1
|
Satarug S. Urinary β 2-Microglobulin Predicts the Risk of Hypertension in Populations Chronically Exposed to Environmental Cadmium. J Xenobiot 2025; 15:49. [PMID: 40278154 DOI: 10.3390/jox15020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Chronic exposure to the pollutant cadmium (Cd) is inevitable for most people because it is present in nearly all food types. Concerningly, the risk of developing hypertension has been linked to dietary Cd exposure lower than 58 µg/day for a 70 kg person. The mechanisms involved are, however, unclear. Since the kidneys play an indispensable role in long-term blood pressure regulation, and they are also the main site of Cd accumulation and toxicity, a retrospective analysis was conducted to examine if kidney damage and malfunction, reflected by urinary β2-microglobulin excretion (Eβ2M), and the estimated glomerular filtration rate (eGFR), are related to Cd excretion (ECd) and blood pressure variation. Data were obtained from 689 Thai Nationals without diabetes or occupational exposure to Cd, of which 32.4% had hypertension and 7.3% had β2-microglobulinuria, defined as an increase in the β2M excretion rate ≥ 300 µg/g creatinine. Respective prevalence odds ratio (POR) and 95% confidence interval (CI) values for β2-microglobulinuria and hypertension were 10.7 (1.36-83.4), p = 0.024 and 2.79 (1.60-4.87) p < 0.001, comparing the top quartile of ECd with the bottom quartile. Only in subjects with eGFR below 90 mL/min/1.73 m2 did systolic blood pressure (SBP) and diastolic blood pressure (DBP) both increase linearly with Eβ2M (respective β = 0.182 and 0.192 for SBP and DBP) after adjustment for age, body mass index, gender, and smoking. The present study confirms the significant impact of Cd on the risk of having hypertension, following GFR loss induced by Cd. A simple mediation model analysis for cause-effect inference has provided, for the first time, evidence that may link rising SBP and DBP in Cd-exposed people to a novel role of β2M as a predictor of blood pressure variability.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Satarug S. Antioxidative Function of Zinc and Its Protection Against the Onset and Progression of Kidney Disease Due to Cadmium. Biomolecules 2025; 15:183. [PMID: 40001486 PMCID: PMC11853145 DOI: 10.3390/biom15020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease (CKD) is now the world's top seventh cause of death from a non-communicable disease, and its incidence is projected to increase further as its major risk factors, including obesity, diabetes, hypertension, and non-alcoholic fatty liver disease (NAFLD), continue to rise. Current evidence has linked the increased prevalence of CKD, diabetes, hypertension, and NAFLD to chronic exposure to the metal pollutant cadmium (Cd). Exposure to Cd is widespread because diet is the main exposure route for most people. Notably, however, the health risk of dietary Cd exposure is underappreciated, and the existing tolerable exposure guidelines for Cd do not afford health protection. New health-protective exposure guidelines are needed. From one's diet, Cd is absorbed by the intestinal epithelium from where it passes through the liver and accumulates within the kidney tubular epithelial cells. Here, it is bound to metallothionine (MT), and as it is gradually released, it induces tubular damage, tubulointerstitial inflammation and fibrosis, and nephron destruction. The present review provides an update on our knowledge of the exposure levels of Cd that are found to be associated with CKD, NAFLD, and mortality from cardiovascular disease. It discusses the co-existence of hypertension and CKD in people environmentally exposed to Cd. It highlights nuclear and mitochondrial targeting and zinc deficiency as the universal cytotoxic mechanisms of Cd. Special emphasis is placed on the novel antioxidative function of zinc involving de novo heme biosynthesis and the induced expression of heme oxygenase-1 (HO-1). Other exogenous biomolecules with promising anti-Cd toxicity are highlighted.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Satarug S, Yimthiang S, Khamphaya T, Pouyfung P, Vesey DA, Buha Đorđević A. Albuminuria in People Chronically Exposed to Low-Dose Cadmium Is Linked to Rising Blood Pressure Levels. TOXICS 2025; 13:81. [PMID: 39997897 PMCID: PMC11861298 DOI: 10.3390/toxics13020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025]
Abstract
Exposure to low-dose environmental pollutant cadmium (Cd) increases the risks of both albuminuria and hypertension by mechanisms which are poorly understood. Here, multiple regression and mediation analyses were applied to data from 641 Thai subjects of whom 39.8%, 16.5%, 10.8%, and 4.8% had hypertension, albuminuria, diabetes, and chronic kidney disease (CKD), defined as the estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2, respectively. To correct for interindividual differences in urine dilution and surviving nephrons, the excretion rates of Cd (ECd), albumin (Ealb), and β2-microglobulin (Eβ2M) were normalized to the creatinine clearance (Ccr) as ECd/Ccr, Ealb/Ccr, and Eβ2M/Ccr. The respective risks of having CKD and hypertension rose to 3.52 (95% CI: 1.75, 7.05) and 1.22 (95% CI: 1.12, 1.3) per doubling of the Cd body burden. The respective risk of having albuminuria increased 2.95-fold (p = 0.042) and 4.17-fold (p = 0.020) in subjects who had hypertension plus severe and extremely severe tubular dysfunction, defined according to the elevated β2M excretion rates. In multiple regression analysis, the Ealb/Ccr increased linearly with both the systolic blood pressure (SBP, β = 0.263) and diastolic blood pressure (DBP, β = 0.150), while showing an inverse association with eGFR (β = -0.180). The mediation model analyses inferred that a declining eGFR induced by Cd contributed to 80.6% of the SBP increment (p = 0.005), which then fully mediated an elevation of albumin excretion (p < 0.001). The present study provides, for the first time, evidence that causally links Cd-induced eGFR reductions to blood pressure elevations, which enhance albumin excretion.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia;
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (S.Y.); (T.K.)
| | - Tanaporn Khamphaya
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (S.Y.); (T.K.)
| | - Phisit Pouyfung
- Department of Community Health, Faculty of Public Health, Mahidol University, Bangkok 20100, Thailand;
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia;
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Aleksandra Buha Đorđević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Zhao D, Wang P, Zhao FJ. Toxic Metals and Metalloids in Food: Current Status, Health Risks, and Mitigation Strategies. Curr Environ Health Rep 2024; 11:468-483. [PMID: 39352604 PMCID: PMC11588791 DOI: 10.1007/s40572-024-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Exposure to toxic metals/metalloids, such as arsenic (As), cadmium (Cd), and lead (Pb), through food consumption is a global public health concern. This review examines the contamination status of these metals/metalloids in food, assesses dietary intake across different populations, and proposes strategies to reduce metal/metalloid exposures throughout the food chain. RECENT FINDINGS For the general population, dietary intake of metals/metalloids is generally lower than health-based guidance values. However, for vulnerable populations, such as infants, children, and pregnant women, their dietary intake levels are close to or even higher than the guidance values. Among different food categories, seafood shows higher total As, but largely present as organic species. Rice accumulates higher As concentration than other cereals, with inorganic As (iAs) and dimethylarsinic acid (DMA) being the main As species. Methylated thioarsenate species, such as dimethylmonothioarsenate, have also been detected in rice. The distribution of iAs and DMA in rice shows geographical variation. Additionally, seafood and cocoa products generally contain more Cd than other food, but seafood consumption does not significantly increase in adverse health effects due to its high zinc and iron content. Compared to As and Cd, Pb concentrations in food are generally lower. To minimize the health risks of metal/metalloid exposure, several strategies are proposed. Food contamination with toxic metals/metalloids poses significant concerns for human health, particularly for vulnerable populations. This review provides scientific evidence and suggestions for policy makers to reduce human exposure of metals/metalloids via dietary intake.
Collapse
Affiliation(s)
- Di Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Satarug S. Urinary N-acetylglucosaminidase in People Environmentally Exposed to Cadmium Is Minimally Related to Cadmium-Induced Nephron Destruction. TOXICS 2024; 12:775. [PMID: 39590955 PMCID: PMC11598048 DOI: 10.3390/toxics12110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Exposure to even low levels of the environmental pollutant cadmium (Cd) increases the risk of kidney damage and malfunction. The body burden of Cd at which these outcomes occur is not, however, reliably defined. Here, multiple-regression and mediation analyses were applied to data from 737 non-diabetic Thai nationals, of which 9.1% had an estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2 (a low eGFR). The excretion of Cd (ECd), and renal-effect biomarkers, namely β2-microglobulin (Eβ2M), albumin (Ealb), and N-acetylglucosaminidase (ENAG), were normalized to creatinine clearance (Ccr) as ECd/Ccr Eβ2M/Ccr, Ealb/Ccr, and ENAG/Ccr. After adjustment for potential confounders, the risks of having a low eGFR and albuminuria rose twofold per doubling ECd/Ccr rates and they both varied directly with the severity of β2-microglobulinuria. Doubling ECd/Ccr rates also increased the risk of having a severe tubular injury, evident from ENAG/Ccr increments [POR = 4.80, p = 0.015]. ENAG/Ccr was strongly associated with ECd/Ccr in both men (β = 0.447) and women (β = 0.394), while showing a moderate inverse association with eGFR only in women (β = -0.178). A moderate association of ENAG/Ccr and ECd/Ccr was found in the low- (β = 0.287), and the high-Cd body burden groups (β = 0.145), but ENAG/Ccr was inversely associated with eGFR only in the high-Cd body burden group (β = -0.223). These discrepancies together with mediation analysis suggest that Cd-induced nephron destruction, which reduces GFR and the tubular release of NAG by Cd, involves different mechanisms and kinetics.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
6
|
Erdal İ, Yıldız Y, Yalçın SS, Yirün A, Çakır DA, Erkekoğlu P. Heavy Metal and Trace Element Status and Dietary Determinants in Children with Phenylketonuria. Nutrients 2024; 16:3463. [PMID: 39458458 PMCID: PMC11509891 DOI: 10.3390/nu16203463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Heavy metals are a group of metals and metalloids that have a relatively high density. They can cause toxicity even at very low levels. Trace elements are required by all living organisms to maintain their normal growth, metabolism, and development. Oral intake is the main route of exposure to both heavy metals and trace elements. Phenylketonuria (PKU) is the most common amino acid metabolic disorder, and the best known treatment for patients requiring treatment is a phenylalanine (Phe)-restricted diet. The objective of the present study was to evaluate the plasma heavy metal levels, sources of exposure, changes in these levels according to dietary regimen, and trace element levels and their correlations with heavy metals in PKU patients. Methods: The study was conducted between July 2022 and January 2024 on 105 patients aged 2-6 years diagnosed with PKU. Results: The percentage of Pb levels in individuals in the upper quartile increased by 3.47 times (95% CI = 1.07-11.29) in those who consumed canned foods and 7.29 times (95% CI = 1.21-44.03) in those who consumed spring water. The percentage of As levels in the upper tertile increased by a factor of 7.26 (95% CI = 2.09-25.28) in individuals under four years of age and 8.17 times (95% CI = 2.13-31.27) in canned food users. The odds of having blood Cd levels in the upper tertile were 0.09 (95% CI = 0.01-0.96) for those being breastfed for 6-11 months compared to 0-5 months. Zn levels were lower (93.0 vs. 83.6 µg/dL, p = 0.008) in patients on a Phe-restricted diet. Conclusions: The present study did not find a relationship between heavy metal exposure and the dietary treatment status of patients with PKU. Our findings indicate that canned food consumption is a significant contributing factor to heavy metal exposure in PKU patients. Furthermore, our findings revealed a relationship between age, perception of economic level, breastfeeding, kitchen equipment, and water usage and the levels of certain heavy metals.
Collapse
Affiliation(s)
- İzzet Erdal
- Clinic of Pediatric Metabolic Diseases, Etlik City Hospital, 06170 Ankara, Türkiye
- Department of Social Pediatrics, Institute of Child Health, Hacettepe University, 06230 Ankara, Türkiye;
| | - Yılmaz Yıldız
- Division of Pediatric Metabolism, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children’s Hospital, 06230 Ankara, Türkiye;
| | - Siddika Songül Yalçın
- Department of Social Pediatrics, Institute of Child Health, Hacettepe University, 06230 Ankara, Türkiye;
- Division of Social Pediatrics, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children’s Hospital, 06230 Ankara, Türkiye
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06230 Ankara, Türkiye; (D.A.Ç.); (P.E.)
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Çukurova University, 01330 Adana, Türkiye;
| | - Deniz Arca Çakır
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06230 Ankara, Türkiye; (D.A.Ç.); (P.E.)
| | - Pınar Erkekoğlu
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06230 Ankara, Türkiye; (D.A.Ç.); (P.E.)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Türkiye
| |
Collapse
|
7
|
Satarug S, Vesey DA, Yimthiang S, Khamphaya T, Pouyfung P, Đorđević AB. Environmental Cadmium Exposure Induces an Increase in Systolic Blood Pressure by Its Effect on GFR. STRESSES 2024; 4:436-451. [DOI: 10.3390/stresses4030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chronic exposure to the nephrotoxic metal pollutant, cadmium (Cd), has been associated with hypertension, but the mechanism by which it raises blood pressure is not understood. We hypothesize that exposure to Cd reduces the glomerular filtration rate (GFR), which in turn causes a rise in blood pressure. Data were collected from 447 Thai subjects with a mean age of 51.1 years, of which 48.8% had hypertension, 15.4% had diabetes, and 6.9% had an estimated GFR (eGFR) below 60 mL/min/1.73 m2 (low eGFR). More than half (58.8%) and 23.9% had moderate and severe tubular proteinuria, respectively. The mean blood and urinary Cd concentrations were 2.75 and 4.23 µg/L, respectively. Doubling of body burden of Cd increased the prevalence odds ratios (POR) for low eGFR and severe tubular proteinuria 41% and 48%, respectively. The POR for hypertension rose twofold in those with blood Cd levels of 0.61–1.69 µg/L or urinary Cd excretion levels ≥ 0.98 µg/g creatinine. In the hypertensive group, the eGFR was inversely associated with age (β = −0.517), the Cd excretion rate (β = −0.177), and diabetes (β = −0.175). By mediation analysis, an increase in SBP was attributable totally to the effect of Cd on GFR. Thus, blood pressure appeared to rise as GFR fell. This finding is consistent with the well-known role of the kidney in long-term blood pressure regulation, and explains a universally high prevalence of hypertension among patients with low eGFR.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tanaporn Khamphaya
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phisit Pouyfung
- Department of Community Health, Faculty of Public Health, Mahidol University, Bangkok 20100, Thailand
| | - Aleksandra Buha Đorđević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Cirovic A, Cirovic A, Yimthiang S, Vesey DA, Satarug S. Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters. Biomolecules 2024; 14:650. [PMID: 38927054 PMCID: PMC11202194 DOI: 10.3390/biom14060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels.
Collapse
Affiliation(s)
- Ana Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Supabhorn Yimthiang
- Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
| |
Collapse
|
9
|
Cirovic A, Satarug S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J Mol Sci 2024; 25:1851. [PMID: 38339129 PMCID: PMC10855822 DOI: 10.3390/ijms25031851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
10
|
MIKAJIRI REIKO, FUKUNAGA ATSUSHI, MIYOSHI MAKOTO, MAESHIGE NORIAKI, WASHIO KEN, MASAKI TARO, NISHIGORI CHIKAKO, YAMAMOTO IKUKO, TODA AKIYO, TAKAHASHI MICHIKO, ASAHARA SHUNICHIRO, KIDO YOSHIAKI, USAMI MAKOTO. Dietary Intervention for Control of Clinical Symptom in Patients with Systemic Metal Allergy: A Single Center Randomized Controlled Clinical Study. THE KOBE JOURNAL OF MEDICAL SCIENCES 2024; 69:E129-E143. [PMID: 38379275 PMCID: PMC11006241 DOI: 10.24546/0100486230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/16/2023] [Indexed: 02/22/2024]
Abstract
Patients with eczema with a systemic metal allergy, such as nickel (Ni), cobalt (Co), chromium (Cr), and tin (Sn), should pay attention to symptomatic exacerbation by excessive metal intake in food. However, dietary intervention for systemic metal allergy can be difficult. In this study, we evaluated the effect of dietary intervention by a registered dietitian on clinical symptoms in patients with a systemic metal allergy. Forty-four patients with cutaneous symptoms who were diagnosed with a metal allergy were randomly assigned to the dietary intervention group (DI group, n = 29) by a registered dietitian or the control group (C group, n = 15). The DI group was individually instructed by a registered dietitian how to implement a metal-restricted diet and then evaluated 1 month later. Dermatologists treated skin lesions of patients in both groups. Skin symptoms assessed by the Severity Scoring of Atopic Dermatitis (SCORAD) index, blood tests, and urinary metal excretion were evaluated. The DI group showed decreased Ni, Co, Cr, and Sn intake (all P ≤ 0.05), and an improved total SCORAD score, eczema area, erythema, edema/papulation, oozing/crust, excoriation, lichenization and dryness after 1 month of intervention compared with before the intervention (all P ≤ 0.05). However, the C group showed decreased Ni and Sn intake and an improved oozing/crust score (all P < 0.05). It showed the effective reduction of dietary metal intake controls dermatitis due to a metal allergy. In conclusion, dietary intervention by a registered dietitian is effective in improving skin symptoms with a reduction in metal intake.
Collapse
Affiliation(s)
- REIKO MIKAJIRI
- Department of Nutrition, Kobe University Hospital, Kobe, Japan
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - ATSUSHI FUKUNAGA
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Dermatology, Division of Medicine for Function and Morphology of Sensory Organs, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - MAKOTO MIYOSHI
- Division of Nutrition and Metabolism, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - NORIAKI MAESHIGE
- Division of Nutrition and Metabolism, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - KEN WASHIO
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Dermatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - TARO MASAKI
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - CHIKAKO NISHIGORI
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - IKUKO YAMAMOTO
- Department of Nutrition, Kobe University Hospital, Kobe, Japan
| | - AKIYO TODA
- Department of Nutrition, Kobe University Hospital, Kobe, Japan
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan
| | - MICHIKO TAKAHASHI
- Department of Nutrition, Kobe University Hospital, Kobe, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - SHUN-ICHIRO ASAHARA
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOSHIAKI KIDO
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MAKOTO USAMI
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan
| |
Collapse
|
11
|
Satarug S. Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity? Cells 2023; 13:83. [PMID: 38201287 PMCID: PMC10778334 DOI: 10.3390/cells13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
12
|
Satarug S, Vesey DA, Khamphaya T, Pouyfung P, Gobe GC, Yimthiang S. Estimation of the Cadmium Nephrotoxicity Threshold from Loss of Glomerular Filtration Rate and Albuminuria. TOXICS 2023; 11:755. [PMID: 37755765 PMCID: PMC10534899 DOI: 10.3390/toxics11090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Cadmium (Cd) is a pervasive, toxic environmental pollutant that preferentially accumulates in the tubular epithelium of the kidney. Current evidence suggests that the cumulative burden of Cd here leads to the progressive loss of the glomerular filtration rate (GFR). In this study, we have quantified changes in estimated GFR (eGFR) and albumin excretion (Ealb) according to the levels of blood Cd ([Cd]b) and excretion of Cd (ECd) after adjustment for confounders. ECd and Ealb were normalized to creatinine clearance (Ccr) as ECd/Ccr and Ealb/Ccr. Among 482 residents of Cd-polluted and non-polluted regions of Thailand, 8.1% had low eGFR and 16.9% had albuminuria (Ealb/Ccr) × 100 ≥ 20 mg/L filtrate. In the low Cd burden group, (ECd/Ccr) × 100 < 1.44 µg/L filtrate, eGFR did not correlate with ECd/Ccr (β = 0.007) while an inverse association with ECd/Ccr was found in the medium (β = -0.230) and high burden groups (β = -0.349). Prevalence odds ratios (POR) for low eGFR were increased in the medium (POR 8.26) and high Cd burden groups (POR 3.64). Also, eGFR explained a significant proportion of Ealb/Ccr variation among those with middle (η2 0.093) and high [Cd]b tertiles (η2 0.132) but did not with low tertiles (η2 0.001). With an adjustment of eGFR, age and BMI, the POR values for albuminuria were increased in the middle (POR 2.36) and high [Cd]b tertiles (POR 2.74) and those with diabetes (POR 6.02) and hypertension (2.05). These data indicate that (ECd/Ccr) × 100 of 1.44 µg/L filtrate (0.01-0.02 µg/g creatinine) may serve as a Cd threshold level based on which protective exposure guidelines should be formulated.
Collapse
Affiliation(s)
- Soisungwan Satarug
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
| | - David A. Vesey
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Tanaporn Khamphaya
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| | - Phisit Pouyfung
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| | - Glenda C. Gobe
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| |
Collapse
|
13
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023; 15:3348. [PMID: 37571285 PMCID: PMC10421405 DOI: 10.3390/nu15153348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum is an essential trace element for human health and survival, with molybdenum-containing enzymes catalysing multiple reactions in the metabolism of purines, aldehydes, and sulfur-containing amino acids. Recommended daily intakes vary globally, with molybdenum primarily sourced through the diet, and supplementation is not common. Although the benefits of molybdenum as an anti-diabetic and antioxidant inducer have been reported in the literature, there are conflicting data on the benefits of molybdenum for chronic diseases. Overexposure and deficiency can result in adverse health outcomes and mortality, although physiological doses remain largely unexplored in relation to human health. The lack of knowledge surrounding molybdenum intake and the role it plays in physiology is compounded during pregnancy. As pregnancy progresses, micronutrient demand increases, and diet is an established factor in programming gestational outcomes and maternal health. This review summarises the current literature concerning varied recommendations on molybdenum intake, the role of molybdenum and molybdoenzymes in physiology, and the contribution these play in gestational outcomes.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Academy of Pharmacy, Xi’an Jiaotong Liverpool University, Suzhou 215000, China;
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
14
|
Yimthiang S, Vesey DA, Gobe GC, Pouyfung P, Khamphaya T, Satarug S. Gender Differences in the Severity of Cadmium Nephropathy. TOXICS 2023; 11:616. [PMID: 37505581 PMCID: PMC10386456 DOI: 10.3390/toxics11070616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The excretion of β2-microglobulin (β2M) above 300 µg/g creatinine, termed tubulopathy, was regarded as the critical effect of chronic exposure to the metal pollutant cadmium (Cd). However, current evidence suggests that Cd may induce nephron atrophy, resulting in a reduction in the estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m2. Herein, these pathologies were investigated in relation to Cd exposure, smoking, diabetes, and hypertension. The data were collected from 448 residents of Cd-polluted and non-polluted regions of Thailand. The body burden of Cd, indicated by the mean Cd excretion (ECd), normalized to creatinine clearance (Ccr) as (ECd/Ccr) × 100 in women and men did not differ (3.21 vs. 3.12 µg/L filtrate). After adjustment of the confounding factors, the prevalence odds ratio (POR) for tubulopathy and a reduced eGFR were increased by 1.9-fold and 3.2-fold for every 10-fold rise in the Cd body burden. In women only, a dose-effect relationship was seen between β2M excretion (Eβ2M/Ccr) and ECd/Ccr (F = 3.431, η2 0.021). In men, Eβ2M/Ccr was associated with diabetes (β = 0.279). In both genders, the eGFR was inversely associated with Eβ2M/Ccr. The respective covariate-adjusted mean eGFR values were 16.5 and 12.3 mL/min/1.73 m2 lower in women and men who had severe tubulopathy ((Eβ2M/Ccr) × 100 ≥ 1000 µg/L filtrate). These findings indicate that women were particularly susceptible to the nephrotoxicity of Cd, and that the increment of Eβ2M/Ccr could be attributable mostly to Cd-induced impairment in the tubular reabsorption of the protein together with Cd-induced nephron loss, which is evident from an inverse relationship between Eβ2M/Ccr and the eGFR.
Collapse
Affiliation(s)
- Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - David A Vesey
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Glenda C Gobe
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | - Phisit Pouyfung
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tanaporn Khamphaya
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Soisungwan Satarug
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia
| |
Collapse
|
15
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
16
|
Satarug S, Vesey DA, Gobe GC, Yimthiang S, Buha Đorđević A. Health Risk in a Geographic Area of Thailand with Endemic Cadmium Contamination: Focus on Albuminuria. TOXICS 2023; 11:68. [PMID: 36668794 PMCID: PMC9866753 DOI: 10.3390/toxics11010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
An increased level of cadmium (Cd) in food crops, especially rice is concerning because rice is a staple food for over half of the world’s population. In some regions, rice contributes to more than 50% of the total Cd intake. Low environmental exposure to Cd has been linked to an increase in albumin excretion to 30 mg/g creatinine, termed albuminuria, and a progressive reduction in the estimated glomerular filtration rate (eGFR) to below 60 mL/min/1.73 m2, termed reduced eGFR. However, research into albuminuria in high exposure conditions is limited. Here, we applied benchmark dose (BMD) analysis to the relevant data recorded for the residents of a Cd contamination area and a low-exposure control area. We normalized the excretion rates of Cd (ECd) and albumin (Ealb) to creatinine clearance (Ccr) as ECd/Ccr and Ealb/Ccr to correct for differences among subjects in the number of surviving nephrons. For the first time, we defined the excretion levels of Cd associated with clinically relevant adverse kidney health outcomes. Ealb/Ccr varied directly with ECd/Ccr (β = 0.239, p < 0.001), and age (β = 0.203, p < 0.001), while normotension was associated with lower Ealb/Ccr (β = −0.106, p = 0.009). ECd/Ccr values between 16.5 and 35.5 ng/L of the filtrate were associated with a 10% prevalence of albuminuria, while the ECd/Ccr value of 59 ng/L of the filtrate was associated with a 10% prevalence of reduced eGFR. Thus, increased albumin excretion and eGFR reduction appeared to occur at low body burdens, and they should form toxicity endpoints suitable for the calculation of health risk due to the Cd contamination of food chains.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - David A. Vesey
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aleksandra Buha Đorđević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|