD striatal cells.
Collapse
|
33
|
Abstract
Neurons completely transform how they regulate cell death over the course of their lifetimes. Developing neurons freely activate cell death pathways to fine-tune the number of neurons that are needed during the precise formation of neural networks. However, the regulatory balance between life and death shifts as neurons mature beyond early development. Mature neurons promote survival at all costs by employing multiple, often redundant, strategies to prevent cell death by apoptosis. This dramatic shift from permitting cell death to ensuring cellular survival is critical, as these post-mitotic cells must provide neuronal circuitry for an organism's entire lifetime. Importantly, as many neurodegenerative diseases afflict adult neuronal populations, the survival mechanisms in mature neurons are likely to be either reversed or circumvented during neurodegeneration. Examining the adaptations for inhibiting apoptosis during neuronal maturation is key to comprehending not just how neurons survive long term, but may also provide insight for understanding how neuronal toxicity in various neurodegenerative diseases may ultimately lead to cell death.
Collapse
Affiliation(s)
- A J Kole
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
34
|
Kolesnikova EÉ. Mitochondrial Dysfunction and Molecular Bases of Neurodegenerative Diseases. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9341-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Krause-Heuer AM, Howell NR, Matesic L, Dhand G, Young EL, Burgess L, Jiang CD, Lengkeek NA, Fookes CJR, Pham TQ, Sobrio F, Greguric I, Fraser BH. A new class of fluorinated 5-pyrrolidinylsulfonyl isatin caspase inhibitors for PET imaging of apoptosis. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20249b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Kaplan A, Stockwell BR. Therapeutic approaches to preventing cell death in Huntington disease. Prog Neurobiol 2012; 99:262-80. [PMID: 22967354 PMCID: PMC3505265 DOI: 10.1016/j.pneurobio.2012.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/20/2012] [Accepted: 08/17/2012] [Indexed: 12/01/2022]
Abstract
Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Kaplan
- Department of Biological Sciences, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
| | - Brent R. Stockwell
- Howard Hughes Medical Institute, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
- Department of Chemistry, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
| |
Collapse
|
37
|
Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 2012; 46:430-66. [PMID: 22944909 PMCID: PMC3461214 DOI: 10.1007/s12035-012-8316-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022]
Abstract
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Collapse
Affiliation(s)
- Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
38
|
Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 2012; 11:253-63. [PMID: 22748967 DOI: 10.1016/j.stem.2012.04.026] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/10/2011] [Accepted: 04/27/2012] [Indexed: 12/16/2022]
Abstract
Huntington's disease (HD) is caused by a CAG expansion in the huntingtin gene. Expansion of the polyglutamine tract in the huntingtin protein results in massive cell death in the striatum of HD patients. We report that human induced pluripotent stem cells (iPSCs) derived from HD patient fibroblasts can be corrected by the replacement of the expanded CAG repeat with a normal repeat using homologous recombination, and that the correction persists in iPSC differentiation into DARPP-32-positive neurons in vitro and in vivo. Further, correction of the HD-iPSCs normalized pathogenic HD signaling pathways (cadherin, TGF-β, BDNF, and caspase activation) and reversed disease phenotypes such as susceptibility to cell death and altered mitochondrial bioenergetics in neural stem cells. The ability to make patient-specific, genetically corrected iPSCs from HD patients will provide relevant disease models in identical genetic backgrounds and is a critical step for the eventual use of these cells in cell replacement therapy.
Collapse
|
39
|
A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 2012; 8:e1002481. [PMID: 22383888 PMCID: PMC3285580 DOI: 10.1371/journal.pgen.1002481] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/24/2011] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches. Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal CAG expansion in the Huntingtin gene (HTT), resulting in an expanded polyglutamine track in the HTT protein. Longer CAG expansions correlate with an earlier more severe manifestation of the disease that produces choreic movement, behavioural and psychiatric disturbances, and dementia. Although the causative gene is widely expressed, neuropathology is characterized by striatal and cortical atrophy. HTT interacts with proteins involved in transcription, cell signaling, and transport. The pathogenic role of mutant HTT is not fully understood. This study shows that CAG expanded HTT RNA also contributes to neuronal toxicity. Mutant HTT RNA gives rise to small CAG-repeated RNAs (sCAGs) with neurotoxic activity. These short RNAs interfere with cell functions by silencing the expression of genes that are fully or partially complementary, through a mechanism similar to that of microRNAs. These findings suggest that a small RNA–dependent mechanism may contribute to HD neuronal cell loss. The exhaustive identification of the target genes modulated by sCAGs may lead to a better understanding of HD pathology, allowing the development of new therapeutic strategies.
Collapse
|
40
|
Abstract
Melatonin mediates neuroprotection in several experimental models of neurodegeneration. It is not yet known, however, whether melatonin provides neuroprotection in genetic models of Huntington's disease (HD). We report that melatonin delays disease onset and mortality in a transgenic mouse model of HD. Moreover, mutant huntingtin (htt)-mediated toxicity in cells, mice, and humans is associated with loss of the type 1 melatonin receptor (MT1). We observe high levels of MT1 receptor in mitochondria from the brains of wild-type mice but much less in brains from HD mice. Moreover, we demonstrate that melatonin inhibits mutant htt-induced caspase activation and preserves MT1 receptor expression. This observation is critical, because melatonin-mediated protection is dependent on the presence and activation of the MT1 receptor. In summary, we delineate a pathologic process whereby mutant htt-induced loss of the mitochondrial MT1 receptor enhances neuronal vulnerability and potentially accelerates the neurodegenerative process.
Collapse
|
41
|
Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011; 34:646-56. [DOI: 10.1016/j.tins.2011.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 01/10/2023]
|
42
|
Roze E, Cahill E, Martin E, Bonnet C, Vanhoutte P, Betuing S, Caboche J. Huntington's Disease and Striatal Signaling. Front Neuroanat 2011; 5:55. [PMID: 22007160 PMCID: PMC3188786 DOI: 10.3389/fnana.2011.00055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/04/2011] [Indexed: 12/05/2022] Open
Abstract
Huntington’s Disease (HD) is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG). The main clinical manifestations of HD are chorea, cognitive impairment, and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset and continues throughout the period of manifest illness. Therefore, patients could theoretically benefit from therapy at early stages of the disease. One important characteristic of HD is the striatal vulnerability to neurodegeneration, despite similar expression of the protein in other brain areas. Aggregation of the mutated Huntingtin (HTT), impaired axonal transport, excitotoxicity, transcriptional dysregulation as well as mitochondrial dysfunction, and energy deficits, are all part of the cellular events that underlie neuronal dysfunction and striatal death. Among these non-exclusive mechanisms, an alteration of striatal signaling is thought to orchestrate the downstream events involved in the cascade of striatal dysfunction.
Collapse
Affiliation(s)
- Emmanuel Roze
- UMRS 952, INSERM, UMR 7224, CNRS Université Pierre et Marie Curie - Paris-6 Paris, France
| | | | | | | | | | | | | |
Collapse
|
43
|
She P, Zhang Z, Marchionini D, Diaz WC, Jetton TJ, Kimball SR, Vary TC, Lang CH, Lynch CJ. Molecular characterization of skeletal muscle atrophy in the R6/2 mouse model of Huntington's disease. Am J Physiol Endocrinol Metab 2011; 301:E49-61. [PMID: 21505144 PMCID: PMC3129844 DOI: 10.1152/ajpendo.00630.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD), a neurodegenerative disorder caused by mutant huntingtin, is characterized by a catabolic phenotype. To determine the mechanisms underlying muscle wasting, we examined key signal transduction pathways governing muscle protein metabolism, apoptosis, and autophagy in R6/2 mice, a well-characterized transgenic model of HD. R6/2 mice exhibited increased adiposity, elevated energy expenditure, and decreased body weight and lean mass without altered food intake. Severe skeletal muscle wasting accounted for a majority of the weight loss. Protein synthesis was unexpectedly increased 19% in gastrocnemius muscle, which was associated with overactivation of basal and refeeding-stimulated mammalian target of rapamycin (mTOR) signaling, elevated Akt expression and Ser(473) phosphorylation, and decreased AMPK Thr(172) phosphorylation. Moreover, mRNA abundance of atrogenes muscle ring finger-1 and atrophy F-box, was markedly attenuated during fasting and refeeding, and the urinary excretion of 3-methylhistidine was decreased, arguing against a role for the ubiquitin proteasome-mediated proteolysis in the atrophy. In contrast, mRNA expression of several caspase genes and genes involved in the extrinsic or intrinsic apoptotic pathway, caspase-3/7, -8, and -9 activity, protein abundance of caspase-3 and -9, Fas, and Fadd, and cytochrome c release were elevated. Protein expressions of LC3B-I and -II, beclin-I, and atg5 and -7 in muscle were upregulated. Thus, mutant huntingtin in skeletal muscle results in increased protein synthesis and mTOR signaling, which is countered by activation of the apoptotic and autophagic pathways, contributing to an overall catabolic phenotype and the severe muscle wasting.
Collapse
Affiliation(s)
- Pengxiang She
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Squitieri F, Maglione V, Orobello S, Fornai F. Genotype-, aging-dependent abnormal caspase activity in Huntington disease blood cells. J Neural Transm (Vienna) 2011; 118:1599-607. [PMID: 21519949 DOI: 10.1007/s00702-011-0646-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 04/08/2011] [Indexed: 11/30/2022]
Abstract
Huntington's Disease (HD) is caused by trinucleotide CAG repeat expansion >36 in huntingtin (htt), a protein with several documented functions. The elongated polyglutamine (polyQ) stretch in the N-terminal region of htt leads to dysfunctional and degenerative events in neurons and peripheral tissues. In this study, by extending the analysis to several caspase activities (i.e. caspase 2, 3, 6, 8 and 9), we describe genotype- and time- dependent caspase activity abnormalities, decreased cell viability and a large set of alterations in mitochondria morphology, in cultured blood cells from HD patients. Patients homozygous for CAG repeat mutations and heterozygous with high size mutations causing juvenile onset (JHD) presented significantly increased caspase 2, 3, 6, 8 and 9 activities, decreased cell viability and pronounced morphological abnormalities, compared with cells carrying low mutation size and controls. After cyanide treatment, all caspases increased their activities in homozygous and highly expanded heterozygous cells, caspase 8 and 9 increased also in those cells carrying low-size mutations, remarking their key role as 'caspase initiators' in HD. The remarkable ageing-dependent abnormalities in peripheral cells carrying particularly toxic mutations (i.e. homozygotes' and JHD's blood cells) points out the potential dependence of clinical HD development and progression on either mutated htt dosage or missing wild type htt. Peripheral tissues (i.e. blood cells) may theoretically represent an important tool for studying HD mechanisms and searching for new biomarkers, according to the patients' genotype.
Collapse
Affiliation(s)
- Ferdinando Squitieri
- Neurogenetics Unit and Rare Diseases Centre, IRCCS Neuromed, Pozzilli (IS), Italy.
| | | | | | | |
Collapse
|
45
|
Hoffstrom BG, Kaplan A, Letso R, Schmid RS, Turmel GJ, Lo DC, Stockwell BR. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat Chem Biol 2010; 6:900-6. [PMID: 21079601 PMCID: PMC3018711 DOI: 10.1038/nchembio.467] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/08/2010] [Indexed: 11/09/2022]
Abstract
A hallmark of many neurodegenerative diseases is accumulation of misfolded proteins within neurons, leading to cellular dysfunction and cell death. Although several mechanisms have been proposed to link protein misfolding to cellular toxicity, the connection remains enigmatic. Here, we report a cell death pathway involving protein disulfide isomerase (PDI), a protein chaperone that catalyzes isomerization, reduction and oxidation of disulfides. Through a small molecule screening approach, we discovered five structurally distinct compounds that prevent apoptosis induced by mutant huntingtin protein. Using modified Huisgen cycloaddition chemistry, we then identified PDI as the molecular target of these small molecules. Expression of polyglutamine-expanded huntingtin exon 1 in PC12 cells caused PDI to accumulate at mitochondrial-associated ER membranes and trigger apoptotic cell death via mitochondrial outer-membrane permeabilization. Inhibiting PDI in rat brain cells suppressed the toxicity of mutant huntingtin exon 1 and Aβ peptides processed from the amyloid precursor protein. This pro-apoptotic function of PDI represents a new mechanism linking protein misfolding and apoptotic cell death.
Collapse
Affiliation(s)
- Benjamin G Hoffstrom
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Hum Mol Genet 2010; 19:3919-35. [PMID: 20660112 DOI: 10.1093/hmg/ddq306] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear in Huntington's disease (HD), one putative pathological mechanism reported to play a prominent role in the pathogenesis of this neurological disorder is mitochondrial dysfunction. We examined mitochondria in preferentially vulnerable striatal calbindin-positive neurons in moderate-to-severe grade HD patients, using antisera against mitochondrial markers of COX2, SOD2 and cytochrome c. Combined calbindin and mitochondrial marker immunofluorescence showed a significant and progressive grade-dependent reduction in the number of mitochondria in spiny striatal neurons, with marked alteration in size. Consistent with mitochondrial loss, there was a reduction in COX2 protein levels using western analysis that corresponded with disease severity. In addition, both mitochondrial transcription factor A, a regulator of mtDNA, and peroxisome proliferator-activated receptor-co-activator gamma-1 alpha, a key transcriptional regulator of energy metabolism and mitochondrial biogenesis, were also significantly reduced with increasing disease severity. Abnormalities in mitochondrial dynamics were observed, showing a significant increase in the fission protein Drp1 and a reduction in the expression of the fusion protein mitofusin 1. Lastly, mitochondrial PCR array profiling in HD caudate nucleus specimens showed increased mRNA expression of proteins involved in mitochondrial localization, membrane translocation and polarization and transport that paralleled mitochondrial derangement. These findings reveal that there are both mitochondrial loss and altered mitochondrial morphogenesis with increased mitochondrial fission and reduced fusion in HD. These findings provide further evidence that mitochondrial dysfunction plays a critical role in the pathogenesis of HD.
Collapse
Affiliation(s)
- Jinho Kim
- Geriatric Research Education Clinical Center, New England Veterans Administration VISN 1, Bedford, MA 01730, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pandey M, Mohanakumar KP, Usha R. Mitochondrial functional alterations in relation to pathophysiology of Huntington’s disease. J Bioenerg Biomembr 2010; 42:217-26. [DOI: 10.1007/s10863-010-9288-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Abstract
Synaptic activity promotes resistance to diverse apoptotic insults, the mechanism behind which is incompletely understood. We show here that a coordinated downregulation of core components of the intrinsic apoptosis pathway by neuronal activity forms a key part of the underlying mechanism. Activity-dependent protection against apoptotic insults is associated with inhibition of cytochrome c release in most but not all neurons, indicative of anti-apoptotic signaling both upstream and downstream of this step. We find that enhanced firing activity suppresses expression of the proapoptotic BH3-only member gene Puma in a NMDA receptor-dependent, p53-independent manner. Puma expression is sufficient to induce cytochrome c loss and neuronal apoptosis. Puma deficiency protects neurons against apoptosis and also occludes the protective effect of synaptic activity, while blockade of physiological NMDA receptor activity in the developing mouse brain induces neuronal apoptosis that is preceded by upregulation of Puma. However, enhanced activity can also confer resistance to Puma-induced apoptosis, acting downstream of cytochrome c release. This mechanism is mediated by transcriptional suppression of apoptosome components Apaf-1 and procaspase-9, and limiting caspase-9 activity, since overexpression of procaspase-9 accelerates the rate of apoptosis in active neurons back to control levels. Synaptic activity does not exert further significant anti-apoptotic effects downstream of caspase-9 activation, since an inducible form of caspase-9 overrides the protective effect of synaptic activity, despite activity-induced transcriptional suppression of caspase-3. Thus, suppression of apoptotic gene expression may synergize with other activity-dependent events such as enhancement of antioxidant defenses to promote neuronal survival.
Collapse
|
49
|
Kalonia H, Kumar P, Kumar A, Nehru B. Effect of caffeic acid and rofecoxib and their combination against intrastriatal quinolinic acid induced oxidative damage, mitochondrial and histological alterations in rats. Inflammopharmacology 2009; 17:211-9. [PMID: 19633993 DOI: 10.1007/s10787-009-0012-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/08/2009] [Indexed: 01/01/2023]
Abstract
Oxidative stress has long been implicated in the neurotoxic effects of glutamate acting through N-methyl-D-aspartate (NMDA) receptors. Therefore, present study has been designed to explore the effect of rofecoxib and caffeic acid on the involvement of oxidative stress, mitochondrial dysfunction and neuronal linked with NMDA receptor-mediated excitotoxicity. Caffeic acid, is a well-known antioxidant flavanoid, implicate anti-inflammatory and immunomodulatory like actions. The present study is an attempt to investigate the antioxidant-like effect of caffeic acid and rofecoxib and their combination against QA-induced oxidative damage, mitochondrial dysfunction and histological alterations. Intrastriatal injection of quinolinic acid (300 nmol) significantly increased oxidative stress (raised lipid peroxidation, nitrite concentration, depleted SOD and catalase), altered mitochondrial complex enzyme activities and histological alteration in the ex vivo striatum. Caffeic acid (5 and 10 mg/kg, p.o.) and rofecoxib (10 and 20 mg/kg, p.o.) treatment for 21 days significantly attenuated oxidative damage and impairment in mitochondrial activities of complex enzymes in the ex vivo striatum. Further, combination of sub effective doses of rofecoxib (10 mg/kg, p.o.) and caffeic acid (5 mg/kg, p.o.) potentiated their protective effect which was significant as compared to their effect per se. The present study suggests the therapeutic effect of caffeic acid and rofecoxib combination against QA-induced ex vivo oxidative damage, mitochondrial and histological alterations in rats.
Collapse
Affiliation(s)
- Harikesh Kalonia
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advance Study, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
50
|
Sassone J, Colciago C, Cislaghi G, Silani V, Ciammola A. Huntington's disease: the current state of research with peripheral tissues. Exp Neurol 2009; 219:385-97. [PMID: 19460373 DOI: 10.1016/j.expneurol.2009.05.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 04/30/2009] [Accepted: 05/09/2009] [Indexed: 01/23/2023]
Abstract
Huntington's disease (HD) is a genetically dominant condition caused by expanded CAG repeats. These repeats code for a glutamine tract in the HD gene product huntingtin (htt), which is a protein expressed in almost all tissues. Although most HD symptoms reflect preferential neuronal death in specific brain regions, even before the HD gene was identified numerous reports had described additional abnormalities in the peripheral tissues of HD patients, including weight loss, altered glucose homeostasis, and sub-cellular abnormalities in fibroblasts, lymphocytes and erythrocytes. Several years have elapsed since the HD mutation was discovered, and analyses of peripheral tissues from HD patients have helped to understand the molecular pathogenesis of the disease and revealed that the molecular mechanisms through which mutated htt leads to cell dysfunction are widely shared between central nervous system (CNS) and peripheral tissues. These studies show that in peripheral tissues, mutated htt causes accumulation of intracellular protein aggregates, impairment of energetic metabolism, transcriptional deregulation and hyperactivation of programmed cell-death mechanisms. Here, we review the current knowledge of peripheral tissue alterations in HD patients and in animal models of HD and focus on how this information can be used to identify potential therapeutic possibilities and biomarkers for disease progression.
Collapse
Affiliation(s)
- Jenny Sassone
- Department of Neurology and Laboratory of Neuroscience, Dino Ferrari Center, IRCCS Istituto Auxologico Italiano, University of Milan Medical School, via Spagnoletto 3, 20149, Milan, Italy
| | | | | | | | | |
Collapse
|