1
|
Lucke-Wold B, Zasler ND, Ruchika FNU, Weisman S, Le D, Brunicardi J, Kong I, Ghumman H, Persad S, Mahan D, Delawan M, Shah S, Aghili-Mehrizi S. Supplement and nutraceutical therapy in traumatic brain injury. Nutr Neurosci 2024:1-35. [DOI: 10.1080/1028415x.2024.2404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Affiliation(s)
| | - Nathan D. Zasler
- Founder, CEO & CMO, Concussion Care Centre of Virginia, Ltd., Medical Director, Tree of Life, Richmond, VA, USA
- Professor, affiliate, Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Professor, Visiting, Department of Physical Medicine and Rehabilitation, University of Virginia, Charlottesville, VA, USA
- Vice-Chairperson, IBIA, London, UK
- Chair Emeritus, IBIA, London, UK
| | - FNU Ruchika
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Sydney Weisman
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Dao Le
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Jade Brunicardi
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Iris Kong
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Haider Ghumman
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Persad
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - David Mahan
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Maliya Delawan
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
2
|
Cotoia A, Charitos IA, Corriero A, Tamburrano S, Cinnella G. The Role of Macronutrients and Gut Microbiota in Neuroinflammation Post-Traumatic Brain Injury: A Narrative Review. Nutrients 2024; 16:4359. [PMID: 39770985 PMCID: PMC11677121 DOI: 10.3390/nu16244359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Traumatic brain injury (TBI) represents a multifaceted pathological condition resulting from external forces that disrupt neuronal integrity and function. This narrative review explores the intricate relationship between dietary macronutrients, gut microbiota (GM), and neuroinflammation in the TBI. We delineate the dual aspects of TBI: the immediate mechanical damage (primary injury) and the subsequent biological processes (secondary injury) that exacerbate neuronal damage. Dysregulation of the gut-brain axis emerges as a critical factor in the neuroinflammatory response, emphasizing the role of the GM in mediating immune responses. Recent evidence indicates that specific macronutrients, including lipids, proteins, and probiotics, can influence microbiota composition and in turn modulate neuroinflammation. Moreover, specialized dietary interventions may promote resilience against secondary insults and support neurological recovery post-TBI. This review aims to synthesize the current preclinical and clinical evidence on the potential of dietary strategies in mitigating neuroinflammatory pathways, suggesting that targeted nutrition and gut health optimization could serve as promising therapeutic modalities in TBI management.
Collapse
Affiliation(s)
- Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Istitute” of Bari, 70124 Bari, Italy;
- Doctoral School on Applied Neurosciences, Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Alberto Corriero
- Department of Interdisciplinary Medicine-ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Stefania Tamburrano
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| | - Gilda Cinnella
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| |
Collapse
|
3
|
Gao L, Chang Y, Lu S, Liu X, Yao X, Zhang W, Sun E. A nomogram for predicting the necessity of tracheostomy after severe acute brain injury in patients within the neurosurgery intensive care unit: A retrospective cohort study. Heliyon 2024; 10:e27416. [PMID: 38509924 PMCID: PMC10951500 DOI: 10.1016/j.heliyon.2024.e27416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Objective This retrospective study was aimed to develop a predictive model for assessing the necessity of tracheostomy (TT) in patients admitted to the neurosurgery intensive care unit (NSICU). Method We analyzed data from 1626 NSICU patients with severe acute brain injury (SABI) who were admitted to the Department of NSICU at the Affiliated People's Hospital of Jiangsu University between January 2021 and December 2022. Data of the patients were retrospectively obtained from the clinical research data platform. The patients were randomly divided into training (70%) and testing (30%) cohorts. The least absolute shrinkage and selection operator (LASSO) regression identified the optimal predictive features. A multivariate logistic regression model was then constructed and represented by a nomogram. The efficacy of the model was evaluated based on discrimination, calibration, and clinical utility. Results The model highlighted six predictive variables, including the duration of NSICU stay, neurosurgery, orotracheal intubation time, Glasgow Coma Scale (GCS) score, systolic pressure, and respiration rate. Receiver operating characteristic (ROC) analysis of the nomogram yielded area under the curve (AUC) values of 0.854 (95% confidence interval [CI]: 0.822-0.886) for the training cohort and 0.865 (95% CI: 0.817-0.913) for the testing cohort, suggesting commendable differential performance. The predictions closely aligned with actual observations in both cohorts. Decision curve analysis demonstrated that the numerical model offered a favorable net clinical benefit. Conclusion We developed a novel predictive model to identify risk factors for TT in SABI patients within the NSICU. This model holds the potential to assist clinicians in making timely surgical decisions concerning TT.
Collapse
Affiliation(s)
- Liqin Gao
- Department of Neurosurgical Intensive Care Unit, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Yafen Chang
- Department of Neurosurgical Intensive Care Unit, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Siyuan Lu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Xiyang Liu
- Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Xiang Yao
- Department of Orthopaedics, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Wei Zhang
- Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| | - Eryi Sun
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China
| |
Collapse
|
4
|
Jiang J, Luo Z, Zhang RC, Wang YL, Zhang J, Duan MY, Qiu ZJ, Huang C. Insights into the history and tendency of glycosylation and digestive system tumor: A bibliometric-based visual analysis. World J Gastrointest Oncol 2024; 16:1059-1075. [PMID: 38577469 PMCID: PMC10989360 DOI: 10.4251/wjgo.v16.i3.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Glycosylation, a commonly occurring post-translational modification, is highly expressed in several tumors, specifically in those of the digestive system, and plays a role in various cellular pathophysiological mechanisms. Although the importance and detection methods of glycosylation in digestive system tumors have garnered increasing attention in recent years, bibliometric analysis of this field remains scarce. The present study aims to identify the developmental trends and research hotspots of glycosylation in digestive system tumors. AIM To find and identify the developmental trends and research hotspots of glycosylation in digestive system tumors. METHODS We obtained relevant literature from the Web of Science Core Collection and employed VOSviewer 1.6.19 and CiteSpace (version 6.1.R6) to perform bibliometric analysis. RESULTS A total of 2042 documents spanning from 1978 to the present were analyzed, with the research process divided into three phases: the period of obscurity (1978-1990), continuous development period (1991-2006), and the rapid outbreak period (2007-2023). These documents were authored by researchers from 66 countries or regions, with the United States and China leading in terms of publication output. Reis Celso A had the highest number of publications, while Pinho SS was the most cited author. Co-occurrence analysis revealed the most popular keywords in this field are glycosylation, expression, cancer, colorectal cancer, and pancreatic cancer. Furthermore, the Journal of Proteome Research was the most prolific journal in terms of publications, while the Journal of Biological Chemistry had the most citations. CONCLUSION The bibliometric analysis shows current research focus is primarily on basic research in this field. However, future research should aim to utilize glycosylation as a target for treating tumor patients.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ren-Chao Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yue-Ling Wang
- Jiangnan University Wuxi School of Medicine, Wuxi 214122, Jiangsu Province, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ming-Yu Duan
- Department of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng-Jun Qiu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
5
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|