1
|
Yamazoe Y, Yoshinari K. The refined CYP2B6-Template system for studies of its ligand metabolisms. Drug Metab Pharmacokinet 2025; 60:101037. [PMID: 39793292 DOI: 10.1016/j.dmpk.2024.101037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
The previously reported Template system for the prediction of human CYP2B6-mediated reactions (Drug Metab Pharmacokinet 26 309-330, 2011) has been refined with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site. The refined system also includes ideas of bi-molecule binding on Template. With the use of these ideas in common with other Template systems for human CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, and CYP3A4, 360 reactions of 261 distinct chemicals reported as CYP2B6 ligands were examined in the refined system. From their placements on the refined Template and rules for interaction modes, verifications of good and poor substrates, regio- and stereo-selectivities, and inhibitory interaction became faithfully available for these ligands, in which all the chemicals tested in the previous study were included. From the comparison of substrate specificities of human CYP2B6 and rat CYP2B1, size differences of one of the enzyme residues, Shelf, were suggested as a cause of their distinct catalyses. The refined CYP2B6-Template system will thus offer more reliable estimations of this human CYP catalyses toward ligands of diverse structures, together with their deciphering information to lead to judgments of metabolisms.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki 210-9501, Japan.
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
2
|
Yamazoe Y, Murayama N. Construction of a CYP2J2-Template System and Its Application for Ligand Metabolism Prediction. Food Saf (Tokyo) 2024; 12:69-82. [PMID: 39713276 PMCID: PMC11649976 DOI: 10.14252/foodsafetyfscj.d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
A Template system for the understanding of human CYP2J2-mediated reactions was constructed from the assembly of the ligands with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site, which were in common with other Template* systems for human CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 (Drug Metab Pharmacokinet 2016, 2017, 2019, 2020, 2021, 2022, 2023, 2024, and in press 2024). CYP2J2 system also includes ideas of bi-molecule binding of ligands on the Template. From their placements on the Template and rules for interaction modes, verifications of good and poor substrates, regio/stereo-selectivity, and inhibitory interaction became available faithfully for these ligands. The refined CYP2J2-Template system will thus offer reliable estimations of this human CYP catalysis toward ligands of diverse structures, together with their deciphering information to lead to judgments.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate
School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai
980-8578, Japan
- Division of Risk Assessment, National Institute of Health
Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543,
Japan
| |
Collapse
|
3
|
Yamazoe Y, Yamamura Y, Yoshinari K. Construction of a fused grid-based CYP2C8-Template system and the application. Drug Metab Pharmacokinet 2024; 55:100492. [PMID: 38609777 DOI: 10.1016/j.dmpk.2023.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
A ligand-accessible space in the CYP2C8 active site was reconstituted as a fused grid-based Template∗ with the use of structural data of the ligands. An evaluation system of CYP2C8-mediated metabolism has been developed on Template with the introduction of the idea of Trigger-residue initiated ligand-movement and fastening. Reciprocal comparison of the data of simulation on Template with experimental results suggested a unified way of the interaction of CYP2C8 and its ligands through the simultaneous plural-contact with Rear-wall of Template. CYP2C8 was expected to have a room for ligands between vertically standing parallel walls termed Facial-wall and Rear-wall. Both the walls were separated by a distance corresponding to 1.5-Ring (grid) diameter size, which was termed Width-gauge. The ligand sittings were stabilized through contacts with Facial-wall and the left-side borders of Template including specific Position 29, left-side border of Rings I/J, or Left-end, after Trigger-residue initiated ligand-movement. Trigger-residue movement is suggested to force ligands to stay firmly in the active site and then to initiate CYP2C8 reactions. Simulation experiments for over 350 reactions of CYP2C8 ligands supported the system established.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Yoshiya Yamamura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Non-Clinical Regulatory Science, Applied Research & Operations, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
4
|
Yamazoe Y, Yoshinari K. Construction of a fused grid-based CYP2C18-Template system and its application to drug metabolism. Drug Metab Pharmacokinet 2024; 54:100534. [PMID: 38070310 DOI: 10.1016/j.dmpk.2023.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 02/06/2024]
Abstract
Detailed estimation of cytochrome P450 (CYP)-mediated metabolisms of medicine and other chemicals is necessary for the efficacy and safety assessments. Data on the metabolisms mediated by minor CYP enzymes like CYP2C18 are often not available in metabolisms and safety assessments of chemicals except for medical drugs developed recently. A ligand-accessible space in the active site of human CYP2C18 was thus reconstituted as a fused grid-based Template with the use of structural data of its ligands. An evaluation system of CYP2C18-mediated metabolism was then developed on Template with the introduction of the idea of movement and fastening of ligands after Trigger-residue contact. Reciprocal comparison of the data of simulations on Template with experimental results suggested a unified way of the interaction of CYP2C18, in similar to the CYP2C8 interaction (Drug Metab Pharmacokinet 2023, in press). These experiments also displayed the roles of initial Trigger-residue-localizations on their distinct catalyses among human CYP2C enzymes. Simulation experiments for over 130 reactions of CYP2C18 ligands supported the system established.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
5
|
Yamazoe Y, Murayama N, Kawamura T, Yamada T. Application of fused-grid-based CYP-Template systems for genotoxic substances to understand the metabolisms. Genes Environ 2023; 45:22. [PMID: 37544994 PMCID: PMC10405451 DOI: 10.1186/s41021-023-00275-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 08/08/2023] Open
Abstract
Understanding of metabolic processes is a key factor to evaluate biological effects of carcinogen and mutagens. Applicability of fused-grid Template* systems of CYP enzymes (Drug Metab Pharmacokinet 2019, 2020, 2021, and 2022) was tested for three phenomena. (1) Possible causal relationships between CYP-mediated metabolisms of β-naphthoflavone and 3-methylcholanthrene and the high inducibility of CYP enzymes were examined. Selective involvement of non-constitutive CYP1A1, but not constitutive CYP1A2, was suggested on the oxidative metabolisms of efficient inducers, β-naphthoflavone and 3-methylcholanthrene. These results supported the view of the causal link of their high inducibility with their inefficient metabolisms due to the lack of CYP1A1 in livers at early periods after the administration of both inducers. (2) Clear differences exist between human and rodent CYP1A1 enzymes on their catalyses with heterocyclic amines, dioxins and polyaromatic hydrocarbons (PAHs). Reciprocal comparison of simulation results with experimental data suggested the rodent specific site and distinct sitting-preferences of ligands on Template for human and rodent CYP1A1 enzymes. (3) Enhancement of metabolic activation and co-mutagenicity have been known as phenomena associated with Salmonella mutagenesis assay. Both the phenomena were examined on CYP-Templates in ways of simultaneous bi-molecule bindings of distinct ligands as trigger and pro-metabolized molecules. α-Naphthoflavone and norharman served consistently as trigger-molecules to support the oxidations of PAHs and arylamines sitting simultaneously as pro-metabolized molecules on Templates of CYP1A1, CYP1A2 and CYP3A4. These CYP-Template simulation systems with deciphering capabilities are promising tools to understand the mechanism basis of metabolic activations and to support confident judgements in safety assessments.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tomoko Kawamura
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| |
Collapse
|
6
|
Riely GJ, Smit EF, Ahn MJ, Felip E, Ramalingam SS, Tsao A, Johnson M, Gelsomino F, Esper R, Nadal E, Offin M, Provencio M, Clarke J, Hussain M, Otterson GA, Dagogo-Jack I, Goldman JW, Morgensztern D, Alcasid A, Usari T, Wissel P, Wilner K, Pathan N, Tonkovyd S, Johnson BE. Phase II, Open-Label Study of Encorafenib Plus Binimetinib in Patients With BRAFV600-Mutant Metastatic Non-Small-Cell Lung Cancer. J Clin Oncol 2023; 41:3700-3711. [PMID: 37270692 DOI: 10.1200/jco.23.00774] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
PURPOSE The combination of encorafenib (BRAF inhibitor) plus binimetinib (MEK inhibitor) has demonstrated clinical efficacy with an acceptable safety profile in patients with BRAFV600E/K-mutant metastatic melanoma. We evaluated the efficacy and safety of encorafenib plus binimetinib in patients with BRAFV600E-mutant metastatic non-small-cell lung cancer (NSCLC). METHODS In this ongoing, open-label, single-arm, phase II study, patients with BRAFV600E-mutant metastatic NSCLC received oral encorafenib 450 mg once daily plus binimetinib 45 mg twice daily in 28-day cycles. The primary end point was confirmed objective response rate (ORR) by independent radiology review (IRR). Secondary end points included duration of response (DOR), disease control rate (DCR), progression-free survival (PFS), overall survival, time to response, and safety. RESULTS At data cutoff, 98 patients (59 treatment-naïve and 39 previously treated) with BRAFV600E-mutant metastatic NSCLC received encorafenib plus binimetinib. Median duration of treatment was 9.2 months with encorafenib and 8.4 months with binimetinib. ORR by IRR was 75% (95% CI, 62 to 85) in treatment-naïve and 46% (95% CI, 30 to 63) in previously treated patients; median DOR was not estimable (NE; 95% CI, 23.1 to NE) and 16.7 months (95% CI, 7.4 to NE), respectively. DCR after 24 weeks was 64% in treatment-naïve and 41% in previously treated patients. Median PFS was NE (95% CI, 15.7 to NE) in treatment-naïve and 9.3 months (95% CI, 6.2 to NE) in previously treated patients. The most frequent treatment-related adverse events (TRAEs) were nausea (50%), diarrhea (43%), and fatigue (32%). TRAEs led to dose reductions in 24 (24%) and permanent discontinuation of encorafenib plus binimetinib in 15 (15%) patients. One grade 5 TRAE of intracranial hemorrhage was reported. Interactive visualization of the data presented in this article is available at the PHAROS dashboard (https://clinical-trials.dimensions.ai/pharos/). CONCLUSION For patients with treatment-naïve and previously treated BRAFV600E-mutant metastatic NSCLC, encorafenib plus binimetinib showed a meaningful clinical benefit with a safety profile consistent with that observed in the approved indication in melanoma.
Collapse
Affiliation(s)
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Myung-Ju Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Anne Tsao
- MD Anderson Cancer Center, Houston, TX
| | - Melissa Johnson
- Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN
| | - Francesco Gelsomino
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Ernest Nadal
- Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain
| | - Michael Offin
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|