1
|
Komlao P, Kraiwattanapirom N, Promyo K, Hein ZM, Chetsawang B. Melatonin enhances the restoration of neurological impairments and cognitive deficits during drug withdrawal in methamphetamine-induced toxicity and endoplasmic reticulum stress in rats. Neurotoxicology 2023; 99:305-312. [PMID: 37979660 DOI: 10.1016/j.neuro.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Methamphetamine (METH) is a psychostimulant with a very high addiction rate. Prolonged use of METH has been observed as one of the root causes of neurotoxicity. Melatonin (Mel) has been found to have a significant role in METH-induced neurotoxicity. This study aimed to investigate the restorative effect of Mel on behavioral flexibility in METH-induced cognitive deficits. Male Sprague-Dawley rats were randomly assigned to be intraperitoneally injected with saline (control) or Meth at 5 mg/kg for 7 consecutive days. Then, METH injection was withdrawn and rats in each group were subcutaneously injected with saline or Mel at 10 mg/kg for 14 consecutive days. The stereotypic behavioral test and attentional set-shifting task (ASST) were used to evaluate neurological functions and cognitive flexibility, respectively. Rats developed abnormal features of stereotyped behaviors and deficits in cognitive flexibility after 7 days of METH administration. However, post-treatment with Mel for 14 days after METH withdrawal dramatically ameliorated the neurological and cognitive deficits in METH-treated rats. Blood biomarkers indicated METH-induced systemic low-grade inflammation. Moreover, METH-induced endoplasmic reticulum (ER) stress in the prefrontal cortex was diminished by melatonin supplementation. These findings might reveal the therapeutic potential of Mel in METH toxicity-induced neurological and cognitive deficits.
Collapse
Affiliation(s)
- Pongphat Komlao
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, Netherlands
| | - Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
| | - Kitipong Promyo
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zaw Myo Hein
- Basic Medical Sciences Department, College of Medicine and Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand.
| |
Collapse
|
2
|
Kalayasiri R, Dadwat K, Thika S, Sirivichayakul S, Maes M. Methamphetamine (MA) use and MA-induced psychosis are associated with increasing aberrations in the compensatory immunoregulatory system, interleukin-1α, and CCL5 levels. Transl Psychiatry 2023; 13:361. [PMID: 37996407 PMCID: PMC10667231 DOI: 10.1038/s41398-023-02645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
There are only a few studies reporting on the immunological profiles of methamphetamine (MA) use, MA dependency, or MA-induced psychosis (MAP). This study measured M1 macrophage, T helper (Th)-1, Th-2, growth factor, and chemokine profiles, as well as the immune inflammatory response system (IRS) and compensatory immunoregulatory system (CIRS) in peripheral blood samples from patients with MA use (n = 51), MA dependence (n = 47), and MAP (n = 43) in comparison with controls (n = 32). We discovered that persistent MA use had a robust immunosuppressive impact on all immunological profiles. The most reliable biomarker profile of MA use is the combination of substantial CIRS suppression and a rise in selected pro-inflammatory cytokines, namely CCL27 (CTACK), CCL11 (eotaxin), and interleukin (IL)-1α. In addition, MA dependency is associated with increased immunosuppression, as demonstrated by lower stem cell factor levels and higher IL-10 levels. MAP is related to a significant decrease in all immunological profiles, particularly CIRS, and an increase in CCL5 (RANTES), IL-1α, and IL-12p70 signaling. In conclusion, long-term MA use and dependency severely undermine immune homeostasis, whereas MAP may be the consequence of increased IL-1α - CCL5 signaling superimposed on strongly depleted CIRS and Th-1 functions. The widespread immunosuppression established in longstanding MA use may increase the likelihood of infectious and immune illness or exacerbate disorders such as hepatitis and AIDS. Furthermore, elevated levels of CCL5, CCL11, CCL27, IL-1α, and/or IL-12p70 may play a role in the peripheral (atherosclerosis, cutaneous inflammation, immune aberrations, hypospermatogenesis) and central (neuroinflammation, neurotoxic, neurodegenerative, depression, anxiety, and psychosis) side effects of MA use.
Collapse
Affiliation(s)
- Rasmon Kalayasiri
- Department of Psychiatry, Epidemiology of Psychiatric Disorders and Mental Health Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Kanokwan Dadwat
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Supaksorn Thika
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Epidemiology of Psychiatric Disorders and Mental Health Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
3
|
Dab H, Ben Hamed S, Hodroj W, Zourgui L. Combined diabetes and chronic stress exacerbates cytokine production and oxidative stress in rat liver and kidney. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2023.2182137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- Houcine Dab
- Research Unit of Valorization of Active Biomolecules, Higher Institute of Applied Biology Medenine, University of Gabes, Medenine, Tunisia
| | - Said Ben Hamed
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wassim Hodroj
- Académie de Versailles, University of Versailles, Athis-Mons, France
| | - Lazhar Zourgui
- Research Unit of Valorization of Active Biomolecules, Higher Institute of Applied Biology Medenine, University of Gabes, Medenine, Tunisia
| |
Collapse
|
4
|
Watling SE, Jagasar S, McCluskey T, Warsh J, Rhind SG, Truong P, Chavez S, Houle S, Tong J, Kish SJ, Boileau I. Imaging oxidative stress in brains of chronic methamphetamine users: A combined 1H-magnetic resonance spectroscopy and peripheral blood biomarker study. Front Psychiatry 2023; 13:1070456. [PMID: 36704729 PMCID: PMC9871559 DOI: 10.3389/fpsyt.2022.1070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Preclinical data suggest methamphetamine (MA), a widely used stimulant drug, can harm the brain by causing oxidative stress and inflammation, but only limited information is available in humans. We tested the hypothesis that levels of glutathione (GSH), a major antioxidant, would be lower in the brains of chronic human MA preferring polysubstance users. We also explored if concentrations of peripheral immunoinflammatory blood biomarkers were related with brain GSH concentrations. Methods 20 healthy controls (HC) (33 years; 11 M) and 14 MA users (40 years; 9 M) completed a magnetic resonance spectroscopy (MRS) scan, with GSH spectra obtained by the interleaved J-difference editing MEGA-PRESS method in anterior cingulate cortex (ACC) and left dorsolateral prefrontal cortex (DLPFC). Peripheral blood samples were drawn for measurements of immunoinflammatory biomarkers. Independent samples t-tests evaluated MA vs. HC differences in GSH. Results GSH levels did not differ between HC and MA users (ACC p = 0.30; DLPFC p = 0.85). A total of 17 of 25 immunoinflammatory biomarkers were significantly elevated in MA users and matrix metalloproteinase (MMP)-2 (r = 0.577, p = 0.039), myeloperoxidase (MPO) (r = -0.556, p = 0.049), and MMP-9 (r = 0.660, p = 0.038) were correlated with brain levels of GSH. Conclusion Normal brain GSH in living brain of chronic MA users is consistent with our previous postmortem brain finding and suggests that any oxidative stress caused by MA, at the doses used by our participants, might not be sufficient to cause either a compensatory increase in, or substantial overutilization of, this antioxidant. Additionally, more research is required to understand how oxidative stress and inflammatory processes are related and potentially dysregulated in MA use.
Collapse
Affiliation(s)
- Sarah E. Watling
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Jagasar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tina McCluskey
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jerry Warsh
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Peter Truong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen J. Kish
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Smiley CE, Wood SK. Stress- and drug-induced neuroimmune signaling as a therapeutic target for comorbid anxiety and substance use disorders. Pharmacol Ther 2022; 239:108212. [PMID: 35580690 DOI: 10.1016/j.pharmthera.2022.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Stress and substance use disorders remain two of the most highly prevalent psychiatric conditions and are often comorbid. While individually these conditions have a debilitating impact on the patient and a high cost to society, the symptomology and treatment outcomes are further exacerbated when they occur together. As such, there are few effective treatment options for these patients, and recent investigation has sought to determine the neural processes underlying the co-occurrence of these disorders to identify novel treatment targets. One such mechanism that has been linked to stress- and addiction-related conditions is neuroimmune signaling. Increases in inflammatory factors across the brain have been heavily implicated in the etiology of these disorders, and this review seeks to determine the nature of this relationship. According to the "dual-hit" hypothesis, also referred to as neuroimmune priming, prior exposure to either stress or drugs of abuse can sensitize the neuroimmune system to be hyperresponsive when exposed to these insults in the future. This review completes an examination of the literature surrounding stress-induced increases in inflammation across clinical and preclinical studies along with a summarization of the evidence regarding drug-induced alterations in inflammatory factors. These changes in neuroimmune profiles are also discussed within the context of their impact on the neural circuitry responsible for stress responsiveness and addictive behaviors. Further, this review explores the connection between neuroimmune signaling and susceptibility to these conditions and highlights the anti-inflammatory pharmacotherapies that may be used for the treatment of stress and substance use disorders.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| |
Collapse
|
6
|
Li W, Liu D, Xu J, Zha J, Wang C, An J, Xie Z, Qiao S. Astrocyte-Derived TNF-α-Activated Platelets Promote Cerebral Ischemia/Reperfusion Injury by Regulating the RIP1/RIP3/AKT Signaling Pathway. Mol Neurobiol 2022; 59:5734-5749. [PMID: 35781632 PMCID: PMC9395439 DOI: 10.1007/s12035-022-02942-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a clinical syndrome caused by the disruption of blood flow into cerebral tissues and is associated with high disability and mortality rates. Studies have established the pathological role of platelets in cerebral ischemia/reperfusion (I/R) injury, although the underlying mechanism of action remains largely unclear. In this study, we created an I/R mouse model via middle cerebral artery occlusion and reperfusion (MCAO/R) and analyzed the transcriptomic profiles of the ipsilateral and contralateral cortices using RNA-seq. We found that cerebral I/R injury induced platelet invasion and accumulation in the cerebral cortex by stimulating TNF-α secretion from activated astrocytes in the ischemic region, while TNF-α expression enhanced platelet reactivity through the RIP1/RIP3/AKT pathway. Furthermore, the inoculation of TNF-α-stimulated platelets aggravated I/R injury in mice, whereas the administration of anti-TNF-α antibodies at the onset of reperfusion alleviated ischemic damage. The RNA-seq results further showed that AP-1 transcriptionally activated TNF-α in the I/R-injured cortex by directly binding to the promoter region. These findings provide novel insights into the pathological role of platelets activated by reactive astrocyte-derived TNF-α in cerebral I/R injury.
Collapse
Affiliation(s)
- Wei Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Dengping Liu
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jiaqi Xu
- Nursing Department, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jun Zha
- Faculty of Anesthesiology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chen Wang
- Faculty of Anesthesiology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhanli Xie
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
- Faculty of Anesthesiology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
7
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
8
|
Davis DL, Metzger DB, Vann PH, Wong JM, Subasinghe KH, Garlotte IK, Phillips NR, Shetty RA, Forster MJ, Sumien N. Sex differences in neurobehavioral consequences of methamphetamine exposure in adult mice. Psychopharmacology (Berl) 2022; 239:2331-2349. [PMID: 35347365 PMCID: PMC9232998 DOI: 10.1007/s00213-022-06122-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Recreational and medical use of stimulants is increasing, and their use may increase susceptibility to aging and promote neurobehavioral impairments. The long-term consequences of these psychostimulants and how they interact with age have not been fully studied. OBJECTIVES Our study investigated whether chronic exposure to the prototypical psychostimulant, methamphetamine (METH), at doses designed to emulate human therapeutic dosing, would confer a pro-oxidizing redox shift promoting long-lasting neurobehavioral impairments. METHODS Groups of 4-month-old male and female C57BL/6 J mice were administered non-contingent intraperitoneal injections of either saline or METH (1.4 mg/kg) twice a day for 4 weeks. Mice were randomly assigned to one experimental group: (i) short-term cognitive assessments (at 5 months), (ii) long-term cognitive assessments (at 9.5 months), and (ii) longitudinal motor assessments (at 5, 7, and 9 months). Brain regions were assessed for oxidative stress and markers of neurotoxicity after behavior testing. RESULTS Chronic METH exposure induced short-term effects on associative memory, gait speed, dopamine (DA) signaling, astrogliosis in females, and spatial learning and memory, balance, DA signaling, and excitotoxicity in males. There were no long-term effects of chronic METH on cognition; however, it decreased markers of excitotoxicity in the striatum and exacerbated age-associated motor impairments in males. CONCLUSION In conclusion, cognitive and motor functions were differentially and sex-dependently affected by METH exposure, and oxidative stress did not seem to play a role in the observed behavioral outcomes. Future studies are necessary to continue exploring the long-term neurobehavioral consequences of drug use in both sexes and the relationship between aging and drugs.
Collapse
Affiliation(s)
- Delaney L Davis
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Daniel B Metzger
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Jessica M Wong
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Kumudu H Subasinghe
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Isabelle K Garlotte
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Michael J Forster
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Kraiwattanapirom N, Komlao P, Harnpramukkul A, Promyo K, Ngampramuan S, Chetsawang B. The neuroprotective role of melatonin against methamphetamine toxicity-induced neurotransmission dysregulation and cognitive deficits in rats. Food Chem Toxicol 2021; 157:112610. [PMID: 34653556 DOI: 10.1016/j.fct.2021.112610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Methamphetamine (MA) is a psychostimulant and addictive substance. Long-term uses and toxic high doses of MA can induce neurotoxicity. The present study aimed to investigate the protective role of melatonin against MA toxicity-induced dysregulation of the neurotransmission related to cognitive function in rats. The adult male Sprague Dawley rats were intraperitoneally injected with 5 mg/kg MA for 7 consecutive days with or without subcutaneously injected with 10 mg/kg melatonin before MA injection. Some rats were injected with saline solution (control) or 10 mg/kg melatonin. MA administration induced reduction in total weight gain, neurotoxic features of stereotyped behaviors, deficits in cognitive flexibility, and significantly increased lipid peroxidation in the brain which diminished in melatonin pretreatment. The neurotoxic effect of MA on glutamate, dopamine and GABA transmitters was represented by the alteration of the GluR1, DARPP-32 and parvalbumin (PV) levels, respectively. A significant decrease in the GluR1 was observed in the prefrontal cortex of MA administration in rats. MA administration significantly increased the DARPP-32 but decreased PV in the striatum. Pretreatment of melatonin can abolish the neurotoxic effect of MA on neurotransmission dysregulation. These findings might reveal the antioxidative role of melatonin to restore neurotransmission dysregulation related to cognitive deficits in MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Pongphat Komlao
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | | | - Kitipong Promyo
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.
| |
Collapse
|
10
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
11
|
Wei ZX, Chen L, Zhang JJ, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in substance use disorders: a meta-analysis of 74 studies. Addiction 2020; 115:2257-2267. [PMID: 32533781 DOI: 10.1111/add.15160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
AIMS To characterize the peripheral inflammatory cytokine profile in people with substance use disorders (SUDs). DESIGN Systematic review and meta-analysis. SETTING Clinical studies that evaluated peripheral blood inflammatory cytokine levels in patients with SUDs and healthy controls PARTICIPANTS: SUD patients and healthy controls. MEASUREMENTS PubMed and Web of Science were systematically searched for relevant studies. Two investigators independently selected studies and extracted data. A total of 77 articles were included in the meta-analysis, containing 5649 patients with SUDs and 4643 healthy controls. Data were pooled using a random-effects model by the Comprehensive Meta-Analysis version 2 software. FINDINGS Concentrations of interleukin (IL)-6) in 32 studies, tumor necrosis factor (TNF)-α in 28 studies, IL-10 in 20 studies, IL-8 in 17 studies, C-reactive protein in 14 studies, IL-4 in 10 studies, IL-12 in seven studies, monocyte chemoattractant protein (MCP)-1 in 6 studies, TNF-receptor 2 (TNF-R2) in four studies and granulocyte-macrophage colony-stimulating factor (GM-CSF) in three studies were significantly higher in patients with SUDs compared with healthy controls, while concentrations of leptin in 14 studies were significantly lower in patients with SUDs compared with healthy controls. The findings were inconclusive for the associations between interferon-γ, IL-1β, IL-2, IL-1 receptor antagonist (IL-1RA), transforming growth factor (TGF)-β1, G-CSF, C-C motif chemokine 11, TGF-α and SUDs. CONCLUSIONS People with substance use disorders (SUDs) appear to have higher peripheral concentrations of IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, C-reactive protein, MCP-1, TNF-R2 and GM-CSF and lower peripheral concentrations of leptin than people without SUDs. This strengthens the view that SUD is accompanied by an inflammatory response.
Collapse
Affiliation(s)
- Ze-Xu Wei
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
12
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
13
|
Differential Responses of LINE-1 in the Dentate Gyrus, Striatum and Prefrontal Cortex to Chronic Neurotoxic Methamphetamine: A Study in Rat Brain. Genes (Basel) 2020; 11:genes11040364. [PMID: 32231019 PMCID: PMC7230251 DOI: 10.3390/genes11040364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause a broad range of severe cognitive deficits as well as neurobehavioral abnormalities when abused chronically, particularly at high doses. Cognitive deficits are related to METH neurotoxicity in the striatum and hippocampus. The activation of transposable Long INterspersed Nuclear Element 1 (LINE-1) is associated with several neurological diseases and drug abuse, but there are very limited data regarding the effects of high-dose METH on the activity of LINE-1 in the adult brain. Using real-time quantitative PCR, the present study demonstrates that the chronic administration of neurotoxic METH doses results in the increased expression of LINE-1-encoded Open Reading Frame 1 (ORF-1) in rat striatum shortly after the last dose of the drug and decreased ORF-1 expression during METH withdrawal, with dentate gyrus potentially developing "tolerance" to these METH effects. LINE-1 activation may be a new factor mediating the neurotoxic effects of chronic METH in the striatum and, therefore, a new drug target against METH-induced psychomotor impairments in chronic METH users.
Collapse
|
14
|
Lee M, Leskova W, Eshaq RS, Harris NR. Acute changes in the retina and central retinal artery with methamphetamine. Exp Eye Res 2020; 193:107964. [PMID: 32044305 DOI: 10.1016/j.exer.2020.107964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH), an addictive stimulant of neurotransmitters, is associated with cardiovascular and neurological diseases. METH-induced ophthalmic complications are also present but have been insufficiently investigated. The purpose of this study is to investigate the retinal effects of METH. C57BL/6 mice were administrated progressively increasing doses of METH (0-6 mg/kg) by repetitive intraperitoneal injections for 5 days (4 times per day). Retinal degeneration was examined by morphological changes and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) assay. Norepinephrine levels were measured by ELISA, protein expression levels were determined by immunoblot and immunostaining, and gelatinase activity was examined by zymography. The thickness of the retina and the number of nuclei in the inner and outer nuclear layers were decreased by METH. Retinal cell death and astrocyte activation by METH treatment were confirmed by TUNEL assay and glial fibrillary acidic protein expression, respectively. Increased tumor necrosis factor-α protein in the retina and elevated norepinephrine levels in plasma were found in METH-treated mice. Platelet endothelial cell adhesion molecule-1 (PECAM-1) protein expression level was decreased in the retina and central retinal artery (CRA) by METH treatment, along with the endothelial proteoglycans glypican-1 and syndecan-1. Moreover, a regulator of the extracellular matrix, matrix metalloproteinase-14 (MMP-14) in the retina, and MMP-2 and MMP-9 in plasma, were increased by METH treatment. In conclusion, METH administration is involved in retinal degeneration with a vascular loss of PECAM-1 and the glycocalyx in the CRA and retina, and an increase of MMPs.
Collapse
Affiliation(s)
- Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Wendy Leskova
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
15
|
Heinzerling KG, Briones M, Thames AD, Hinkin CH, Zhu T, Wu YN, Shoptaw SJ. Randomized, Placebo-Controlled Trial of Targeting Neuroinflammation with Ibudilast to Treat Methamphetamine Use Disorder. J Neuroimmune Pharmacol 2019; 15:238-248. [PMID: 31820289 DOI: 10.1007/s11481-019-09883-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA) triggers neuroinflammation and medications that counteract MA-induced neuroinflammation may reduce MA-induced neurodegeneration and improve neurocognition and treatment outcomes in MA use disorder. We performed a randomized, placebo-controlled trial to determine the safety and efficacy of ibudilast (IBUD), a phosphodiesterase inhibitor that reduces neuroinflammation, for the treatment of MA use disorder. Treatment-seeking volunteers with MA use disorder were randomly assigned to receive 12 weeks of IBUD 50 mg twice daily (N = 64) or placebo (N = 61) with medication management counseling. Participants visited the outpatient research clinic twice weekly to provide urine specimens for drug screens and undergo study assessments. The primary outcome was end of treatment MA-abstinence (EOTA) during weeks 11 and 12 of treatment. Serum IBUID levels were measured for IBUD participants during week 3 of treatment. There was no difference in EOTA for IBUD (14%) versus placebo (16%, p > 0.05). There was no correlation between serum IBUD levels and MA use during treatment and mean IBUD levels for participants with (mean = 51.3, SD = 20.3) and without (mean = 54.7, SD = 33.0, p = 0.70) EOTA. IBUD was well tolerated. IBUD did not facilitate MA abstinence in this outpatient trial. Whether targeting neuroinflammation, either with IBUD in other subgroups of MA users or clinical trial designs, or with other anti-inflammatory medications, is an effective strategy for treating MA use disorder is not clear. Graphical Abstract The proportion of urine drug screens negative for methamphetamine (MA) during the two week lead-in period (weeks -2 and - 1) and the 12 week medication treatment period (weeks 1-12) for ibudilast versus placebo.
Collapse
Affiliation(s)
- Keith G Heinzerling
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Marisa Briones
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - April D Thames
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Charles H Hinkin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
| | - Tianle Zhu
- Department of Statistics, UCLA, Los Angeles, CA, USA
| | - Ying Nian Wu
- Department of Statistics, UCLA, Los Angeles, CA, USA
| | - Steven J Shoptaw
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Kays JS, Yamamoto BK. Evaluation of Microglia/Macrophage Cells from Rat Striatum and Prefrontal Cortex Reveals Differential Expression of Inflammatory-Related mRNA after Methamphetamine. Brain Sci 2019; 9:brainsci9120340. [PMID: 31775383 PMCID: PMC6955783 DOI: 10.3390/brainsci9120340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
RNA sequencing (RNAseq) can be a powerful tool in the identification of transcriptional changes after drug treatment. RNAseq was utilized to determine expression changes in Fluorescence-activated cell sorted (FACS) CD11b/c+ cells from the striatum (STR) and prefrontal cortex (PFC) of male Sprague-Dawley rats after a methamphetamine (METH) binge dosing regimen. Resident microglia and infiltrating macrophages were collected 2 h or 3 days after drug administration. Gene expression changes indicated there was an increase toward an overall pro-inflammatory state, or M1 polarization, along with what appears to be a subset of cells that differentiated toward the anti-inflammatory M2 polarization. In general, there were significantly more mRNA expression changes in the STR than the PFC and more at 2 h post-binge METH than at 3 days post-binge METH. Additionally, Ingenuity® Pathway Analysis along with details of RNA expression changes revealed cyclo-oxygenase 2 (COX2)-driven prostaglandin (PG) E2 synthesis, glutamine uptake, and the Nuclear factor erythroid2-related factor 2 (NRF2) canonical pathway in microglia were associated with the binge administration regimen of METH.
Collapse
|
17
|
Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4982453. [PMID: 30140365 PMCID: PMC6081569 DOI: 10.1155/2018/4982453] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications, which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of neuronal phenotype.
Collapse
|
18
|
Inflammasome Activation by Methamphetamine Potentiates Lipopolysaccharide Stimulation of IL-1β Production in Microglia. J Neuroimmune Pharmacol 2018; 13:237-253. [PMID: 29492824 DOI: 10.1007/s11481-018-9780-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023]
Abstract
Methamphetamine (Meth) is an addictive psychostimulant abused worldwide. Ample evidence indicate that chronic abuse of Meth induces neurotoxicity via microglia-associated neuroinflammation and the activated microglia present in both Meth-administered animals and human abusers. The development of anti-neuroinflammation as a therapeutic strategy against Meth dependence promotes research to identify inflammatory pathways that are specifically tied to Meth-induced neurotoxicity. Currently, the exact mechanisms for Meth-induced microglia activation are largely unknown. NLRP3 is a well-studied cytosolic pattern recognition receptor (PRR), which promotes the assembly of the inflammasome in response to the danger-associated molecular patterns (DAMPs). It is our hypothesis that Meth activates NLRP3 inflammasome in microglia and promotes the processing and release of interleukin (IL)-1β, resulting in neurotoxic activity. To test this hypothesis, we studied the effects of Meth on IL-1β maturation and release from rat cortical microglial cultures. Incubation of microglia with physiologically relevant concentrations of Meth after lipopolysaccharide (LPS) priming produced an enhancement on IL-1β maturation and release. Meth treatment potentiated aggregation of inflammasome adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), induced activation of the IL-1β converting enzyme caspase-1 and produced lysosomal and mitochondrial impairment. Blockade of capase-1 activity, lysosomal cathepsin B activity or mitochondrial ROS production by their specific inhibitors reversed the effects of Meth, demonstrating an involvement of inflammasome in Meth-induced microglia activation. Taken together, our results suggest that Meth triggers microglial inflammasome activation in a manner dependent on both mitochondrial and lysosomal danger-signaling pathways.
Collapse
|
19
|
Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review. Neurochem Res 2017; 43:66-78. [PMID: 28589520 DOI: 10.1007/s11064-017-2318-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Phuong-Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
20
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
21
|
McDonnell-Dowling K, Kelly JP. The Role of Oxidative Stress in Methamphetamine-induced Toxicity and Sources of Variation in the Design of Animal Studies. Curr Neuropharmacol 2017; 15:300-314. [PMID: 27121285 PMCID: PMC5412700 DOI: 10.2174/1570159x14666160428110329] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The prevalence of methamphetamine (MA) use has increased in recent years. In order to assess how this drug produces its effects, both clinical and preclinical studies have recently begun to focus on oxidative stress as an important biochemical mechanism in mediating these effects. OBJECTIVE The purpose of this review is to illustrate the variation in the design of preclinical studies investigating MA exposure on oxidative stress parameters in animal models. METHOD The experimental variables investigated and summarised include MA drug treatment, measurements of oxidative stress and antioxidant treatments that ameliorate the harmful effects of MA. RESULTS These preclinical studies differ greatly in their experimental design with respect to the dose of MA (ranging between 0.25 and 20 mg/kg), the dosing regime (acute, binge or chronic), the time of measurement of oxidative stress (0.5 h to 2 wks after last MA administration), the antioxidant system targeted and finally the use of antioxidants including the route of administration (i.p. or p.o.), the frequency of exposure and the time of exposure (preventative or therapeutic). CONCLUSION The findings in this paper suggest that there is a large diversity among these studies and so the interpretation of these results is challenging. For this reason, the development of guidelines and how best to assess oxidative stress in animal models may be beneficial. The use of these simple recommendations mean that results will be more comparable between laboratories and that future results generated will give us a greater understanding of the contribution of this important biochemical mechanism and its implications for the clinical scenario.
Collapse
Affiliation(s)
- Kate McDonnell-Dowling
- Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
22
|
Contoreggi C, Chrousos GP, Mascio MD. Chronic distress and the vulnerable host: a new target for HIV treatment and prevention? NEUROBEHAVIORAL HIV MEDICINE 2016; 7:53-75. [PMID: 34295195 PMCID: PMC8293862 DOI: 10.2147/nbhiv.s86309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathologic stress (distress) disturbs immune, cardiovascular, metabolic, and behavioral homeostasis. Individuals living with HIV and those at risk are vulnerable to stress disorders. Corticotropin-releasing hormone (CRH) is critical in neuroendocrine immune regulation. CRH, a neuropeptide, is distributed in the central and peripheral nervous systems and acts principally on CRH receptor type 1 (CRHR1). CRH in the brain modulates neuropsychiatric disorders. CRH and stress modulation of immunity is two-pronged; there is a direct action on hypothalamic-pituitary-adrenal secretion of glucocorticoids and through immune organ sympathetic innervation. CRH is a central and systemic proinflammatory cytokine. Glucocorticoids and their receptors have gene regulatory actions on viral replication and cause central and systemic immune suppression. CRH and stress activation contributes to central nervous system (CNS) viral entry important in HIV-associated neurocognitive disorders and HIV-associated dementia. CNS CRH overproduction short-circuits reward, executive, and emotional control, leading to addiction, cognitive impairment, and psychiatric comorbidity. CRHR1 is an important therapeutic target for medication development. CRHR1 antagonist clinical trials have focused on psychiatric disorders with little attention paid to neuroendocrine immune disorders. Studies of those with HIV and those at risk show that concurrent stress-related disorders contribute to higher morbidity and mortality; stress-related conditions, addiction, immune dysfunction, and comorbid psychiatric illness all increase HIV transmission. Neuropsychiatric disease, chronic inflammation, and substance abuse are endemic, and chronic distress is a pathologic factor. It is being understood that stress and CRH are fundamental to neuroendocrine immunity; therapeutic interventions with existing and novel agents hold promise for restoring homeostasis, reducing morbidity and mortality for those with HIV and possibly reducing future disease transmission.
Collapse
Affiliation(s)
- Carlo Contoreggi
- Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - George P Chrousos
- Department of Pediatrics, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Michele Di Mascio
- AIDS Imaging Research Section, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
23
|
The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine. Brain Behav Immun 2016; 51:99-108. [PMID: 26254235 PMCID: PMC5652313 DOI: 10.1016/j.bbi.2015.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Methamphetamine (METH) induces neuroinflammatory effects, which may contribute to the neurotoxicity of METH. However, the mechanism by which METH induces neuroinflammation has yet to be clarified. A considerable body of evidence suggests that METH induces cellular damage and distress, particularly in dopaminergic neurons. Damaged neurons release danger-associated molecular patterns (DAMPs) such as high mobility group box-1 (HMGB1), which induces pro-inflammatory effects. Therefore, we explored the notion here that METH induces neuroinflammation indirectly through the release of HMGB1 from damaged neurons. Adult male Sprague-Dawley rats were injected IP with METH (10mg/kg) or vehicle (0.9% saline). Neuroinflammatory effects of METH were measured in nucleus accumbens (NAcc), ventral tegmental area (VTA) and prefrontal cortex (PFC) at 2h, 4h and 6h after injection. To assess whether METH directly induces pro-inflammatory effects in microglia, whole brain or striatal microglia were isolated using a Percoll density gradient and exposed to METH (0, 0.1, 1, 10, 100, or 1000μM) for 24h and pro-inflammatory cytokines measured. The effect of METH on HMGB1 and IL-1β in striatal tissue was then measured. To determine the role of HMGB1 in the neuroinflammatory effects of METH, animals were injected intra-cisterna magna with the HMGB1 antagonist box A (10μg) or vehicle (sterile water). 24h post-injection, animals were injected IP with METH (10mg/kg) or vehicle (0.9% saline) and 4h later neuroinflammatory effects measured in NAcc, VTA, and PFC. METH induced robust pro-inflammatory effects in NAcc, VTA, and PFC as a function of time and pro-inflammatory analyte measured. In particular, METH induced profound effects on IL-1β in NAcc (2h) and PFC (2h and 4h). Exposure of microglia to METH in vitro failed to induce a pro-inflammatory response, but rather induced significant cell death as well as a decrease in IL-1β. METH treatment increased HMGB1 in parallel with IL-1β in striatum. Pre-treatment with the HMGB1 antagonist box A blocked the neuroinflammatory effects (IL-1β) of METH in NAcc, VTA and PFC. The present results suggest that HMGB1 mediates, in part, the neuroinflammatory effects of METH and thus may alert CNS innate immune cells to the toxic effects of METH.
Collapse
|
24
|
Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain. Sci Rep 2015; 5:14356. [PMID: 26463126 PMCID: PMC4604469 DOI: 10.1038/srep14356] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/24/2015] [Indexed: 01/03/2023] Open
Abstract
Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum.
Collapse
|
25
|
Wongprayoon P, Govitrapong P. Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line. Neurotoxicology 2015; 50:122-30. [DOI: 10.1016/j.neuro.2015.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/13/2023]
|
26
|
Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation. Neurotoxicology 2015; 50:131-41. [PMID: 26283213 DOI: 10.1016/j.neuro.2015.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 11/21/2022]
Abstract
Methamphetamine (MA) is a potent, highly addictive psychostimulant abused by millions of people worldwide. MA induces neurotoxicity, damaging striatal dopaminergic terminals, and neuroinflammation, with striatal glial activation leading to pro-inflammatory cytokine and reactive oxygen species production. It is unclear whether MA-induced neuroinflammation contributes to MA-induced neurotoxicity. In the current study, we examined the linkage between the time course and dose response of MA-induced neurotoxicity and neuroinflammation. Adult male mice underwent a binge dosing regimen of four injections given every 2h with doses of 2, 4, 6, or 8 mg/kg MA per injection, and were sacrificed after 1, 3, 7, or 14 days. Binge MA treatment dose-dependently caused hyperthermia and induced hypoactivity after one day, though activity returned to control levels within one week. Striatal dopamine (DA) was diminished one day after treatment with at least 4 mg/kg MA, while DA turnover rates peaked after seven days. Although striatal tyrosine hydroxylase and DA transporter levels were also decreased one day after treatment with at least 4 mg/kg MA, they trended toward recovery by day 14. All doses of MA activated striatal glia within one day. While astrocyte activation persisted, microglial activation was attenuated over the two weeks of the study. These findings help clarify the relationship between MA-induced neuroinflammation and neurotoxicity, particularly regarding their temporal and dose-specific dynamics.
Collapse
|
27
|
Stolyarova A, Thompson AB, Barrientos RM, Izquierdo A. Reductions in frontocortical cytokine levels are associated with long-lasting alterations in reward valuation after methamphetamine. Neuropsychopharmacology 2015; 40:1234-42. [PMID: 25409594 PMCID: PMC4367468 DOI: 10.1038/npp.2014.309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
Alterations in reward valuation are thought to have a central role at all stages of the addiction process. We previously reported work aversion in an effortful T-maze task following a binge exposure to methamphetamine, and no such changes in effort following escalating doses. Limitations of the T-maze task include its two available options, with an effort requirement, in the form of increasing barrier height, varying incrementally as a function of time, and reward magnitudes held constant. Reward preferences and choices, however, are likely affected by the number of options available and the manner in which alternatives are presented. In the present experiment, we investigated the long-lasting, off-drug effects of methamphetamine on reward choices in a novel effortful maze task with three possible courses of action, each associated with different effort requirements and reward magnitudes. Neuroinflammatory responses associated with drug exposure, proposed as one of the mechanisms contributing to suboptimal choices on effort-based tasks, were also examined. We investigated region-specific changes in pro- and anti-inflammatory markers in the mesocorticolimbic pathway after methamphetamine, and their relationship with animals' reward choices. We observed long-lasting, increased sensitivity to differences in reward magnitude in the methamphetamine group: animals were more likely to overcome greater effort costs to obtain larger rewards on our novel effortful maze task. These behavioral changes were strongly predicted by pronounced decreases in frontocortical cytokines, but not amygdalar or striatal markers. The present results provide the first evidence that neuroinflammatory processes are associated with alterations in reward valuation during protracted drug withdrawal.
Collapse
Affiliation(s)
- Alexandra Stolyarova
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew B Thompson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruth M Barrientos
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Alicia Izquierdo
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA,Department of Psychology, University of California, Los Angeles, 1285 Franz Hall Box 951563, Los Angeles, CA 90095-1563, USA, Tel: +1 310 825 3459, Fax: +1 310 206 5895, E-mail:
| |
Collapse
|
28
|
Northrop NA, Yamamoto BK. Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 2015; 9:69. [PMID: 25788874 PMCID: PMC4349189 DOI: 10.3389/fnins.2015.00069] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.
Collapse
Affiliation(s)
- Nicole A Northrop
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| |
Collapse
|
29
|
Panee J, Pang X, Munsaka S, Berry MJ, Chang L. Independent and co-morbid HIV infection and Meth use disorders on oxidative stress markers in the cerebrospinal fluid and depressive symptoms. J Neuroimmune Pharmacol 2015; 10:111-21. [PMID: 25575491 PMCID: PMC4900457 DOI: 10.1007/s11481-014-9581-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/29/2014] [Indexed: 01/28/2023]
Abstract
Both HIV infection and Methamphetamine (Meth) use disorders are associated with greater depressive symptoms and oxidative stress; whether the two conditions would show additive or interactive effects on the severity of depressive symptoms, and whether this is related to the level of oxidative stress in the CNS is unknown. 123 participants were evaluated, which included 41 HIV-seronegative subjects without substance use disorders (Control), 25 with recent (<6 months) moderate to severe Meth use disorders (Meth), 34 HIV-seropositive subjects without substance use disorders (HIV) and 23 HIV+Meth subjects. Depressive symptoms were assessed with the Center for Epidemiologic Studies-Depression Scale (CES-D), and oxidative stress markers were evaluated with glutathione (GSH), 4-hydroxynonenal (HNE), and activities of gamma-glutamyltransferase (GGT) and glutathione peroxidase (GPx) in the cerebrospinal fluid (CSF). Compared with Controls, HIV subjects had higher levels of HNE (+350%) and GGT (+27%), and lower level of GSH (-34%), while Meth users had higher levels of GPx activity (+23%) and GSH (+30 %). GGT correlated with GPx, and with age, across all subjects (p < 0.0001). CES-D scores correlated with CSF HNE levels only in Control and HIV groups, but not in Meth and HIV+Meth groups. HIV and Meth use had an interactive effects on depressive symptoms, but did not show additive or interactive effects on oxidative stress. The differential relationship between depressive symptoms and oxidative stress response amongst the four groups suggest that depressive symptoms in these groups are mediated through different mechanisms which are not always related to oxidative stress.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 222, Honolulu, HI 96813, USA
| | - Xiaosha Pang
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 222, Honolulu, HI 96813, USA
| | - Sody Munsaka
- Department of Medicine, John A. Burns School of Medicine, The Queen’s Medical Center, 1356 Lusitana Street, 7th floor, Honolulu, HI 96813, USA
| | - Marla J. Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 222, Honolulu, HI 96813, USA
| | - Linda Chang
- Department of Medicine, John A. Burns School of Medicine, The Queen’s Medical Center, 1356 Lusitana Street, 7th floor, Honolulu, HI 96813, USA
| |
Collapse
|
30
|
Mata MM, Napier TC, Graves SM, Mahmood F, Raeisi S, Baum LL. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse. Eur J Pharmacol 2015; 752:26-33. [PMID: 25678251 DOI: 10.1016/j.ejphar.2015.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/10/2023]
Abstract
The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection.
Collapse
Affiliation(s)
- Mariana M Mata
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - T Celeste Napier
- Department of Pharmacology and Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States
| | - Steven M Graves
- Department of Pharmacology and Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States
| | - Fareeha Mahmood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Shohreh Raeisi
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Linda L Baum
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
31
|
Yang P, Gao Z, Zhang H, Fang Z, Wu C, Xu H, Huang QJ. Changes in proinflammatory cytokines and white matter in chronically stressed rats. Neuropsychiatr Dis Treat 2015; 11:597-607. [PMID: 25834438 PMCID: PMC4358419 DOI: 10.2147/ndt.s78131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although the pathogenesis of depression, an incapacitating psychiatric ailment, remains largely unknown, previous human and animal studies have suggested that both proinflammatory cytokines and altered oligodendrocytes play important roles in the condition. This study examined these two factors in the brains of rats following unpredictable chronic mild stress for 4 weeks, with the hypothesis that chronic stress may affect oligodendrocytes and elevate proinflammatory cytokines in the brain. After suffering unpredictable stressors for 4 weeks, the rats showed depression-like behaviors, including decreased locomotion in the open field, increased immobility time in the forced swim test, and decreased sucrose consumption and less sucrose preference when compared with controls. Immunohistochemical staining of brain sections showed higher immunoreactivity of proinflammatory cytokines in certain brain regions of stressed rats compared with controls; lower immunoreactivity of myelin basic protein and fewer mature oligodendrocytes were seen in the prefrontal cortex, but no demyelination was detected. These results are interpreted and discussed in the context of recent findings from human and animal studies.
Collapse
Affiliation(s)
- Ping Yang
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Zhenyong Gao
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Handi Zhang
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Zeman Fang
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Cairu Wu
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Haiyun Xu
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Correspondence: Haiyun Xu; Qing-Jun Huang, Mental Health Center, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People’s Republic of China, Tel +86 754 8890 0728, Email ;
| | - Qing-Jun Huang
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Correspondence: Haiyun Xu; Qing-Jun Huang, Mental Health Center, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People’s Republic of China, Tel +86 754 8890 0728, Email ;
| |
Collapse
|
32
|
Raineri M, González B, Rivero-Echeto C, Muñiz JA, Gutiérrez ML, Ghanem CI, Cadet JL, García-Rill E, Urbano FJ, Bisagno V. Differential effects of environment-induced changes in body temperature on modafinil's actions against methamphetamine-induced striatal toxicity in mice. Neurotox Res 2014; 27:71-83. [PMID: 25261212 DOI: 10.1007/s12640-014-9493-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg, 2 h apart; modafinil (90 mg/kg) was injected twice, 1 h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out 6 days after treatments and processed for tyrosine hydroxylase (TH), dopamine transporter (DAT), GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by striatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures.
Collapse
Affiliation(s)
- Mariana Raineri
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (ININFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires, Junín 956, piso 5, C1113, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ray LA, Roche DJO, Heinzerling K, Shoptaw S. Opportunities for the development of neuroimmune therapies in addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:381-401. [PMID: 25175870 DOI: 10.1016/b978-0-12-801284-0.00012-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies have implicated neuroinflammatory processes in the pathophysiology of various psychiatric conditions, including addictive disorders. Neuroimmune signaling represents an important and relatively poorly understood biological process in drug addiction. The objective of this review is to update the field on recent developments in neuroimmune therapies for addiction. First, we review studies of neuroinflammation in relation to alcohol and methamphetamine dependence followed by a section on neuroinflammation and accompanying neurocognitive dysfunction in HIV infection and concomitant substance abuse. Second, we provide a review of pharmacotherapies with neuroimmune properties and their potential development for the treatment of addictions. Pharmacotherapies covered in this review include ibudilast, minocycline, doxycycline, topiramate, indomethacin, rolipram, anakinra (IL-1Ra), peroxisome proliferator-activated receptor agonists, naltrexone, and naloxone. Lastly, summary and future directions are provided with recommendations for how to efficiently translate preclinical findings into clinical studies that can ultimately lead to novel and more effective pharmacotherapies for addiction.
Collapse
Affiliation(s)
- Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.
| | - Daniel J O Roche
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Keith Heinzerling
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Steve Shoptaw
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
34
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
35
|
Lee YW, Cho HJ, Lee WH, Sonntag WE. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol Ther (Seoul) 2013; 20:357-70. [PMID: 24009822 PMCID: PMC3762274 DOI: 10.4062/biomolther.2012.20.4.357] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/04/2012] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA ; School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
36
|
Pang X, Panee J, Liu X, Berry MJ, Chang SL, Chang L. Regional variations of antioxidant capacity and oxidative stress responses in HIV-1 transgenic rats with and without methamphetamine administration. J Neuroimmune Pharmacol 2013; 8:691-704. [PMID: 23546885 PMCID: PMC3773562 DOI: 10.1007/s11481-013-9454-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/17/2013] [Indexed: 11/24/2022]
Abstract
HIV infection and methamphetamine (Meth) abuse both may lead to oxidative stress. This study used HIV-1 transgenic (HIV-1Tg) rats to investigate the independent and combined effects of HIV viral protein expression and low dose repeated Meth exposure on the glutathione (GSH)-centered antioxidant system and oxidative stress in the brain. Total GSH content, gene expression and/or enzymatic activities of glutamylcysteine synthetase (GCS), gamma-glutamyltransferase (GGT), glutathione reductase (GR), glutathione peroxidase (GPx), glutaredoxin (Glrx), and glutathione-s-transferase (GST) were measured. The protein expression of cystine transporter (xCT) and oxidative stress marker 4-hydroxynonenal (HNE) were also analyzed. Brain regions studied include thalamus, frontal and remainder cortex, striatum, cerebellum and hippocampus. HIV-1Tg rats and Meth exposure showed highly regional specific responses. In the F344 rats, the thalamus had the highest baseline GSH concentration and potentially higher GSH recycle rate. HIV-1Tg rats showed strong transcriptional responses to GSH depletion in the thalamus. Both HIV-1Tg and Meth resulted in decreased GR activity in thalamus, and decreased Glrx activity in frontal cortex. However, the increased GR and Glrx activities synergized with increased GSH concentration, which might have partially prevented Meth-induced oxidative stress in striatum. Interactive effects between Meth and HIV-1Tg were observed in thalamus on the activities of GCS and GGT, and in thalamus and frontal cortex on Glrx activity and xCT protein expression. Findings suggest that HIV viral protein and low dose repeated Meth exposure have separate and combined effects on the brain's antioxidant capacity and the oxidative stress response that are regional specific.
Collapse
Affiliation(s)
- Xiaosha Pang
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Jun Panee
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Xiangqian Liu
- Institute of NeuroImmune Pharmacology and Department of
Biological Sciences, Seton Hall University, South Orange, NJ 07079
- Department of Histology and Embryology, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, P.R.
China
| | - Marla J. Berry
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology and Department of
Biological Sciences, Seton Hall University, South Orange, NJ 07079
| | - Linda Chang
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| |
Collapse
|
37
|
Jang EY, Yang CH, Han MH, Choi YH, Hwang M. Sauchinone suppresses lipopolysaccharide-induced inflammatory responses through Akt signaling in BV2 cells. Int Immunopharmacol 2012; 14:188-94. [DOI: 10.1016/j.intimp.2012.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/29/2012] [Accepted: 07/06/2012] [Indexed: 01/24/2023]
|
38
|
N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells. PARKINSONS DISEASE 2012; 2012:424285. [PMID: 23056996 PMCID: PMC3465903 DOI: 10.1155/2012/424285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/27/2012] [Indexed: 01/12/2023]
Abstract
Methamphetamine- (MA-) induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells). The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC). Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO) enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE). Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.
Collapse
|
39
|
Northrop NA, Yamamoto BK. Persistent neuroinflammatory effects of serial exposure to stress and methamphetamine on the blood-brain barrier. J Neuroimmune Pharmacol 2012; 7:951-68. [PMID: 22833424 DOI: 10.1007/s11481-012-9391-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Abstract
Studies of methamphetamine (Meth)-induced neurotoxicity have traditionally focused on monoaminergic terminal damage while more recent studies have found that stress exacerbates these damaging effects of Meth. Similarities that exist between the mechanisms that cause monoaminergic terminal damage in response to stress and Meth and those capable of producing a disruption of the blood-brain barrier (BBB) suggest that the well-known high co-morbidity of stress and Meth could produce long-lasting structural and functional BBB disruption. The current studies examined the role of neuroinflammation in mediating the effects of exposure to chronic stress and/or Meth on BBB structure and function. Rats were pre-exposed to chronic unpredictable stress (CUS) and/or challenged with Meth. Twenty-four hours after the treatment of Meth in rats pre-exposed to CUS, occludin and claudin-5 immunoreactivity were decreased while truncation of β-dystroglycan, as well as FITC-dextran and water extravasation was increased. All changes other than β-dystroglycan and edema persisted 7 days later, occurred with increases in GFAP and COX-2, and were blocked by ketoprofen after Meth treatment. In addition, persistent increases in FITC-dextran extravasation were prevented by treatment with an EP1 receptor antagonist after Meth exposure. The results indicate that CUS and Meth synergize to produce long-lasting structural and functional BBB disruptions that are mediated by cyclooxygenase and protracted increases in inflammation. These results suggest that stress and Meth can synergize to produce a long-lasting vulnerability of the brain to subsequent environmental insults resulting from the persistent breach of the BBB.
Collapse
Affiliation(s)
- Nicole A Northrop
- Department of Neurosciences, University of Toledo College of Medicine, Health Sciences Campus, Toledo, OH 43614, USA
| | | |
Collapse
|
40
|
Park M, Hennig B, Toborek M. Methamphetamine alters occludin expression via NADPH oxidase-induced oxidative insult and intact caveolae. J Cell Mol Med 2012; 16:362-75. [PMID: 21435178 PMCID: PMC3133868 DOI: 10.1111/j.1582-4934.2011.01320.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Methamphetamine (METH) is a drug of abuse with neurotoxic and vascular effects that may be mediated by reactive oxygen species (ROS). However, potential sources of METH-induced generation of ROS are not fully understood. This study is focused on the role of NAD(P)H oxidase (NOX) in METH-induced dysfunction of brain endothelial cells. Treatment with METH induced a time-dependent increase in phosphorylation of NOX subunit p47, followed by its binding with gp91 and p22, and the formation of an active NOX complex. An increase in NOX activity was associated with elevated production of ROS, alterations of occludin levels and increased transendothelial migration of monocytes. Inhibition of NOX by NSC 23766 attenuated METH-induced ROS generation, changes in occludin protein levels and monocyte migration. Because an active NOX complex is localized to caveolae, we next evaluated the role of caveolae in METH-mediated toxicity to brain endothelial cells. Treatment with METH induced phosphorylation of ERK1/2 and caveolin-1 protein. Inhibition of ERK1/2 activity or caveolin-1 silencing protected against METH-induced alterations of occludin levels. These findings indicate an important role of NOX and functional caveolae in METH-induced oxidative stress in brain endothelial cells that contribute to the subsequent alterations of occludin levels and transendothelial migration of inflammatory cells.
Collapse
Affiliation(s)
- Minseon Park
- Department of Neurosurgery, University of Kentucky, KY 40536, USA
| | | | | |
Collapse
|
41
|
Zhang X, Tobwala S, Ercal N. N-Acetylcysteine amide protects against methamphetamine-induced tissue damage in CD-1 mice. Hum Exp Toxicol 2012; 31:931-44. [DOI: 10.1177/0960327112438287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methamphetamine (METH), a highly addictive drug used worldwide, induces oxidative stress in various animal organs, especially the brain. This study evaluated oxidative damage caused by METH to tissues in CD-1 mice and identified a therapeutic drug that could protect against METH-induced toxicity. Male CD-1 mice were pretreated with a novel thiol antioxidant, N-acetylcysteine amide (NACA, 250 mg/kg body weight) or saline. Following this, METH (10 mg/kg body weight) or saline intraperitoneal injections were administered every 2 h over an 8-h period. Animals were killed 24 h after the last exposure. NACA-treated animals exposed to METH experienced significantly lower oxidative stress in their kidneys, livers, and brains than the untreated group, as indicated by their levels of glutathione, malondialdehyde, and protein carbonyl and their catalase and glutathione peroxidase activity. This suggests that METH induces oxidative stress in various organs and that a combination of NACA as a neuro- or tissue-protective agent, in conjunction with current treatment, might effectively treat METH abusers.
Collapse
Affiliation(s)
- X Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - S Tobwala
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - N Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
42
|
W. Carey J, Tobwala S, Zhang X, Banerjee A, Ercal N, Y. Pinarci E, Karacal H. N-acetyl-L-cysteine amide protects retinal pigment epithelium against methamphetamine-induced oxidative stress. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbpc.2012.32012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Methamphetamine toxicity and its implications during HIV-1 infection. J Neurovirol 2011; 17:401-15. [PMID: 21786077 DOI: 10.1007/s13365-011-0043-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Over the past two decades methamphetamine (MA) abuse has seen a dramatic increase. The abuse of MA is particularly high in groups that are at higher risk for HIV-1 infection, especially men who have sex with men (MSM). This review is focused on MA toxicity in the CNS as well as in the periphery. In the CNS, MA toxicity is comprised of numerous effects, including, but not limited to, oxidative stress produced by dysregulation of the dopaminergic system, hyperthermia, apoptosis, and neuroinflammation. Multiple lines of evidence demonstrate that these effects exacerbate the neurodegenerative damage caused by CNS infection of HIV perhaps because both MA and HIV target the frontostriatal regions of the brain. MA has also been demonstrated to increase viral load in the CNS of SIV-infected macaques. Using transgenic animal models, as well as cultured cells, the HIV proteins Tat and gp120 have been demonstrated to have neurotoxic properties that are aggravated by MA. In addition, MA has been shown to exhibit detrimental effects on the blood-brain barrier (BBB) that have the potential to increase the probability of CNS infection by HIV. Although the effects of MA in the periphery have not been as extensively studied as have the effects on the CNS, recent reports demonstrate the potential effects of MA on HIV infection in the periphery including increased expression of HIV co-receptors and increased expression of inflammatory cytokines.
Collapse
|
44
|
Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun 2011; 25 Suppl 1:S21-8. [PMID: 21256955 PMCID: PMC5654377 DOI: 10.1016/j.bbi.2011.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/22/2022] Open
Abstract
Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction.
Collapse
|
45
|
Wisor JP, Schmidt MA, Clegern WC. Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. Brain Behav Immun 2011; 25:767-76. [PMID: 21333736 DOI: 10.1016/j.bbi.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine and modafinil exert their wake-promoting effects by elevating monoaminergic tone. The severity of hypersomnolence that occurs subsequent to induced wakefulness differs between these two agents. Microglia detects and modulates CNS reactions to agents such as D-methamphetamine that induce cellular stress. We therefore hypothesized that changes in the sleep/wake cycle that occur subsequent to administration of D-methamphetamine are modulated by cerebral microglia. In CD11b-herpes thymidine kinase transgenic mice (CD11b-TK(mt-30)), activation of the inducible transgene by intracerebroventricular (icv) ganciclovir results in toxicity to CD11b-positive cells (i.e. microglia), thereby reducing cerebral microglial cell counts. CD11b-TK(mt-30)and wild type mice were subjected to chronic icv ganciclovir or vehicle administration with subcutaneous mini-osmotic pumps. D-methamphetamine (1 and 2 mg/kg), modafinil (30 and 100 mg/kg) and vehicle were administered intraperitoneally to these animals. In CD11b-TK(mt-30) mice, but not wild type, icv infusion of ganciclovir reduced the duration of wake produced by D-methamphetamine at 2 mg/kg by nearly 1h. Nitric oxide synthase (NOS) activity, studied ex vivo, and NOS expression were elevated in CD11b-positive cerebral microglia from wild type mice acutely exposed to d-methamphetamine. Additionally, CD11b-positive microglia, but not other cerebral cell populations, exhibited changes in sleep-regulatory cytokine expression in response to d-METH. Finally, CD11b-positive microglia exposed to d-methamphetamine in vitro exhibited increased NOS activity relative to pharmacologically-naïve cells. CD11b-positive microglia from the brains of neuronal NOS (nNOS)-knockout mice failed to exhibit this effect. We propose that the effects of D-METH on sleep/wake cycles are mediated in part by actions on microglia, including possibly nNOS activity and cytokine synthesis.
Collapse
Affiliation(s)
- Jonathan P Wisor
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, WWAMI Medical Education Program, Washington State University, Spokane, WA 99202, USA.
| | | | | |
Collapse
|
46
|
Abdul Muneer PM, Alikunju S, Szlachetka AM, Murrin LC, Haorah J. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener 2011; 6:23. [PMID: 21426580 PMCID: PMC3073895 DOI: 10.1186/1750-1326-6-23] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 03/22/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Methamphetamine (METH), an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB) function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB) to date. RESULTS In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM) increased the expression of glucose transporter protein-1 (GLUT1) in primary human brain endothelial cell (hBEC, main component of BBB) without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB) aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. CONCLUSION Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.
Collapse
Affiliation(s)
- P M Abdul Muneer
- Laboratory of Neurovascular Oxidative Injury, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Saleena Alikunju
- Laboratory of Neurovascular Oxidative Injury, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam M Szlachetka
- Laboratory of Neurovascular Oxidative Injury, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - L Charles Murrin
- Laboratory of Neurovascular Oxidative Injury, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James Haorah
- Laboratory of Neurovascular Oxidative Injury, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
47
|
Camarasa J, Ros C, Pubill D, Escubedo E. Tumour necrosis factor alpha suppression by MDMA is mediated by peripheral heteromeric nicotinic receptors. Immunopharmacol Immunotoxicol 2010; 32:265-71. [PMID: 20105082 DOI: 10.3109/08923970903295104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MDMA is an illegal drug widely used by young people. The present study aimed to determine the involvement of different nicotinic acetylcholine receptor (nAChR) subtypes in the suppressive effect of MDMA in TNF-alpha production. Dihydrobetaerythroidine (antagonist of heteromeric nAChR), and hexamethonium (antagonist of peripheral nAChR), fully antagonized the effect of MDMA. Conversely, methyllycaconitine (antagonist of homomeric nAChR), did not modify it. From in vitro experiments, a direct effect was ruled out. In this study we provide the first evidence that in rodents MDMA impairs the production of TNF-alpha by activation of heteromeric nAChR expressing beta-2 subunits located in the periphery.
Collapse
Affiliation(s)
- Jorge Camarasa
- Laboratory of Pharmacology and Pharmacognosy, Institute of Biomedicine, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
48
|
Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P. Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 2010; 48:347-52. [PMID: 20374443 DOI: 10.1111/j.1600-079x.2010.00761.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Methamphetamine (METH), the most commonly abused drug, has long been known to induce neurotoxicity. METH causes oxidative stress and inflammation, as well as the overproduction of both reactive oxygen species (ROS) and reactive nitrogen species (RNS). The role of METH-induced brain inflammation remains unclear. Imbroglio activation contributes to the neuronal damage that accompanies injury, disease and inflammation. METH may activate microglia to produce neuroinflammatory molecules. In highly aggressively proliferating immortalized (HAPI) cells, a rat microglial cell line, METH reduced cell viability in a concentration- and time-dependent manner and initiated the expression of interleukin 1beta (IL-1beta), interleukin 6 (IL-6) and tumor necrosis factor alpha. METH also induced the production of both ROS and RNS in microglial cells. Pretreatment with melatonin, a major secretory product of the pineal gland, abolished METH-induced toxicity, suppressed ROS and RNS formation and also had an inhibitory effect on cytotoxic factor gene expression. The expression of cytotoxic factors produced by microglia may contribute to central nervous system degeneration in amphetamine abusers. Melatonin attenuates METH toxicity and inhibits the expression of cytotoxic factor genes associated with ROS and RNS neutralization in HAPI microglia. Thus, melatonin might be one of the neuroprotective agents induced by METH toxicity and/or other immunogens.
Collapse
Affiliation(s)
- Jiraporn Tocharus
- Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | | | | | | |
Collapse
|
49
|
An HJ, Rim HK, Chung HS, Choi IY, Kim NH, Kim SJ, Moon PD, Myung NY, Jeong HJ, Jeong CH, Chung SH, Um JY, Hong SH, Kim HM. Expression of inducible nitric oxide synthase by Corydalis turtschaninovii on interferon-gamma stimulated macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:573-578. [PMID: 19429329 DOI: 10.1016/j.jep.2008.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 11/28/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
AIM OF THE STUDY Corydalis turtschaninovii (CT) has been used for tumor therapy. However, it is still unclear how this herb prevents the diseases in experimental models. Nitric oxide (NO) as a potent macrophage-derived effector molecule against a variety of tumors has received increasing attention. MATERIALS AND METHODS In this study, using mouse peritoneal macrophages, we have examined the mechanism by which CT regulates NO production. RESULTS When CT was used in combination with recombinant interferon-gamma (rIFN-gamma), there was a marked cooperative induction of NO production. However, CT had no effect on NO production by itself. The increase in NO synthesis was reflected as an increased amount of inducible NO synthase (iNOS) protein. The increased production of NO from rIFN-gamma plus CT-stimulated peritoneal macrophages was decreased by the treatment with N(G)-monomethyl-L-arginine or N(alpha)-Tosyl-Phe Chloromethyl Ketone, iNOS inhibitor. The increased production of NO from rIFN-gamma plus CT-stimulated cells was almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate, an inhibitor of nuclear factor kappa B (NF-kappaB). However, treatment of peritoneal macrophages with rIFN-gamma plus CT had no effect on the increase in tumor necrosis factor-alpha (TNF-alpha) production. CONCLUSIONS Our findings demonstrate that CT increases the production of NO and TNF-alpha by rIFN-gamma-primed macrophages and suggest that NF-kappaB plays a critical role in mediating these effects of CT.
Collapse
Affiliation(s)
- Hyo-Jin An
- Department of Pharmacology, College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Dongdaemun-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:101-19. [PMID: 19897076 DOI: 10.1016/s0074-7742(09)88005-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Branch, NIDA-Intramural Research Program, NIH/DHHS, Baltimore, Maryland 21224, USA
| | | |
Collapse
|