1
|
Naved BA, Han S, Koss KM, Kando MJ, Wang JJ, Weiss C, Passman MG, Wertheim JA, Luo Y, Zhang ZJ. Multivariate description of gait changes in a mouse model of peripheral nerve injury and trauma. PLoS One 2025; 20:e0312415. [PMID: 39774494 PMCID: PMC11706367 DOI: 10.1371/journal.pone.0312415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/05/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Animal models of nerve injury are important for studying nerve injury and repair, particularly for interventions that cannot be studied in humans. However, the vast majority of gait analysis in animals has been limited to univariate analysis even though gait data is highly multi-dimensional. As a result, little is known about how various spatiotemporal components of the gait relate to each other in the context of peripheral nerve injury and trauma. We hypothesize that a multivariate characterization of gait will reveal relationships among spatiotemporal components of gait with biological relevance to peripheral nerve injury and trauma. We further hypothesize that legitimate relationships among said components will allow for more accurate classification among distinct gait phenotypes than if attempted with univariate analysis alone. METHODS DigiGait data was collected of mice across groups representing increasing degrees of damage to the neuromusculoskeletal sequence of gait; that is (a) healthy controls, (b) nerve damage only via total nerve transection + reconnection of the femoral and sciatic nerves, and (c) nerve, muscle, and bone damage via total hind-limb transplantation. Multivariate relationships among the 30+ spatiotemporal measures were evaluated using exploratory factor analysis and forward feature selection to identify the features and latent factors that best described gait phenotypes. The identified features were then used to train classifier models and compared to a model trained with features identified using only univariate analysis. RESULTS 10-15 features relevant to describing gait in the context of increasing degrees of traumatic peripheral nerve injury were identified. Factor analysis uncovered relationships among the identified features and enabled the extrapolation of a set of latent factors that further described the distinct gait phenotypes. The latent factors tied to biological differences among the groups (e.g. alterations to the anatomical configuration of the limb due to transplantation or aberrant fine motor function due to peripheral nerve injury). Models trained using the identified features generated values that could be used to distinguish among pathophysiological states with high statistical significance (p < .001) and accuracy (>80%) as compared to univariate analysis alone. CONCLUSION This is the first performance evaluation of a multivariate approach to gait analysis and the first demonstration of superior performance as compared to univariate gait analysis in animals. It is also the first study to use multivariate statistics to characterize and distinguish among different gradations of gait deficit in animals. This study contributes a comprehensive, multivariate characterization pipeline for application in the study of any pathologies in which gait is a quantitative translational outcome metric.
Collapse
Affiliation(s)
- Bilal A. Naved
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States of America
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Shuling Han
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Kyle M. Koss
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
- Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Mary J. Kando
- Behavioral Phenotyping Core, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Craig Weiss
- Behavioral Phenotyping Core, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Maya G. Passman
- Barnard College, Columbia University, New York, NY United States of America
| | - Jason A. Wertheim
- Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Zheng J. Zhang
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
2
|
Bosco F, Guarnieri L, Nucera S, Scicchitano M, Ruga S, Cardamone A, Maurotti S, Russo C, Coppoletta AR, Macrì R, Bava I, Scarano F, Castagna F, Serra M, Caminiti R, Maiuolo J, Oppedisano F, Ilari S, Lauro F, Giancotti L, Muscoli C, Carresi C, Palma E, Gliozzi M, Musolino V, Mollace V. Pathophysiological Aspects of Muscle Atrophy and Osteopenia Induced by Chronic Constriction Injury (CCI) of the Sciatic Nerve in Rats. Int J Mol Sci 2023; 24:ijms24043765. [PMID: 36835176 PMCID: PMC9962869 DOI: 10.3390/ijms24043765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Skeletal muscle atrophy is a condition characterized by a loss of muscle mass and muscle strength caused by an imbalance between protein synthesis and protein degradation. Muscle atrophy is often associated with a loss of bone mass manifesting as osteoporosis. The aim of this study was to evaluate if chronic constriction injury (CCI) of the sciatic nerve in rats can be a valid model to study muscle atrophy and consequent osteoporosis. Body weight and body composition were assessed weekly. Magnetic resonance imaging (MRI) was performed on day zero before ligation and day 28 before sacrifice. Catabolic markers were assessed via Western blot and Quantitative Real-time PCR. After the sacrifice, a morphological analysis of the gastrocnemius muscle and Micro-Computed Tomography (Micro-CT) on the tibia bone were performed. Rats that underwent CCI had a lower body weight increase on day 28 compared to the naive group of rats (p < 0.001). Increases in lean body mass and fat mass were also significantly lower in the CCI group (p < 0.001). The weight of skeletal muscles was found to be significantly lower in the ipsilateral hindlimb compared to that of contralateral muscles; furthermore, the cross-sectional area of muscle fibers decreased significantly in the ipsilateral gastrocnemius. The CCI of the sciatic nerve induced a statistically significant increase in autophagic and UPS (Ubiquitin Proteasome System) markers and a statistically significant increase in Pax-7 (Paired Box-7) expression. Micro-CT showed a statistically significant decrease in the bone parameters of the ipsilateral tibial bone. Chronic nerve constriction appeared to be a valid model for inducing the condition of muscle atrophy, also causing changes in bone microstructure and leading to osteoporosis. Therefore, sciatic nerve constriction could be a valid approach to study muscle-bone crosstalk and to identify new strategies to prevent osteosarcopenia.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (F.B.); (M.G.)
| | - Lorenza Guarnieri
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Miriam Scicchitano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Samantha Maurotti
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Cristina Russo
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH) Center, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Sara Ilari
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Filomena Lauro
- Henry and Amelia Nasrallah Center for Neuroscience, Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Grand Blvd, St. Louis, MO 63104, USA
| | - Luigi Giancotti
- Henry and Amelia Nasrallah Center for Neuroscience, Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Grand Blvd, St. Louis, MO 63104, USA
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (F.B.); (M.G.)
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH) Center, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Isvoranu G, Manole E, Neagu M. Gait Analysis Using Animal Models of Peripheral Nerve and Spinal Cord Injuries. Biomedicines 2021; 9:1050. [PMID: 34440252 PMCID: PMC8392642 DOI: 10.3390/biomedicines9081050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
The present review discusses recent data regarding rodent models of spinal cord and peripheral nerve injuries in terms of gait analysis using the CatWalk system (CW), an automated and exceptionally reliable system for assessing gait abnormalities and motor coordination. CW is a good tool for both studying improvements in the walking of animals after suffering a peripheral nerve and spinal cord lesion and to select the best therapies and procedures after tissue destruction, given that it provides objective and quantifiable data. Most studies using CW for gait analysis that were published in recent years focus on injuries inflicted in the peripheral nerve, spinal cord, and brain. CW has been used in the assessment of rodent motor function through high-resolution videos, whereby specialized software was used to measure several aspects of the animal's gait, and the main characteristics of the automated system are presented here. CW was developed to assess footfall and gait changes, and it can calculate many parameters based on footprints and time. However, given the multitude of parameters, it is necessary to evaluate which are the most important under the employed experimental circumstances. By selecting appropriate animal models and evaluating peripheral nerve and spinal cord lesion regeneration using standardized methods, suggestions for new therapies can be provided, which represents the translation of this methodology into clinical application.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Husbandry Unit, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania;
| | - Emilia Manole
- Laboratory of Cellular Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
| | - Monica Neagu
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91-93 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Medeiros P, Dos Santos IR, Júnior IM, Palazzo E, da Silva JA, Machado HR, Ferreira SH, Maione S, Coimbra NC, de Freitas RL. An Adapted Chronic Constriction Injury of the Sciatic Nerve Produces Sensory, Affective, and Cognitive Impairments: A Peripheral Mononeuropathy Model for the Study of Comorbid Neuropsychiatric Disorders Associated with Neuropathic Pain in Rats. PAIN MEDICINE 2021; 22:338-351. [PMID: 32875331 DOI: 10.1093/pm/pnaa206] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic constriction injury (CCI) is a model of neuropathic pain induced by four loose ligatures around the sciatic nerve. This work aimed to investigate the sensory, affective, cognitive, and motor changes induced by an adaptation of the CCI model by applying a single ligature around the sciatic nerve. METHODS Mechanical allodynia was measured from day 1 to day 28 postsurgery by the von Frey test. The beam walking test (BWT) was conducted weekly until 28 days after surgery. Anxiety- and depression-like behaviors, and cognitive performance were assessed through the open field (OF), forced swimming (FS), and novel object recognition (NOR) tests, respectively, 21 days after surgery. RESULTS The two CCI models, both Bennett and Xie's model (four ligatures of the sciatic nerve) and a modification of it (one ligature), induced mechanical allodynia, increased immobility in the FS, and reduced recognition index in the NOR. The exploratory behavior and time spent in the central part of the arena decreased, while the defensive behavior increased in the OF. The animals subjected to the two CCI models showed motor alterations in the BWT; however, autotomy was observed only in the group with four ligatures and not in the group with a single ligature. CONCLUSIONS Overall these results demonstrate that our adapted CCI model, using a single ligature around the sciatic nerve, induces sensory, affective, cognitive, and motor alterations comparable to the CCI model with four ligatures without generating autotomy. This adaptation to the CCI model may therefore represent an appropriate and more easily performed model for inducing neuropathic pain and study underlying mechanisms and effective treatments.
Collapse
Affiliation(s)
- Priscila Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ieda Regina Dos Santos
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Ivair Matias Júnior
- Laboratory of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enza Palazzo
- Division of Pharmacology, Department of Experimental Medicine, University of Campania "L. Vanvitelli," Naples, Italy
| | - José Aparecido da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Psychology Department, Federal University of Juiz de Fora (UFJF-MG), Juiz de Fora, Minas Gerais, Brazil
| | - Hélio Rubens Machado
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Laboratory of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio Henrique Ferreira
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| | - Sabatino Maione
- Division of Pharmacology, Department of Experimental Medicine, University of Campania "L. Vanvitelli," Naples, Italy.,IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - Norberto Cysne Coimbra
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Neuroelectrophysiology Multi-User Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
5
|
Heinzel J, Längle G, Oberhauser V, Hausner T, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury - a systematic review. J Neurosci Methods 2020; 345:108889. [PMID: 32755615 DOI: 10.1016/j.jneumeth.2020.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Injuries of the peripheral nervous system are common among the population affecting around 3% of all trauma patients. This high clinical need in the field of peripheral nerve injury and regeneration has been steadily driving experimental and epidemiological research. Thereby, it is crucial to determine the exact degree of recovery of end-organ function. Regeneration after nerve injuries is assessed by a wide variety of techniques and pre-clinical model systems, where rodent models are among the most widely used. However, results from rodents are difficult to translate to human patients in general, and reproducible and comparable assessment of functional recovery is of highest importance. Computerized gait analysis allows comprehensive acquisition of locomotor function. As the animals cross the recording device voluntarily, functional recovery is assessable with a minimum degree of human interference on their behavior. This article aims to give a detailed overview on the existing literature on CatWalk gait analysis in rodent models of peripheral nerve injuries of upper and lower extremities, e.g. axonotmesis, neurotmesis or fibrosis, with special emphasis on differences between models. Researchers interested in assessment of locomotor function in such models will especially benefit from this work as it will provide them with an overview of the various experimental setups and expected outcomes. This work also addresses potential pitfalls and hurdles in order to promote well designed, comparable studies allowing for accelerated development of therapeutic strategies in peripheral repair and regeneration.
Collapse
Affiliation(s)
- Johannes Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University, Tuebingen, Germany; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1020, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Gregor Längle
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1020, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Viola Oberhauser
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1020, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Thomas Hausner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1020, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University, Tuebingen, Germany
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University, Tuebingen, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1020, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1020, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria.
| |
Collapse
|
6
|
Huang LJ, Jia SS, Sun XH, Li XY, Wang FF, Li W, Jin QS. Baicalin relieves neuropathic pain by regulating α 2-adrenoceptor levels in rats following spinal nerve injury. Exp Ther Med 2020; 20:2684-2690. [PMID: 32765762 PMCID: PMC7401858 DOI: 10.3892/etm.2020.9019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/02/2019] [Indexed: 11/06/2022] Open
Abstract
In the present study, the ability of baicalin to relieve neuropathic pain due to spinal nerve ligation in rats was explored, and the relationship between baicalin and α2-adrenoceptors (α2-AR) was determined. The neuropathic pain model was established by ligating the L5-L6 spinal nerves in Sprague-Dawley rats. Several α2-AR antagonists were injected into the intramedullary sheath to evaluate the role of baicalin in neuropathic pain. The antagonists included nonselective α2-AR antagonist idazoxan, α2a-AR antagonist BRL 44408, α2b-AR antagonist ARC 239 and α2c-AR antagonist JP 1302. The rats were divided into an untreated control group, saline group, baicalin group and baicalin + α2-AR antagonist groups. Paw withdrawal threshold (PWT) was tested to assess the level of pain felt by the rats. The levels of α2-AR mRNA were tested by reverse transcription-quantitative PCR. Inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-17 and IL-1β, were analyzed by ELISA. The histopathological changes were assessed by hematoxylin and eosin staining. Flow cytometry was used to examine the percentage of CD4+ peripheral blood mononuclear cells (PBMCs). Compared with the saline group, the PWT value increased after treating with baicalin. However, intrathecal injection of α2-AR antagonist reversed the antinociceptive effects of baicalin. Compared with the saline group, the expression of α2a-AR and α2c-AR mRNA was upregulated significantly in the baicalin group (P<0.05). Levels of α2-AR mRNA were also decreased in the baicalin + idazoxan group compared with the baicalin group (P<0.05). The levels of TNF-α, IL-6, IL-17 and IL-1β were raised after treatment with baicalin. In addition, baicalin treatment ameliorated the histological damage in the spinal cord. The percentage of CD4+ PBMCs was increased in the saline group compared with the control group (P<0.05). Compared with the baicalin group, the percentage of CD4+ PBMCs was raised after treatment with the α2-AR antagonists. In conclusion, intrathecal injection of baicalin produced an antiallodynic effect in a spinal nerve ligation-induced neuropathic pain model. The mechanism may be related to the regulation of a2-AR expression.
Collapse
Affiliation(s)
- Lan-Ji Huang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Shu-Shan Jia
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Xue-Hua Sun
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Xin-You Li
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Fei-Fei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Wei Li
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Qing-Song Jin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
7
|
A study of MRI-based radiomics biomarkers for sacroiliitis and spondyloarthritis. Int J Comput Assist Radiol Surg 2020; 15:1737-1748. [PMID: 32607695 DOI: 10.1007/s11548-020-02219-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate the performance of texture-based biomarkers by radiomic analysis using magnetic resonance imaging (MRI) of patients with sacroiliitis secondary to spondyloarthritis (SpA). RELEVANCE The determination of sacroiliac joints inflammatory activity supports the drug management in these diseases. METHODS Sacroiliac joints (SIJ) MRI examinations of 47 patients were evaluated. Thirty-seven patients had SpA diagnoses (27 axial SpA and ten peripheral SpA) which was established previously after clinical and laboratory follow-up. To perform the analysis, the SIJ MRI was first segmented and warped. Second, radiomics biomarkers were extracted from the warped MRI images for associative analysis with sacroiliitis and the SpA subtypes. Finally, statistical and machine learning methods were applied to assess the associations of the radiomics texture-based biomarkers with clinical outcomes. RESULTS All diagnostic performances obtained with individual or combined biomarkers reached areas under the receiver operating characteristic curves ≥ 0.80 regarding SpA related sacroiliitis and and SpA subtypes classification. Radiomics texture-based analysis showed significant differences between the positive and negative SpA groups and differentiated the axial and peripheral subtypes (P < 0.001). In addition, the radiomics analysis was also able to correctly identify the disease even in the absence of active inflammation. CONCLUSION We concluded that the application of the radiomic approach constitutes a potential noninvasive tool to aid the diagnosis of sacroiliitis and for SpA subclassifications based on MRI of sacroiliac joints.
Collapse
|
8
|
Abdelrahman A, Kumstel S, Zhang X, Liebig M, Wendt EHU, Eichberg J, Palme R, Thum T, Vollmar B, Zechner D. A novel multi-parametric analysis of non-invasive methods to assess animal distress during chronic pancreatitis. Sci Rep 2019; 9:14084. [PMID: 31575986 PMCID: PMC6773730 DOI: 10.1038/s41598-019-50682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Ethical responsibility, legal requirements and the need to improve the quality of research create a growing interest in the welfare of laboratory animals. Judging the welfare of animals requires readout parameters, which are valid and sensitive as well as specific to assess distress after different interventions. In the present study, we evaluated the sensitivity and specificity of different non-invasive parameters (body weight change, faecal corticosterone metabolites concentration, burrowing and nesting activity) by receiver operating characteristic curves and judged the merit of a multi-parametric analysis by logistic regression. Chronic pancreatitis as well as laparotomy caused significant changes in all parameters. However, the accuracy of these parameters was different between the two animal models. In both animal models, the multi-parametric analysis relying on all the readout parameters had the highest accuracy when predicting distress. This multi-parametric analysis revealed that C57BL/6 mice during the course of chronic pancreatitis often experienced less distress than mice after laparotomy. Interestingly these data also suggest that distress does not steadily increase during chronic pancreatitis. In conclusion, combining these non-invasive methods for severity assessment represents a reliable approach to evaluate animal distress in models such as chronic pancreatitis.
Collapse
Affiliation(s)
- Ahmed Abdelrahman
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany.
| | - Simone Kumstel
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Xianbin Zhang
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Marie Liebig
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Edgar Heinz Uwe Wendt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Johanna Eichberg
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|