1
|
Mahmudin L, Wulandani R, Riswan M, Kurnia Sari E, Dwi Jayanti P, Syahrul Ulum M, Arifin M, Suharyadi E. Silver nanoparticles-based localized surface plasmon resonance biosensor for Escherichia coli detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123985. [PMID: 38316074 DOI: 10.1016/j.saa.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Escherichia coli (E. coli) bacteria with varying solution concentrations have been successfully detected using silver nanoparticles (Ag NPs)-based localized surface plasmon resonance (LSPR) biosensors. The Ag NPs were effectively synthesized by a chemical method using trisodium citrate with L-Histidine (L-His) and deposited on the surface of Au thin film-coated half-cylinder BK-7 prisms. He-Ne laser with a wavelength of 632.8 nm was used to generate LSPR phenomena in Kretschmann configuration with prism/Au thin film/His-Ag NPs/E. coli bacteria/air structure arrangements. The variation of E. coli bacteria concentration was carried out to determine the effect of E. coli bacteria concentration on the LSPR curve characteristics. The characterization results showed that the size of Ag NPs was 18.7 nm, and that of His-Ag NPs was 17.9 nm. Selected area electron diffraction results indicated the formation of diffraction rings with the presence of lattice planes (111), (200), (220), and (311), proving the face-centered cubic crystal structure of silver. The absorbance peak of Ag NPs shifted from a wavelength of 421-414 nm with an increase in band gap energy from 2.94 eV to 2.99 eV, along with a decreased average particle size. The functional groups observed in His-Ag NPs showed wavenumbers at 3320 to 3318 cm-1, 2106 to 2129 cm-1, and 1635 cm-1, showing the OH, CH, and C CO bonds, respectively. The SPR angle of the prism/Au thin film/air structure is 44.80°. Meanwhile, the LSPR angle for the prism/Au thin film/His-Ag NPs/air structure is 44.92°. There is an increase in the LSPR angle by 0.12°. Moreover, the minimum reflectance increases by 0.02. After detecting E. coli bacteria, the LSPR angle shifted by 0.26°, 0.38°, and 0.49° for concentrations of 6.0 × 108 CFU/mL, 6.0 × 107 CFU/mL and 6.0 × 106 CFU/mL respectively. However, the minimum reflectance rose from 0.09° to 0.14°, 0.20°, and 0.22°. Moreover, SPR testing with the structure of the prism/Au thin film/E. coli bacteria/air was carried out to determine the contribution of His-Ag NPs for detecting E. coli bacteria. The results showed that no angular shift occurs. These results indicate that using Ag NPs encapsulated with L-His is essential in amplifying the SPR signal and detecting E. coli bacteria. There was a notable alteration in both the LSPR angle and minimum reflectance indicating that adding His-Ag NPs facilitated the interaction between the E. coli and the sensor surface, thereby enhancing the performance of LSPR-based sensors for E. coli detection for low limit of detection value at 0.47 CFU/mL.
Collapse
Affiliation(s)
- Lufsyi Mahmudin
- Department of Physics, Universitas Tadulako, Palu, Indonesia.
| | | | - Muhammad Riswan
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Emi Kurnia Sari
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Putri Dwi Jayanti
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - M Syahrul Ulum
- Department of Physics, Universitas Tadulako, Palu, Indonesia
| | - Muhammad Arifin
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edi Suharyadi
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Srivastava S, Singh S, Mishra AC, Lohia P, Dwivedi DK. Numerical Study of Titanium Dioxide and MXene Nanomaterial-Based Surface Plasmon Resonance Biosensor for Virus SARS-CoV-2 Detection. PLASMONICS (NORWELL, MASS.) 2023; 18:1-12. [PMID: 37360047 PMCID: PMC10171911 DOI: 10.1007/s11468-023-01874-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
A novel surface plasmon resonance-based biosensor for SARS-CoV-2 virus is proposed in this article. The biosensor is a Kretschmann configuration-based structure that consists of CaF2 prism as base, at which silver (Ag), TiO2, and MXene nanolayers are used to enhance the performance. Theoretically, the performance parameters have been investigated by means of Fresnel equations and transfer matrix method (TMM). The TiO2 nanolayer not only prevents oxidation of Ag layer but also enhances the evanescent field in its vicinity. The sensor provides an ultrahigh angular sensitivity of 346°/RIU for the detection of SARS-CoV-2 virus. Some other performance parameters, including FWHM (full width at half maxima), detection accuracy (DA), limit of detection (LOD), and quality factor (QF) have also been calculated for proposed SPR biosensor with their optimized values 2.907°, 0.3439 deg-1, 1.445 × 10-5, and 118.99 RIU-1, respectively. The obtained results designate that the proposed surface plasmon resonance (SPR) based biosensor has notably enhanced angular sensitivity as compared to previous results reported in the literatures till date. This work may facilitate a significant biological sample sensing device for fast and accurate diagnosis at early stage of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Swati Srivastava
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Sachin Singh
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Adarsh Chandra Mishra
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Pooja Lohia
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - D. K. Dwivedi
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| |
Collapse
|
3
|
Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release 2022; 342:228-240. [PMID: 35016917 DOI: 10.1016/j.jconrel.2022.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/15/2023]
Abstract
RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
4
|
Moznuzzaman M, Khan I, Islam MR. Nano-layered surface plasmon resonance-based highly sensitive biosensor for virus detection: A theoretical approach to detect SARS-CoV-2. AIP ADVANCES 2021; 11:065023. [PMID: 34168915 PMCID: PMC8211122 DOI: 10.1063/5.0046574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/31/2021] [Indexed: 05/14/2023]
Abstract
The outbreak of the coronavirus disease (COVID-19) pandemic has become a worldwide health catastrophe instigated by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Countries are battling to slow the spread of this virus by testing and treating patients, along with other measures such as prohibiting large gatherings, maintaining social distance, and frequent, thorough hand washing, as no vaccines or medicines are available that could effectively treat infected people for different types of SARS-CoV-2 variants. However, the testing procedure to detect this virus is lengthy. This study proposes a surface plasmon resonance-based biosensor for fast detection of SARS-CoV-2. The sensor employs a multilayered configuration consisting of TiO2-Ag-MoSe2 graphene with a BK7 prism. Antigen-antibody interaction was considered the principle for this virus detection. Immobilized CR3022 antibody molecules for detecting SARS-CoV-2 antigens (S-glycoprotein) are used for this sensor. It was found that the proposed sensor's sensitivity (194°/RIU), quality factor (54.0390 RIU-1), and detection accuracy (0.2702) outperformed those of other single and multilayered structures. This study could be used as a theoretical base and primary step in constructing an actual sensor.
Collapse
Affiliation(s)
| | - Imran Khan
- Department of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Author to whom correspondence should be addressed: and
| | - Md. Rafiqul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| |
Collapse
|
5
|
Chen YT, Lee YC, Lai YH, Lim JC, Huang NT, Lin CT, Huang JJ. Review of Integrated Optical Biosensors for Point-Of-Care Applications. BIOSENSORS-BASEL 2020; 10:bios10120209. [PMID: 33353033 PMCID: PMC7766912 DOI: 10.3390/bios10120209] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing. In this article, we discuss the applications by specifically looking into point-of-care testing (POCT) using integrated optical sensors. The requirement and future perspective of integrated optical biosensors for POC is addressed.
Collapse
Affiliation(s)
- Yung-Tsan Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Ya-Chu Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Yao-Hsuan Lai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Jin-Chun Lim
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Nien-Tsu Huang
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chih-Ting Lin
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jian-Jang Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Correspondence:
| |
Collapse
|
6
|
Nangare SN, Patil PO. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for In Vitro Diagnosis: A Review. ACS Biomater Sci Eng 2020; 7:2-30. [DOI: 10.1021/acsbiomaterials.0c01203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sopan N. Nangare
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| | - Pravin O. Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| |
Collapse
|
7
|
Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta 2020; 187:549. [PMID: 32888061 DOI: 10.1007/s00604-020-04526-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common and important diseases with a high mortality rate. Breast cancer is among the three most common types of cancer in women, and the mortality rate has reached 0.024% in some countries. For early-stage preclinical diagnosis of breast cancer, sensitive and reliable tools are needed. Today, there are many types of biomarkers that have been identified for cancer diagnosis. A wide variety of detection strategies have also been developed for the detection of these biomarkers from serum or other body fluids at physiological concentrations. Aptamers are single-stranded DNA or RNA oligonucleotides and promising in the production of more sensitive and reliable biosensor platforms in combination with a wide range of nanomaterials. Conformational changes triggered by the target analyte have been successfully applied in fluorometric, colorimetric, plasmonic, and electrochemical-based detection strategies. This review article presents aptasensor approaches used in the detection of vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and mucin-1 glycoprotein (MUC1) biomarkers, which are frequently studied in the diagnosis of breast cancer. The focus of this review article is on developments of the last decade for detecting these biomarkers using various sensitivity enhancement techniques and nanomaterials.
Collapse
Affiliation(s)
- Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | | | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| |
Collapse
|
8
|
Polley N, Basak S, Hass R, Pacholski C. Fiber optic plasmonic sensors: Providing sensitive biosensor platforms with minimal lab equipment. Biosens Bioelectron 2019; 132:368-374. [PMID: 30901726 DOI: 10.1016/j.bios.2019.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
A simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 ± 83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassay studies with a specially designed 3D printed flow cell are presented exploiting the presented optical fiber based biosensors.
Collapse
Affiliation(s)
- Nabarun Polley
- University of Potsdam, Institute of Chemistry, Physical Chemistry - innoFSPEC, Am Mühlenberg 3, 14476 Potsdam, Germany
| | - Supratim Basak
- University of Potsdam, Institute of Chemistry, Physical Chemistry - innoFSPEC, Am Mühlenberg 3, 14476 Potsdam, Germany; University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Roland Hass
- University of Potsdam, Institute of Chemistry, Physical Chemistry - innoFSPEC, Am Mühlenberg 3, 14476 Potsdam, Germany
| | - Claudia Pacholski
- University of Potsdam, Institute of Chemistry, Physical Chemistry - innoFSPEC, Am Mühlenberg 3, 14476 Potsdam, Germany; University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
9
|
Pan M, Li S, Wang J, Sheng W, Wang S. Development and Validation of a Reproducible and Label-Free Surface Plasmon Resonance Immunosensor for Enrofloxacin Detection in Animal-Derived Foods. SENSORS 2017; 17:s17091984. [PMID: 28867795 PMCID: PMC5621032 DOI: 10.3390/s17091984] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/05/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
This study describes the development of a reproducible and label-free surface plasmon resonance (SPR) immunosensor and its application in the detection of harmful enrofloxacin (ENRO) in animal-derived foods. The experimental parameters for the immunosensor construction and regeneration, including the pH value (4.5), concentration for coating ENRO-ovalbumin conjugate (ENRO-OVA) (100 μg·mL−1), concentration of anti-ENRO antibody (80 nM) and regeneration solution (0.1 mol·L−1 HCl) were evaluated in detail. With the optimized parameters, the proposed SPR immunosensor obtained a good linear response to ENRO with high sensitivity (IC50: 3.8 ng·mL−1) and low detection limit (IC15: 1.2 ng·mL−1). The proposed SPR immunosensor was further validated to have favorable performances for ENRO residue detection in typical animal-derived foods after a simple matrix pretreatment procedure, as well as acceptable accuracy (recovery: 84.3–96.6%), precision (relative standard deviation (n = 3): 1.8–4.6%), and sensitivity (IC15 ≤ 8.4 ng·mL−1). Each SPR chip for analysis can be reused at least 100 times with good stability and the analysis cycle containing the steps of sample uploading/chip regeneration/baseline recovery can be completed within 6 min (one cycle) and auto-operated by a predetermined program. These results demonstrated that the proposed SPR immunosensor provided an effective strategy for accurate, sensitive, and rapid detection for ENRO residue, which has great potential for routine analysis of large numbers of samples for measuring different types of compounds.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shijie Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|