1
|
Chavhan RL, Jaybhaye SG, Hinge VR, Deshmukh AS, Shaikh US, Jadhav PK, Kadam US, Hong JC. Emerging applications of gene editing technologies for the development of climate-resilient crops. Front Genome Ed 2025; 7:1524767. [PMID: 40129518 PMCID: PMC11931038 DOI: 10.3389/fgeed.2025.1524767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 03/26/2025] Open
Abstract
Climate change threatens global crop yield and food security due to rising temperatures, erratic rainfall, and increased abiotic stresses like drought, heat, and salinity. Gene editing technologies, including CRISPR/Cas9, base editors, and prime editors, offer precise tools for enhancing crop resilience. This review explores the mechanisms of these technologies and their applications in developing climate-resilient crops to address future challenges. While CRISPR/enables targeted modifications of plant DNA, the base editors allow for direct base conversion without inducing double-stranded breaks, and the prime editors enable precise insertions, deletions, and substitutions. By understanding and manipulating key regulator genes involved in stress responses, such as DREB, HSP, SOS, ERECTA, HsfA1, and NHX; crop tolerance can be enhanced against drought, heat, and salt stress. Gene editing can improve traits related to root development, water use efficiency, stress response pathways, heat shock response, photosynthesis, membrane stability, ion homeostasis, osmotic adjustment, and oxidative stress response. Advancements in gene editing technologies, integration with genomics, phenomics, artificial intelligence (AI)/machine learning (ML) hold great promise. However, challenges such as off-target effects, delivery methods, and regulatory barriers must be addressed. This review highlights the potential of gene editing to develop climate-resilient crops, contributing to food security and sustainable agriculture.
Collapse
Affiliation(s)
- R. L. Chavhan
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - S. G. Jaybhaye
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - V. R. Hinge
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - A. S. Deshmukh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - U. S. Shaikh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - P. K. Jadhav
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - U. S. Kadam
- Division of Applied Life Science (BK21 Four), Division of Life Science, Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - J. C. Hong
- Division of Applied Life Science (BK21 Four), Division of Life Science, Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Nkhabindze BZ, Magagula CN, Earnshaw D, Mhlanga CF, Matsebula SN, Dladla IG. Regulatory framework for genetically modified organisms in the Kingdom of Eswatini. GM CROPS & FOOD 2024; 15:212-221. [PMID: 38963885 PMCID: PMC11225911 DOI: 10.1080/21645698.2024.2375664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
The Kingdom of Eswatini is a Party to the Convention on Biological Diversity and to the Cartagena Protocol on Biosafety. As Party, Eswatini has domesticated these agreements by passing the Biosafety Act, of 2012 to provide for the safe handling, transfer, and use of living modified organisms (LMOs) in the country. The Act regulates living modified organisms to be used for confined field trials, commercial release, import, export, and transit, and for food, feed, and processing. Guidance is provided for prospective applicants before any application is made to the Competent Authority. This framework also provides for the regulation of emerging technologies such as synthetic biology and genome editing. The regulatory framework for living modified organisms aims to provide an enabling environment for the precautionary use of modern biotechnology and its products in the country in order to safeguard biological diversity and human health.
Collapse
Affiliation(s)
- Bongani Z. Nkhabindze
- Department of Crop Production, Faculty of Agriculture, University of Eswatini, Luyengo, Eswatini
| | - Cebisile N. Magagula
- Department of Biological Sciences, Faculty of Science and Engineering, University of Eswatini, Kwaluseni, Eswatini
| | - Diana Earnshaw
- Department of Crop Production, Faculty of Agriculture, University of Eswatini, Luyengo, Eswatini
| | - Calsile F. Mhlanga
- Department of Natural Resource Management, Eswatini Environment Authority (EEA), Mbabane, Eswatini
| | - Sipho N. Matsebula
- Department of Natural Resource Management, Eswatini Environment Authority (EEA), Mbabane, Eswatini
| | - Isaac G. Dladla
- Department of Natural Resource Management, Eswatini Environment Authority (EEA), Mbabane, Eswatini
| |
Collapse
|
3
|
Tachikawa M, Matsuo M. Global regulatory trends of genome editing technology in agriculture and food. BREEDING SCIENCE 2024; 74:3-10. [PMID: 39246438 PMCID: PMC11375430 DOI: 10.1270/jsbbs.23046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/06/2023] [Indexed: 09/10/2024]
Abstract
There is a need to introduce new regulations regarding genome editing technology and its application to agriculture and food. Regulations are different among countries and sometimes inconsistent. Here, we summarize the current regulations regarding the use of genome editing technology in agriculture and food in various countries around the world. We also discuss the main regulatory developments expected to occur in the future.
Collapse
Affiliation(s)
- Masashi Tachikawa
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Makiko Matsuo
- Graduate School of Public Policy, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Liau KM, Ooi AG, Mah CH, Yong P, Kee LS, Loo CZ, Tay MY, Foo JB, Hamzah S. The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects. Curr Pharm Biotechnol 2024; 25:1500-1522. [PMID: 37921129 DOI: 10.2174/0113892010258617231020062637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
Collapse
Affiliation(s)
- Kah Man Liau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - An Gie Ooi
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chian Huey Mah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Penny Yong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ling Siik Kee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Cheng Ze Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ming Yu Tay
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
5
|
Taguchi C, Shibata N, Soga K, Yoshiba S, Narushima J, Sugino M, Kondo K. Providing appropriate information to consumers boosts the acceptability of genome-edited foods in Japan. GM CROPS & FOOD 2023; 14:1-14. [PMID: 37523332 PMCID: PMC10392745 DOI: 10.1080/21645698.2023.2239539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
The Japanese Health Ministry recently granted permission for the market distribution of genome-edited (GE) foods, yet there remains a lack of full understanding among consumers regarding this technology. In this study, we conducted a survey to assess the acceptability of GE foods among Japanese consumers and examined the impact of providing information about GE foods on their acceptability. We conducted a web-based survey among 3,408 consumers aged 20-69 years, focusing on three aspects: (1) the commercial availability of GE foods, (2) the consumption of GE foods by others, and (3) your own consumption of GE foods. The survey findings revealed that participants were most accepting of the consumption of GE foods by others, followed by their acceptance of GE foods being commercially available. Notably, participants' acceptance of GE foods increased in all three aspects after they viewed an informative video. The video had a particularly strong impact on participants who fully or partially understood its content, compared to those who did not. Furthermore, regression analyses showed that participants' understanding of two key areas, namely "Why are GE foods important" and "What procedures are in place to ensure the safety of GE foods," played a crucial role in increasing acceptability. Overall, these results indicate that providing information about GE foods to Japanese consumers can effectively enhance their acceptance of such foods. The findings highlight the importance of understanding the benefits and safety measures associated with GE foods in influencing consumer attitudes.
Collapse
Affiliation(s)
- Chie Taguchi
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Norihito Shibata
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Keisuke Soga
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Satoko Yoshiba
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Jumpei Narushima
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Miyu Sugino
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Kazunari Kondo
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
- Food Safety and Management, Showa Women's University, Tokyo, Japan
| |
Collapse
|
6
|
Umemoto N, Yasumoto S, Yamazaki M, Asano K, Akai K, Lee HJ, Akiyama R, Mizutani M, Nagira Y, Saito K, Muranaka T. Integrated gene-free potato genome editing using transient transcription activator-like effector nucleases and regeneration-promoting gene expression by Agrobacterium infection. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:211-218. [PMID: 38420569 PMCID: PMC10901161 DOI: 10.5511/plantbiotechnology.23.0530a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 03/02/2024]
Abstract
Genome editing is highly useful for crop improvement. The method of expressing genome-editing enzymes using a transient expression system in Agrobacterium, called agrobacterial mutagenesis, is a shortcut used in genome-editing technology to improve elite varieties of vegetatively propagated crops, including potato. However, with this method, edited individuals cannot be selected. The transient expression of regeneration-promoting genes can result in shoot regeneration from plantlets, while the constitutive expression of most regeneration-promoting genes does not result in normally regenerated shoots. Here, we report that we could obtain genome-edited potatoes by positive selection. These regenerated shoots were obtained via a method that combined a regeneration-promoting gene with the transient expression of a genome-editing enzyme gene. Moreover, we confirmed that the genome-edited potatoes obtained using this method did not contain the sequence of the binary vector used in Agrobacterium. Our data have been submitted to the Japanese regulatory authority, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and we are in the process of conducting field tests for further research on these potatoes. Our work presents a powerful method for regarding regeneration and acquisition of genome-edited crops through transient expression of regeneration-promoting gene.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Shuhei Yasumoto
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Muneo Yamazaki
- National Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8518, Japan
| | - Kenji Asano
- National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization, Hokkaido 082-0081, Japan
| | - Kotaro Akai
- National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization, Hokkaido 082-0081, Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Yozo Nagira
- Agri-Bio Research Center, Kaneka Co., Shizuoka 438-0802, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Toshiya Muranaka
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|