1
|
Wang S, Li H, Liu Y, Pang S, Qiao S, Su J, Wang S, Zhang Y. Connectivity Network Feature Sharing in Single-Cell RNA Sequencing Data Identifies Rare Cells. J Chem Inf Model 2024; 64:6596-6609. [PMID: 39096508 DOI: 10.1021/acs.jcim.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Single-cell RNA sequencing is a valuable technique for identifying diverse cell subtypes. A key challenge in this process is that the detection of rare cells is often missed by conventional methods due to low abundance and subtle features of these cells. To overcome this, we developed SCLCNF (Local Connectivity Network Feature Sharing in Single-Cell RNA sequencing), a novel approach that identifies rare cells by analyzing features uniquely expressed in these cells. SCLCNF creates a cellular connectivity network, considering how each cell relates to its neighbors. This network helps to pinpoint coexpression patterns unique to rare cells, utilizing a rarity score to confirm their presence. Our method performs better in detecting rare cells than existing techniques, offering enhanced robustness. It has proven to be effective in human gastrula data sets for accurately pinpointing rare cells, and in sepsis data sets where it uncovers previously unidentified rare cell populations.
Collapse
Affiliation(s)
- Shudong Wang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Hengxiao Li
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yahui Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Shanchen Pang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Sibo Qiao
- The College of Software, Tiangong University, Tianjin 300387, China
| | - Jionglong Su
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Shaoqiang Wang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Mallik S, Zhao Z. Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles. Genes (Basel) 2019; 10:E611. [PMID: 31412637 PMCID: PMC6723724 DOI: 10.3390/genes10080611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Rapid advance in single-cell RNA sequencing (scRNA-seq) allows measurement of the expression of genes at single-cell resolution in complex disease or tissue. While many methods have been developed to detect cell clusters from the scRNA-seq data, this task currently remains a main challenge. We proposed a multi-objective optimization-based fuzzy clustering approach for detecting cell clusters from scRNA-seq data. First, we conducted initial filtering and SCnorm normalization. We considered various case studies by selecting different cluster numbers ( c l = 2 to a user-defined number), and applied fuzzy c-means clustering algorithm individually. From each case, we evaluated the scores of four cluster validity index measures, Partition Entropy ( P E ), Partition Coefficient ( P C ), Modified Partition Coefficient ( M P C ), and Fuzzy Silhouette Index ( F S I ). Next, we set the first measure as minimization objective (↓) and the remaining three as maximization objectives (↑), and then applied a multi-objective decision-making technique, TOPSIS, to identify the best optimal solution. The best optimal solution (case study) that had the highest TOPSIS score was selected as the final optimal clustering. Finally, we obtained differentially expressed genes (DEGs) using Limma through the comparison of expression of the samples between each resultant cluster and the remaining clusters. We applied our approach to a scRNA-seq dataset for the rare intestinal cell type in mice [GEO ID: GSE62270, 23,630 features (genes) and 288 cells]. The optimal cluster result (TOPSIS optimal score= 0.858) comprised two clusters, one with 115 cells and the other 91 cells. The evaluated scores of the four cluster validity indices, F S I , P E , P C , and M P C for the optimized fuzzy clustering were 0.482, 0.578, 0.607, and 0.215, respectively. The Limma analysis identified 1240 DEGs (cluster 1 vs. cluster 2). The top ten gene markers were Rps21, Slc5a1, Crip1, Rpl15, Rpl3, Rpl27a, Khk, Rps3a1, Aldob and Rps17. In this list, Khk (encoding ketohexokinase) is a novel marker for the rare intestinal cell type. In summary, this method is useful to detect cell clusters from scRNA-seq data.
Collapse
Affiliation(s)
- Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| |
Collapse
|
3
|
Jindal A, Gupta P, Jayadeva, Sengupta D. Discovery of rare cells from voluminous single cell expression data. Nat Commun 2018; 9:4719. [PMID: 30413715 PMCID: PMC6226447 DOI: 10.1038/s41467-018-07234-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/19/2018] [Indexed: 11/27/2022] Open
Abstract
Single cell messenger RNA sequencing (scRNA-seq) provides a window into transcriptional landscapes in complex tissues. The recent introduction of droplet based transcriptomics platforms has enabled the parallel screening of thousands of cells. Large-scale single cell transcriptomics is advantageous as it promises the discovery of a number of rare cell sub-populations. Existing algorithms to find rare cells scale unbearably slowly or terminate, as the sample size grows to the order of tens of thousands. We propose Finder of Rare Entities (FiRE), an algorithm that, in a matter of seconds, assigns a rareness score to every individual expression profile under study. We demonstrate how FiRE scores can help bioinformaticians focus the downstream analyses only on a fraction of expression profiles within ultra-large scRNA-seq data. When applied to a large scRNA-seq dataset of mouse brain cells, FiRE recovered a novel sub-type of the pars tuberalis lineage.
Collapse
Affiliation(s)
- Aashi Jindal
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| | - Prashant Gupta
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| | - Jayadeva
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India.
| | - Debarka Sengupta
- Center for Computational Biology, Indraprastha Institute of Information Technology, Delhi, 110020, India.
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi, 110020, India.
| |
Collapse
|
4
|
Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation. CHINESE JOURNAL OF CANCER 2016; 35:10. [PMID: 26747273 PMCID: PMC4706692 DOI: 10.1186/s40880-015-0070-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Tumor growth and metastasis depend on the establishment of tumor vasculature to provide oxygen, nutrients, and other essential factors. The well-known vascular endothelial growth factor (VEGF) signaling is crucial for
sprouting angiogenesis as well as recruitment of circulating progenitor endothelial cells to tumor vasculature, which has become therapeutic targets in clinical practice. However, the survival benefits gained from targeting VEGF signaling have been very limited, with the inevitable development of treatment resistance. In this article, we discuss the most recent findings and understanding on how solid tumors evade VEGF-targeted therapy, with a special focus on vessel co-option, vessel remodeling, and tumor cell-derived vasculature establishment. Vessel co-option may occur in tumors independently of sprouting angiogenesis, and sprouting angiogenesis is not always required for tumor growth. The differences between vessel-like structure and tubule-like structure formed by tumor cells are also introduced. The exploration of the underlying mechanisms of these alternative angiogenic approaches would not only widen our knowledge of tumor angiogenesis but also provide novel therapeutic targets for better controlling cancer growth and metastasis.
Collapse
|
5
|
Goldenberg-Cohen N, Iskovich S, Askenasy N. Bone Marrow Homing Enriches Stem Cells Responsible for Neogenesis of Insulin-Producing Cells, While Radiation Decreases Homing Efficiency. Stem Cells Dev 2015; 24:2297-306. [PMID: 26067874 DOI: 10.1089/scd.2014.0524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Small-sized adult bone marrow cells isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate into insulin-producing cells and stabilize glycemic control. This study assessed competitive migration of syngeneic stem cells to the bone marrow and islets in a murine model of chemical diabetes. VLA-4 is expressed in ∼ 25% of these cells, whereas CXCR4 is not detected, however, it is transcriptionally upregulated (6-fold). The possibility to enrich stem cells by a bone marrow homing (BM-H) functional assay was assessed in sequential transplants. Fr25lin(-) cells labeled with PKH26 were grafted into primary myeloablated recipients, and mitotically quiescent Fr25lin(-)PKH(bright) cells were sorted from the bone marrow after 2 days. The contribution of bone marrow-homed stem cells was remarkably higher in secondary recipients compared to freshly elutriated cells. The therapeutic efficacy was further increased by omission of irradiation in the secondary recipients, showing a 25-fold enrichment of islet-reconstituting cells by the bone marrow homing assay. Donor cells identified by the green fluorescent protein (GFP) and a genomic marker in sex-mismatched transplants upregulated PDX-1 and produced proinsulin, affirming the capacity of BM-H cells to convert in the injured islets. There was no evidence of transcriptional priming of freshly elutriated subsets to express PDX-1, insulin, and other markers of endocrine progenitors, indicating that the bone marrow harbors stem cells with versatile differentiation capacity. Affinity to the bone marrow can be used to enrich stem cells for pancreatic regeneration, and reciprocally, conditioning reduces the competitive incorporation in the injured islets.
Collapse
Affiliation(s)
- Nitza Goldenberg-Cohen
- 1 Krieger Eye Research Laboratory, Schneider Children's Medical Center of Israel , Petach Tikva, Israel
| | - Svetlana Iskovich
- 2 Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel , Petach Tikva, Israel
| | - Nadir Askenasy
- 2 Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel , Petach Tikva, Israel
| |
Collapse
|
6
|
Fernández T, Olave G, Valencia CH, Arce S, Quinn JM, Thouas GA, Chen QZ. Effects of Calcium Phosphate/Chitosan Composite on Bone Healing in Rats: Calcium Phosphate Induces Osteon Formation. Tissue Eng Part A 2014; 20:1948-60. [DOI: 10.1089/ten.tea.2013.0696] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tulio Fernández
- Department of Materials Engineering, Monash Medical School, Monash University, Clayton, Australia
- School of Dentistry, University of Valle, Cali, Colombia
| | - Gilberto Olave
- School of Dentistry, University of Valle, Cali, Colombia
| | | | - Sandra Arce
- Faculty of Engineering, Autonomous University of the Occident, Cali, Colombia
| | - Julian M.W. Quinn
- Department of Materials Engineering, Monash Medical School, Monash University, Clayton, Australia
- Prince Henry's Institute of Medical Research, Clayton, Australia
| | - George A. Thouas
- Department of Materials Engineering, Monash Medical School, Monash University, Clayton, Australia
| | - Qi-Zhi Chen
- Department of Materials Engineering, Monash Medical School, Monash University, Clayton, Australia
| |
Collapse
|
7
|
Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation. Blood 2014; 124:176-83. [PMID: 24859365 DOI: 10.1182/blood-2014-03-559641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Secretion of ligands of the tumor necrosis factor (TNF) superfamily is a conserved response of parenchymal tissues to injury and inflammation that commonly perpetuates elimination of dysfunctional cellular components by apoptosis. The same signals of tissue injury that induce apoptosis in somatic cells activate stem cells and initiate the process of tissue regeneration as a coupling mechanism of injury and recovery. Hematopoietic stem and progenitor cells upregulate the TNF family receptors under stress conditions and are transduced with trophic signals. The progeny gradually acquires sensitivity to receptor-mediated apoptosis along the differentiation process, which becomes the major mechanism of negative regulation of mature proliferating hematopoietic lineages and immune homeostasis. Receptor/ligand interactions of the TNF family are physiological mechanisms transducing the need for repair, which may be harnessed in pathological conditions and transplantation. Because these interactions are physiological mechanisms of injury, neutralization of these pathways has to be carefully considered in disorders that do not involve intrinsic aberrations of excessive susceptibility to apoptosis.
Collapse
|
8
|
Iskovich S, Goldenberg-Cohen N, Sadikov T, Yaniv I, Stein J, Askenasy N. Two distinct mechanisms mediate the involvement of bone marrow cells in islet remodeling: neogenesis of insulin-producing cells and support of islet recovery. Cell Transplant 2013; 24:879-90. [PMID: 24380400 DOI: 10.3727/096368913x676899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently reported that small-sized bone marrow cells (BMCs) isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate and contribute to regeneration of injured islets. In this study, we assess some of the characteristics of these cells compared to elutriated hematopoietic progenitors (R/O) and whole BMCs in a murine model of streptozotocin-induced chemical diabetes. The GFP(bright)CD45(+) progeny of whole BMCs and R/O progenitors progressively infiltrate the pancreas with evolution of donor chimerism; are found at islet perimeter, vascular, and ductal walls; and have a modest impact on islet recovery from injury. In contrast, Fr25lin(-) cells incorporate in the islets, convert to GFP(dim)CD45(-)PDX-1(+) phenotypes, produce proinsulin, and secrete insulin with significant contribution to stabilization of glucose homeostasis. The elutriated Fr25lin(-) cells express low levels of CD45 and are negative for SCA-1 and c-kit, as removal of cells expressing these markers did not impair conversion to produce insulin. BMCs mediate two synergistic mechanisms that contribute to islet recovery from injury: support of islet remodeling by hematopoietic cells and neogenesis of insulin-producing cells from stem cells.
Collapse
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Avraham-Lubin BCR, Goldenberg-Cohen N, Sadikov T, Askenasy N. VEGF induces neuroglial differentiation in bone marrow-derived stem cells and promotes microglia conversion following mobilization with GM-CSF. Stem Cell Rev Rep 2013; 8:1199-210. [PMID: 22810360 DOI: 10.1007/s12015-012-9396-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Evaluation of potential tropic effects of vascular endothelial growth factor (VEGF) on the incorporation and differentiation of bone-marrow-derived stem cells (BMSCs) in a murine model of anterior ischemic optic neuropathy (AION). METHODS In the first approach, small-sized subset of BMCs were isolated from GFP donors mice by counterflow centrifugal elutriation and depleted of hematopoietic lineages (Fr25lin(-)). These cells were injected into a peripheral vein (1 × 10(6) in 0.2 ml) or inoculated intravitreally (2 × 10(5)) to syngeneic mice, with or without intravitreal injection of 5 μg/2μL VEGF, simultaneously with AION induction. In a second approach, hematopoietic cells were substituted by myelablative transplant of syngeseic GFP + bone marrow cells. After 3 months, progenitors were mobilized with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by VEGF inoculation into the vitreous body and AION induction . Engraftment and phenotype were examined by immunohistochemistry and FISH at 4 and 24 weeks post-transplantation, and VEGF receptors were determined by real time PCR. RESULTS VEGF had no quantitative effect on incorporation of elutriated cells in the injured retina, yet it induced early expression of neuroal markers in cells incorporated in the RGC layer and promoted durable gliosis, most prominent perivascular astrocytes. These effects were mediated by VEGF-R1/Flt-1, which is constitutively expresses in the elutriated fraction of stem cells. Mobilization with GM-CSF limited the differentiation of bone marrow progenitors to microglia, which was also fostered by VEGF. CONCLUSIONS VEGF signaling mediated by Flt-1 induces early neural and sustained astrocytic differentiation of stem cells elutriated from adult bone-marrow, with significant contribution to stabilization retinal architecture following ischemic injury.
Collapse
Affiliation(s)
- Bat-Chen R Avraham-Lubin
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | | | | | | |
Collapse
|
10
|
Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer Stem Cells as a Predictive Factor in Radiotherapy. Semin Radiat Oncol 2012; 22:151-74. [DOI: 10.1016/j.semradonc.2011.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Iskovich S, Goldenberg-Cohen N, Stein J, Yaniv I, Fabian I, Askenasy N. Elutriated Stem Cells Derived from the Adult Bone Marrow Differentiate into Insulin-Producing Cells In Vivo and Reverse Chemical Diabetes. Stem Cells Dev 2012; 21:86-96. [DOI: 10.1089/scd.2011.0057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- Krieger Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Jerry Stein
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Isaac Yaniv
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ina Fabian
- Department of Cell Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadir Askenasy
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
12
|
Iskovich S, Goldenberg-Cohen N, Stein J, Yaniv I, Farkas DL, Askenasy N. β-Cell Neogenesis: Experimental Considerations in Adult Stem Cell Differentiation. Stem Cells Dev 2011; 20:569-82. [DOI: 10.1089/scd.2010.0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- Krieger Laboratory of Ophthalmology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Jerry Stein
- Bone Marrow Transplantation Unit, Department of Pediatric Hematology-Oncology, Petach Tikva, Israel
| | - Isaac Yaniv
- Bone Marrow Transplantation Unit, Department of Pediatric Hematology-Oncology, Petach Tikva, Israel
| | | | - Nadir Askenasy
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
13
|
Fong CY, Gauthaman K, Bongso A. Teratomas from pluripotent stem cells: A clinical hurdle. J Cell Biochem 2010; 111:769-81. [DOI: 10.1002/jcb.22775] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Wu X, Wang S, Chen B, An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res 2010; 340:549-67. [DOI: 10.1007/s00441-010-0978-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 04/06/2010] [Indexed: 01/06/2023]
|
15
|
Resende RR, Adhikari A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal 2009; 7:20. [PMID: 19712465 PMCID: PMC2744676 DOI: 10.1186/1478-811x-7-20] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/27/2009] [Indexed: 11/14/2022] Open
Abstract
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | | |
Collapse
|
16
|
Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC. Derivation of neural stem cells from mesenchymal stemcells: evidence for a bipotential stem cell population. Stem Cells Dev 2009; 17:1109-21. [PMID: 18426339 DOI: 10.1089/scd.2008.0068] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neural stem cell (NSC) transplantation has been proposed as a future therapy for neurodegenerative disorders. However, NSC transplantation will be hampered by the limited number of brain donors and the toxicity of immunosuppressive regimens that might be needed with allogeneic transplantation. These limitations may be avoided if NSCs can be generated from clinically accessible sources, such as bone marrow (BM) and peripheral blood samples, that are suitable for autologous transplantation. We report here that NSCs can be generated from human BM-derived mesenchymal stem cells (MSCs). When cultured in NSC culture conditions, 8% of MSCs were able to generate neurospheres. These MSC-derived neurospheres expressed characteristic NSC antigens, such as nestin and musashi-1, and were capable of self-renewal and multilineage differentiation into neurons, astrocytes, and oligodendrocytes. Furthermore, when these MSC-derived neurospheres were cocultured with primary astrocytes, they differentiate into neurons that possess both dendritic and axonal processes, form synapses, and are able to fire tetrodotoxin-sensitive action potentials. When these MSC-derived NSCs were switched back to MSC culture conditions, a small fraction of NSCs (averaging 4-5%) adhered to the culture flasks, proliferated, and displayed the morphology of MSCs. Those adherent cells expressed the characteristic MSC antigens and regained the ability to differentiate into multiple mesodermal lineages. Data presented in this study suggest that MSCs contain a small fraction (averaging 4-5%) of a bipotential stem cell population that is able to generate either MSCs or NSCs depending on the culture conditions.
Collapse
Affiliation(s)
- Lijuan Fu
- Division of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California 91010-3000, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Stem cell research is at the heart of regenerative medicine, which holds great promise for the treatment of many devastating disorders. However, in addition to hurdles posed by well-publicized ethical issues, this emerging field presents many biological challenges. What is a stem cell? How are embryonic stem cells different from adult stem cells? What are the physiological bases for therapeutically acceptable stem cells? In this editorial review, I will briefly discuss these superficially simple but actually rather complex issues that surround this fascinating cell type. The goal of this special issue on stem cells in Gene Therapy is to review some fundamental and critical aspects of current stem cell research that have translational potential.
Collapse
Affiliation(s)
- T Cheng
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA.
| |
Collapse
|