1
|
Yihunie FB, Belete MA, Fentahun G, Dubie T. Molecular detection and antibiogram of Shiga toxin-producing Escherichia coli (STEC) from raw milk in and around Bahir Dar town dairy farms, Ethiopia. Heliyon 2024; 10:e28839. [PMID: 38601628 PMCID: PMC11004750 DOI: 10.1016/j.heliyon.2024.e28839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Illnesses associated with consuming infected milk and milk products are a widespread problem in low and middle-income countries. Shiga toxin-producing Escherichia coli (STEC) is a bacterium commonly found in raw milk and causes foodborne diseases ranging from mild diarrhea to severe hemorrhagic colitis and hemolytic uremic syndrome. This study aimed to investigate the virulence gene and antimicrobial resistance profiles of Shiga toxin-producing E. coli strains isolated from raw milk in dairy farms in and around Bahir Dar town. Raw milk samples (n = 128) collected from December 2021 to July 2022 were cultured, and E. coli strains were isolated using standard methods. Shiga toxin-producing E. coli strains were identified genotypically by the presence of the virulence markers using a single-plex polymerase chain reaction. The antibiotic susceptibility testing of Shiga toxin-producing E. coli isolates was done by the agar disk diffusion method. In total, 32 E. coli isolates were recovered from milk samples from lactating animals. PCR screening of these isolates resulted in 19 (59.3%) positives for Shiga toxin-producing E. coli. The stx2 gene was detected in 53% of cases, followed by stx1 (31%) and eae (16%. The STEC isolates were highly sensitive to ciprofloxacin (94.7%) and kanamycin (89.5%), while exhibiting significant resistance to amoxicillin (89.5%) and streptomycin (73.7%). The present study points out the occurrence of virulent and antibiotic-resistant Shiga toxin-producing E. coli strains in raw milk that could pose a potential risk to public health. Further analysis by whole genome sequencing is necessary for an in-depth assessment and understanding of their virulence and resistance factors. Moreover, large-scale studies are needed to identify the prevalence and potential risk factors and to prevent the spread of antibiotic-resistant STEC strains in the milk production chain.
Collapse
Affiliation(s)
| | - Mequanint Addisu Belete
- Department of Veterinary Laboratory Technology, College of Agriculture and Natural Resource, Debre Markos University, Debre Markos, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gizachew Fentahun
- College of Veterinary Medicine and Animal Science, Samara University, Semera, Ethiopia
| | - Teshager Dubie
- College of Veterinary Medicine and Animal Science, Samara University, Semera, Ethiopia
| |
Collapse
|
2
|
Carter MQ, Quiñones B, Laniohan N, Carychao D, Pham A, He X, Cooley M. Pathogenicity assessment of Shiga toxin-producing Escherichia coli strains isolated from wild birds in a major agricultural region in California. Front Microbiol 2023; 14:1214081. [PMID: 37822735 PMCID: PMC10562709 DOI: 10.3389/fmicb.2023.1214081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) consists of diverse strains differing in genetic make-up and virulence potential. To better understand the pathogenicity potential of STEC carried by the wildlife, three STEC and one E. coli strains isolated from wild birds near a major agricultural region in California were selected for comparative pathogenomic analyses. Three American crow (Corvus brachyrhynchos) strains, RM9088, RM9513, and RM10410, belonging to phylogroup A with serotypes O109:H48, O9:H30, and O113:H4, respectively, and a red-winged blackbird (Agelaius phoeniceus) strain RM14516 in phylogroup D with serotype O17:H18, were examined. Shiga toxin genes were identified in RM9088 (stx1a), RM10410 (stx1a + stx2d), and RM14516 (stx2a). Unlike STEC O157:H7 strain EDL933, none of the avian STEC strains harbored the pathogenicity islands OI-122, OI-57, and the locus of enterocyte effacement, therefore the type III secretion system biogenesis genes and related effector genes were absent in the three avian STEC genomes. Interestingly, all avian STEC strains exhibited greater (RM9088 and RM14516) or comparable (RM10410) cytotoxicity levels compared with EDL933. Comparative pathogenomic analyses revealed that RM9088 harbored numerous genes encoding toxins, toxins delivery systems, and adherence factors, including heat-labile enterotoxin, serine protease autotransporter toxin Pic, type VI secretion systems, protein adhesin Paa, fimbrial adhesin K88, and colonization factor antigen I. RM9088 also harbored a 36-Kb high pathogenicity island, which is related to iron acquisition and pathogenicity in Yersinia spp. Strain RM14516 carried an acid fitness island like the one in EDL933, containing a nine gene cluster involved in iron acquisition. Genes encoding extracellular serine protease EspP, subtilase cytotoxin, F1C fimbriae, and inverse autotransporter adhesin IatC were only detected in RM14516, and genes encoding serine protease autotransporter EspI and P fimbriae were only identified in RM10410. Although all curli genes were present in avian STEC strains, production of curli fimbriae was only detected for RM9088 and RM14516. Consistently, strong, moderate, and little biofilms were observed for RM9088, RM14516, and RM10410, respectively. Our study revealed novel combinations of virulence factors in two avian strains, which exhibited high level of cytotoxicity and strong biofilm formation. Comparative pathogenomics is powerful in assessing pathogenicity and health risk of STEC strains.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Nicole Laniohan
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Antares Pham
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Michael Cooley
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
3
|
Ranjbar R, Safarpoor Dehkordi F, Sakhaei Shahreza MH, Rahimi E. Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products. Antimicrob Resist Infect Control 2018; 7:53. [PMID: 29686859 PMCID: PMC5902837 DOI: 10.1186/s13756-018-0345-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
Background Shiga-toxigenic Escherichia coli strains are one of the most important foodborne bacteria with an emergence of antibiotic resistance. Foodborne STEC strains are mainly associated with presence of certain virulence factors and O-seogroups. The present investigation was done to study the distribution of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxigenic Escherichia coli isolated from milk and dairy products. Methods Six-hundred samples were randomly collected and immediately transferred to laboratory. All samples were cultured and E. coli strains were isolated. STEC strains were identified based on the presence of putative virulence factors and subtypes. STEC isolates were subjected to multiplex PCR and disk diffusion methods. Results One-hundred and eighty-one out of 600 samples (30.16%) harbored E. coli. Prevalence of STEC strains was 10.66%. O157 (43.75%) and O26 (37.50%) were the most frequently identified serogroups. Aac(3)-IV (100%), CITM (96.87%) and tetA (76.56%) were the most commonly detected antibiotic resistance genes. STEC strains had the highest prevalence of resistance against ampicillin (100%), gentamicin (100%) and tetracycline (96.87%). Conclusions Kashk and dough were negative for presence of E. coli strains. High prevalence of resistant-O157 strains and simultaneous presence of multiple virulence factors pose an important public health problem regarding the consumption of raw milk and dairy products.
Collapse
Affiliation(s)
- Reza Ranjbar
- 1Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Ebrahim Rahimi
- Department of Food Hygiene and Public health, Faculty of Veterinary Medicine, Shahrekord Branch, Shahrekord, Iran
| |
Collapse
|
4
|
Fadel HM, Afifi R, Al-Qabili DM. Characterization and zoonotic impact of Shiga toxin producing Escherichia coli in some wild bird species. Vet World 2017; 10:1118-1128. [PMID: 29062203 PMCID: PMC5639112 DOI: 10.14202/vetworld.2017.1118-1128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022] Open
Abstract
Aim: Wild birds are considered silent vectors of some zoonotic water and food borne pathogens of public health significance. Owing to the importance of Shiga toxin producing Escherichia coli (STEC) as the most pathogenic among the emerging diarrheagenic E. coli groups that can infect man; the present study was designed to detect the occurrence of STEC among wild birds in Egypt. Materials and Methods: A total of 177 intestinal content swab samples originating from five wild bird species were investigated for the presence of E. coli and STEC by standard culture methods. Suspect STEC isolates were further characterized by serotyping, random amplified polymorphic DNA polymerase chain reaction (RAPD PCR), antimicrobial resistance pattern and PCR detection of stx1, stx2, and eae genes. Results: A total of 30 suspect STEC isolates from 30 positive birds’ samples were detected and identified on STEC CHROMagar (semi-captive pigeons, 15; house crows, 8; cattle egrets, 3; moorhens, 2; and house teals, 2). 25 isolates were grouped into 13 serogroups (O:20, O:25, O:26, O:27, O:63, O:78, O:111, O:114, O:125, O:128, O:142, O:153, and O:158), while five were rough strains. The distribution of STEC virulence genes among wild birds was as follows: 16 birds carried stx1 gene only (nine pigeons [28.1%], six crows [7.1%], and one cattle egret [5.6%]). Stx1 and stx2 genes together were detected in four birds (one cattle egret [5.6%], two moorhens [6.1%], and one house teal, [10%]). Only one pigeon (3.1%) possessed the three alleles. Disk diffusion test results showed that cefixime was the most effective against STEC serotypes with (93.3%) sensitivity, followed by gentamycin (56.7%), and amoxicillin (50%). On the other hand, all the recovered STEC isolates were resistant to cefotaxime, doxycycline, cephalothin, and sulfisoxazole. RAPD fingerprinting using primers OPA-2 and OPA-9 showed that STEC isolates were heterogeneous; they yielded 30 and 27 different clusters, respectively. Conclusions: Wild birds carry STEC and may add to the contamination of the surrounding environment.
Collapse
Affiliation(s)
- Hanaa Mohamed Fadel
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Rabab Afifi
- Department of Wildlife and Zoo Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Dheyazan Mohammed Al-Qabili
- Department of Veterinary Public Health, Agriculture and Veterinary Medicine College, Thamar University, Yemen
| |
Collapse
|
5
|
Ranjbar R, Masoudimanesh M, Dehkordi FS, Jonaidi-Jafari N, Rahimi E. Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods; virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob Resist Infect Control 2017; 6:4. [PMID: 28074125 PMCID: PMC5219770 DOI: 10.1186/s13756-016-0163-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND According to the presence of the weak, diabetic and immunosuppressive patients in hospitals, hospital foods should have a high quality and safety. Cooking a lot of foods higher than daily requirement, storage of cooked foods in an inappropriate condition and presence of nurses and servants in distribution of food to patients are the main reasons caused contamination of hospital foods. Shiga toxigenic Escherichia coli is one of the common cause of food poisoning in hospitals. The present research was carried out to study the distribution of virulence factors, O-serogroups and antibiotic resistance properties in STEC strains recovered from Iranian hospital food samples. METHODS Five-hundred and eighty raw and cooked food samples were collected and immediately transferred to the laboratory. E. coli-positive strains were subjected to PCR and disk diffusion method. RESULTS Thirty-nine out of 580 (6.72%) hospital food samples were contaminated with E. coli. Raw (20%) and cooked meat (6%) were the most commonly contaminated samples. Raw samples had the higher prevalence of E. coli (P <0.01). Samples which were collected in the summer season had the highest prevalence of bacteria (64.10%). Significant difference was seen between the prevalence of EHEC and AEEC subtypes (P <0.01). The most commonly detected virulence factors in both EHEC and AEEC subtypes were stx1 and eae. The most commonly detected serogroups were O26 (43.75%) and O157 (25%) and there were no positive results for O103, O145, O91, O113 and O128 serogroups. Aac (3)-IV (100%), CITM (100%) and tetA (62.50%) were the most commonly detected antibiotic resistance genes. STEC strains harbored the highest levels of resistance against ampicillin (93.75%), gentamycin (93.75%), tetracycline (87.50%) and ciprofloxacin (81.25%). All of the STEC strains were resistant to at least 3 antibiotics, while the prevalence of resistance against more than 12 antibiotics were 12.50%. CONCLUSIONS High presence of O157 serogroups, EHEC strains and animal-based antibiotics in cooked foods showed insufficiency of cooking time and temperature in the kitchens of hospitals. Judicious prescription of antibiotics and attentions to the principles of food safety can reduce the risk of resistant and virulent strains of STEC in hospital foods.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Masoudimanesh
- Doctor Veterinary Medicine, College of Veterinary Medicine, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| | | | | | - Ebrahim Rahimi
- Department of Food Hygiene and Public Health, College of Veterinary Medicine, Shahrekord Branch, Shahrekord, Iran
| |
Collapse
|