1
|
Mahamud AGMSU, Tanvir IA, Kabir ME, Samonty I, Chowdhury MAH, Rahman MA. Gerobiotics: Exploring the Potential and Limitations of Repurposing Probiotics in Addressing Aging Hallmarks and Chronic Diseases. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10501-w. [PMID: 40029460 DOI: 10.1007/s12602-025-10501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
As unhealthy aging continues to rise globally, there is a pressing need for effective strategies to promote healthy aging, extend health span, and address aging-related complications. Gerobiotics, an emerging concept in geroscience, offers a novel approach to repurposing selective probiotics, postbiotics, and parabiotics to modulate key aging processes and enhance systemic health. This review explores recent advancements in gerobiotics research, focusing on their role in targeting aging hallmarks, regulating longevity-associated pathways, and reducing risks of multiple age-related chronic conditions. Despite their promise, significant challenges remain, including optimizing formulations, ensuring safety and efficacy across diverse populations, and achieving successful clinical translation. Addressing these gaps through rigorous research, well-designed clinical trials, and advanced biotechnologies can establish gerobiotics as a transformative intervention for healthy aging and chronic disease prevention.
Collapse
Affiliation(s)
| | | | - Md Ehsanul Kabir
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Ismam Samonty
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| |
Collapse
|
2
|
Pickhardt PJ, Kattan MW, Lee MH, Pooler BD, Pyrros A, Liu D, Zea R, Summers RM, Garrett JW. Biological age model using explainable automated CT-based cardiometabolic biomarkers for phenotypic prediction of longevity. Nat Commun 2025; 16:1432. [PMID: 39920106 PMCID: PMC11806064 DOI: 10.1038/s41467-025-56741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
We derive and test a CT-based biological age model for predicting longevity, using an automated pipeline of explainable AI algorithms that quantifies skeletal muscle, abdominal fat, aortic calcification, bone density, and solid abdominal organs. We apply these AI tools to abdominal CT scans from 123,281 adults (mean age, 53.6 years; 47% women; median follow-up, 5.3 years). The final weighted CT biomarker selection was based on the index of prediction accuracy. The CT model significantly outperforms standard demographic data for predicting longevity (IPA = 29.2 vs. 21.7; 10-year AUC = 0.880 vs. 0.779; p < 0.001). Age- and sex-corrected survival hazard ratio for the highest-vs-lowest risk quartile was 8.73 (95% CI,8.14-9.36) for the CT biological age model, and increased to 24.79 after excluding cancer diagnoses within 5 years of CT. Muscle density, aortic plaque burden, visceral fat density, and bone density contributed the most. Here we show a personalized phenotypic CT biological age model that can be opportunistically-derived, regardless of clinical indication, to better inform risk assessment.
Collapse
Affiliation(s)
- Perry J Pickhardt
- The Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
- The Department of Medical Physics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
| | - Michael W Kattan
- The Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew H Lee
- The Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - B Dustin Pooler
- The Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Ayis Pyrros
- Department of Radiology, Duly Health and Care, Downers Grove, IL, USA
- Department of Biomedical and Health Information Sciences, University of Illinois-Chicago, Chicago, IL, USA
| | - Daniel Liu
- The Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Ryan Zea
- The Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Ronald M Summers
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - John W Garrett
- The Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
- The Department of Medical Physics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| |
Collapse
|
3
|
Streck BP, Sass D, Brick R, Fisk L, Livinski AA, Guida JL. Systematic review of associations between anxiety, depression, and functional/biological aging among cancer survivors. JNCI Cancer Spectr 2024; 8:pkae100. [PMID: 39441826 PMCID: PMC11631420 DOI: 10.1093/jncics/pkae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Evidence suggests a mind-body component to aging through which psychological distress from anxiety and depression drives molecular changes that promote early decline (ie, accelerated aging). Cancer survivors experience particularly high rates of anxiety and depression. Some survivors also have accelerated aging, though the relationships between anxiety and depression and aging are not clear. A synthesis of evidence is needed to understand the state of the science and impending priorities. METHODS PubMed, Embase, CINAHL, Web of Science, and PsycNet databases were searched for studies that measured associations between depression, anxiety, and nonchronological aging in cancer survivors (2012-2022). Data were methodologically evaluated. RESULTS Survivorship studies were included if they were peer reviewed, published in English from 2012 to 2022, and measured associations between anxiety and depression and aging. In total, 51 studies were included. Just over half were cross-sectional (53%). Foci included functional (n = 35 [69%]) and biological (n = 16 [31%]). Functional aging measures included frailty, sarcopenia, geriatric assessment, and cognition. Biological aging measures included telomere length, telomerase, age-related inflammatory blood-based biomarkers, renal insufficiency, anemia, and DNA methylation. We tested 223 associations. Associations between anxiety, depression, and aging were generally positive, though with varying strengths. Most compelling were associations between functional aging and depression. There were concerns for selection and measurement biases. CONCLUSIONS Findings suggest positive associations between anxiety, depression, and aging among cancer survivors. Future work is needed to clarify temporality, develop a consensus on the measurement of aging, and diversify cohorts.
Collapse
Affiliation(s)
- Brennan Parmelee Streck
- Basic Biobehavioral and Psychological Sciences Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD 20850, United States
| | - Dilorom Sass
- Neurooncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, United States
| | - Rachelle Brick
- Basic Biobehavioral and Psychological Sciences Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD 20850, United States
| | - Leah Fisk
- School of Health and Rehabilitation Sciences, Department of Occupational Therapy, The University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Alicia A Livinski
- National Institutes of Health Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jennifer L Guida
- Basic Biobehavioral and Psychological Sciences Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD 20850, United States
| |
Collapse
|
4
|
Troschel FM, Troschel BO, Kloss M, Jost J, Pepper NB, Völk-Troschel AS, Wiewrodt RG, Stummer W, Wiewrodt D, Eich HT. Sarcopenia is associated with chemoradiotherapy discontinuation and reduced progression-free survival in glioblastoma patients. Strahlenther Onkol 2024; 200:774-784. [PMID: 38546749 PMCID: PMC11343971 DOI: 10.1007/s00066-024-02225-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/25/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Sarcopenia may complicate treatment in cancer patients. Herein, we assessed whether sarcopenia measurements derived from radiation planning computed tomography (CT) were associated with complications and tumor progression during radiochemotherapy for glioblastoma. METHODS Consecutive patients undergoing radiotherapy planning for glioblastoma between 2010 and 2021 were analyzed. Retrocervical muscle cross-sectional area (CSA) was measured via threshold-based semi-automated radiation planning CT analysis. Patients in the lowest sex-specific quartile of muscle measurements were defined as sarcopenic. We abstracted treatment characteristics and tumor progression from the medical records and performed uni- and multivariable time-to-event analyses. RESULTS We included 363 patients in our cohort (41.6% female, median age 63 years, median time to progression 7.7 months). Sarcopenic patients were less likely to receive chemotherapy (p < 0.001) and more likely to be treated with hypofractionated radiotherapy (p = 0.005). Despite abbreviated treatment, they more often discontinued radiotherapy (p = 0.023) and were more frequently prescribed corticosteroids (p = 0.014). After treatment, they were more often transferred to inpatient palliative care treatment (p = 0.035). Finally, progression-free survival was substantially shorter in sarcopenic patients in univariable (median 5.1 vs. 8.4 months, p < 0.001) and multivariable modeling (hazard ratio 0.61 [confidence interval 0.46-0.81], p = 0.001). CONCLUSION Sarcopenia is a strong risk factor for treatment discontinuation and reduced progression-free survival in glioblastoma patients. We propose that sarcopenic patients should receive intensified supportive care during radiotherapy and during follow-up as well as expedited access to palliative care.
Collapse
Affiliation(s)
- Fabian M Troschel
- Department of Radiation Oncology, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Benjamin O Troschel
- Department of Radiation Oncology, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Maren Kloss
- Department of Neurosurgery, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Johanna Jost
- Department of Neurosurgery, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Niklas B Pepper
- Department of Radiation Oncology, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Amelie S Völk-Troschel
- Department of Medicine II, Klinikum Wolfsburg, Sauerbruchstraße 7, 38440, Wolfsburg, Germany
| | - Rainer G Wiewrodt
- Pulmonary Research Division, Münster University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Department of Pulmonary Medicine, Mathias Foundation, Hospitals Rheine and Ibbenbüren, Frankenburgsstraße 31, 48431, Rheine, Germany
| | - Walter Stummer
- Department of Neurosurgery, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Dorothee Wiewrodt
- Department of Neurosurgery, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
5
|
Camera A, Tabetah M, Castañeda V, Kim J, Galsinh AS, Haro-Vinueza A, Salinas I, Seylani A, Arif S, Das S, Mori MA, Carano A, de Oliveira LC, Muratani M, Barker R, Zaksas V, Goel C, Dimokidis E, Taylor DM, Jeong J, Overbey E, Meydan C, Porterfield DM, Díaz JE, Caicedo A, Schisler JC, Laiakis EC, Mason CE, Kim MS, Karouia F, Szewczyk NJ, Beheshti A. Aging and putative frailty biomarkers are altered by spaceflight. Sci Rep 2024; 14:13098. [PMID: 38862573 PMCID: PMC11166946 DOI: 10.1038/s41598-024-57948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/23/2024] [Indexed: 06/13/2024] Open
Abstract
Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth. However, our understanding of the connection between these molecular shifts and disease development in space remains limited. Frailty syndrome, a clinical syndrome associated with biological aging, has not been comprehensively investigated during spaceflight. To bridge this knowledge gap, we leveraged murine data obtained from NASA's GeneLab, along with astronaut data gathered from the JAXA and Inspiration4 missions. Our objective was to assess the presence of biological markers and pathways related to frailty, aging, and sarcopenia within the spaceflight context. Through our analysis, we identified notable changes in gene expression patterns that may be indicative of the development of a frailty-like condition during space missions. These findings suggest that the parallels between spaceflight and the aging process may extend to encompass frailty as well. Consequently, further investigations exploring the utility of a frailty index in monitoring astronaut health appear to be warranted.
Collapse
Affiliation(s)
- Andrea Camera
- Intitute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Aman Singh Galsinh
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Alissen Haro-Vinueza
- Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ivonne Salinas
- Escuela de Medicina, Colegio de Ciencias de La Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Allen Seylani
- Riverside-School of Medicine, University of California, Riverside, CA, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Saswati Das
- Atal Bihari Vajpayee Institute of Medical Sciences, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anthony Carano
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | | | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Richard Barker
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Chirag Goel
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19041, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Esteban Díaz
- Data Science Institute, School of Business, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evagelia C Laiakis
- Department of Oncology, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Man S Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
6
|
Spangler HB, Lynch DH, Gross D, Cook SB, Batsis JA. Changes in Weight or Body Composition by Frailty Status: A Pilot Study. J Nutr Gerontol Geriatr 2024; 43:83-94. [PMID: 38470401 PMCID: PMC11213668 DOI: 10.1080/21551197.2024.2326807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Weight loss may benefit older adults with obesity. However, it is unknown whether individuals with different frailty phenotypes have different outcomes following weight loss. Community-dwelling adults aged ≥65 (n = 53) with a body mass index ≥30 kg/m2 were recruited for a six-month, single-arm, technology-based weight loss study. A 45-item frailty index identified frailty status using subjective and objective measures from a baseline geriatric assessment. At baseline, n = 22 participants were classified as pre-frail (41.5%) and n = 31 were frail (58.5%), with no differences in demographic characteristics. While weight decreased significantly in both groups (pre-frail: 90.8 ± 2.7 kg to 85.5 ± 2.4 kg (p < 0.001); frail: 102.7 ± 3.4 kg to 98.5 ± 3.3 kg (p < 0.001), no differences were observed between groups for changes in weight (p = 0.30), appendicular lean mass/height2 (p = 0.47), or fat-free mass (p = 0.06). Older adults with obesity can safely lose weight irrespective of frailty status using a technology-based approach. Further investigation is needed to determine whether the impact of specific lifestyle interventions differ by frailty status.
Collapse
Affiliation(s)
| | - David H. Lynch
- Division of Geriatric Medicine, UNC School of Medicine, Chapel Hill, NC
| | - Danae Gross
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Summer B. Cook
- School of Kinesiology, University of New Hampshire, Durham NH
| | - John A. Batsis
- Division of Geriatric Medicine, UNC School of Medicine, Chapel Hill, NC
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
7
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
8
|
Österdahl MF, Whiston R, Sudre CH, Asnicar F, Cheetham NJ, Blanco Miguez A, Bowyer V, Antonelli M, Snell O, Dos Santos Canas L, Hu C, Wolf J, Menni C, Malim M, Hart D, Spector T, Berry S, Segata N, Doores K, Ourselin S, Duncan EL, Steves CJ. Metabolomic and gut microbiome profiles across the spectrum of community-based COVID and non-COVID disease. Sci Rep 2023; 13:10407. [PMID: 37369825 PMCID: PMC10300098 DOI: 10.1038/s41598-023-34598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
Whilst most individuals with SARS-CoV-2 infection have relatively mild disease, managed in the community, it was noted early in the pandemic that individuals with cardiovascular risk factors were more likely to experience severe acute disease, requiring hospitalisation. As the pandemic has progressed, increasing concern has also developed over long symptom duration in many individuals after SARS-CoV-2 infection, including among the majority who are managed acutely in the community. Risk factors for long symptom duration, including biological variables, are still poorly defined. Here, we examine post-illness metabolomic profiles, using nuclear magnetic resonance (Nightingale Health Oyj), and gut-microbiome profiles, using shotgun metagenomic sequencing (Illumina Inc), in 2561 community-dwelling participants with SARS-CoV-2. Illness duration ranged from asymptomatic (n = 307) to Post-COVID Syndrome (n = 180), and included participants with prolonged non-COVID-19 illnesses (n = 287). We also assess a pre-established metabolomic biomarker score, previously associated with hospitalisation for both acute pneumonia and severe acute COVID-19 illness, for its association with illness duration. We found an atherogenic-dyslipidaemic metabolic profile, including biomarkers such as fatty acids and cholesterol, was associated with longer duration of illness, both in individuals with and without SARS-CoV-2 infection. Greater values of a pre-existing metabolomic biomarker score also associated with longer duration of illness, regardless of SARS-CoV-2 infection. We found no association between illness duration and gut microbiome profiles in convalescence. This highlights the potential role of cardiometabolic dysfunction in relation to the experience of long duration symptoms after symptoms of acute infection, both COVID-19 as well as other illnesses.
Collapse
|
9
|
Lorenz EC, Hickson LJ, Khairallah P, Najafi B, Kennedy CC. Cellular Senescence and Frailty in Transplantation. CURRENT TRANSPLANTATION REPORTS 2023; 10:51-59. [PMID: 37576589 PMCID: PMC10414789 DOI: 10.1007/s40472-023-00393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/28/2023]
Abstract
Purpose of review To summarizes the literature on cellular senescence and frailty in solid-organ transplantation and highlight the emerging role of senotherapeutics as a treatment for cellular senescence. Recent findings Solid-organ transplant patients are aging. Many factors contribute to aging acceleration in this population, including cellular senescence. Senescent cells accumulate in tissues and secrete proinflammatory and profibrotic proteins which result in tissue damage. Cellular senescence contributes to age-related diseases and frailty. Our understanding of the role cellular senescence plays in transplant-specific complications such as allograft immunogenicity and infections is expanding. Promising treatments, including senolytics, senomorphics, cell-based regenerative therapies, and behavioral interventions, may reduce cellular senescence abundance and frailty in patients with solid-organ transplants. Summary Cellular senescence and frailty contribute to adverse outcomes in solid-organ transplantation. Continued pursuit of understanding the role cellular senescence plays in transplantation may lead to improved senotherapeutic approaches and better graft and patient outcomes.
Collapse
Affiliation(s)
| | - LaTonya J. Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | | | - Bijan Najafi
- Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, Texas
| | - Cassie C. Kennedy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Arpawong TE, Klopack ET, Kim JK, Crimmins EM. ADHD genetic burden associates with older epigenetic age: mediating roles of education, behavioral and sociodemographic factors among older adults. Clin Epigenetics 2023; 15:67. [PMID: 37101297 PMCID: PMC10131361 DOI: 10.1186/s13148-023-01484-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Shortened lifespans are associated with having Attention Deficit Hyperactivity Disorder (ADHD), which is likely mediated by related behavioral and sociodemographic factors that are also associated with accelerated physiological aging. Such factors include exhibiting more depressive symptoms, more cigarette smoking, higher body mass index, lower educational attainment, lower income in adulthood, and more challenges with cognitive processes compared to the general population. A higher polygenic score for ADHD (ADHD-PGS) is associated with having more characteristic features of ADHD. The degree to which (1) the ADHD-PGS associates with an epigenetic biomarker developed to predict accelerated aging and earlier mortality is unknown, as are whether (2) an association would be mediated by behavioral and sociodemographic correlates of ADHD, or (3) an association would be mediated first by educational attainment, then by behavioral and sociodemographic correlates. We evaluated these relationships in a population-based sample from the US Health and Retirement Study, among N = 2311 adults age 50 and older, of European-ancestry, with blood-based epigenetic and genetic data. The ADHD-PGS was calculated from a prior genomewide meta-analysis. Epigenome-wide DNA methylation levels that index biological aging and earlier age of mortality were quantified by a blood-based biomarker called GrimAge. We used a structural equation modeling approach to test associations with single and multi-mediation effects of behavioral and contextual indicators on GrimAge, adjusted for covariates. RESULTS The ADHD-PGS was significantly and directly associated with GrimAge when adjusting for covariates. In single mediation models, the effect of the ADHD-PGS on GrimAge was partially mediated via smoking, depressive symptoms, and education. In multi-mediation models, the effect of the ADHD-PGS on GrimAge was mediated first through education, then smoking, depressive symptoms, BMI, and income. CONCLUSIONS Findings have implications for geroscience research in elucidating lifecourse pathways through which ADHD genetic burden and symptoms can alter risks for accelerated aging and shortened lifespans, when indexed by an epigenetic biomarker. More education appears to play a central role in attenuating negative effects on epigenetic aging from behavioral and sociodemographic risk factors related to ADHD. We discuss implications for the potential behavioral and sociodemographic mediators that may attenuate negative biological system effects.
Collapse
Affiliation(s)
- Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Eric T Klopack
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Casanova R, Anderson AM, Barnard RT, Justice JN, Kucharska-Newton A, Windham BG, Palta P, Gottesman RF, Mosley TH, Hughes TM, Wagenknecht LE, Kritchevsky SB. Is an MRI-derived anatomical measure of dementia risk also a measure of brain aging? GeroScience 2023; 45:439-450. [PMID: 36050589 PMCID: PMC9886771 DOI: 10.1007/s11357-022-00650-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 02/03/2023] Open
Abstract
Machine learning methods have been applied to estimate measures of brain aging from neuroimages. However, only rarely have these measures been examined in the context of biologic age. Here, we investigated associations of an MRI-based measure of dementia risk, the Alzheimer's disease pattern similarity (AD-PS) scores, with measures used to calculate biological age. Participants were those from visit 5 of the Atherosclerosis Risk in Communities Study with cognitive status adjudication, proteomic data, and AD-PS scores available. The AD-PS score estimation is based on previously reported machine learning methods. We evaluated associations of the AD-PS score with all-cause mortality. Sensitivity analyses using only cognitively normal (CN) individuals were performed treating CNS-related causes of death as competing risk. AD-PS score was examined in association with 32 proteins measured, using a Somalogic platform, previously reported to be associated with age. Finally, associations with a deficit accumulation index (DAI) based on a count of 38 health conditions were investigated. All analyses were adjusted for age, race, sex, education, smoking, hypertension, and diabetes. The AD-PS score was significantly associated with all-cause mortality and with levels of 9 of the 32 proteins. Growth/differentiation factor 15 (GDF-15) and pleiotrophin remained significant after accounting for multiple-testing and when restricting the analysis to CN participants. A linear regression model showed a significant association between DAI and AD-PS scores overall. While the AD-PS scores were created as a measure of dementia risk, our analyses suggest that they could also be capturing brain aging.
Collapse
Affiliation(s)
- Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Andrea M Anderson
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ryan T Barnard
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jamie N Justice
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Priya Palta
- School of Public Health, Columbia University, New York, NY, USA
| | | | | | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Liljeroos M, Arkkukangas M. Implementation of Telemonitoring in Health Care: Facilitators and Barriers for Using eHealth for Older Adults with Chronic Conditions. Risk Manag Healthc Policy 2023; 16:43-53. [PMID: 36647422 PMCID: PMC9840402 DOI: 10.2147/rmhp.s396495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Purpose The retrospective study used a hybrid design aimed to a) describe the implementation process of telemonitoring from stakeholders' perspectives and b) identify facilitators and barriers perceived by the care team. Patients and Methods Qualitative interview data were analyzed using manifest inductive qualitative content analysis to describe what was perceived as barriers and what facilitated the implementation. Participating healthcare professionals recruited from a multi-professional care team in Sweden. Overall, 14 healthcare professionals comprising 8 assistant nurses, 3 nurses, 1 physiotherapist, 1 occupational therapist, and one general practitioner participated in five interviews. Results Four categories were derived from the interview analysis: previous experience with digital technology, the need for preparation before implementation, perceptions of using telemonitoring in daily practice from the patient's perspective, and perceptions of the relevance and reasons for applying telemonitoring from the care team's perspective. The identification of stakeholders and the need to plan carefully when proposing the introduction of telemonitoring systems into work practices are both crucial. Conclusion The attitudes of healthcare professionals can be a significant factor in the acceptance and efficiency of the use of telemonitoring in practice. Therefore, implementing new technology in healthcare should involve healthcare professionals at an early stage to gain common understanding.
Collapse
Affiliation(s)
- Maria Liljeroos
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden,Centre for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
| | - Marina Arkkukangas
- Centre for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden,Department of Medicine and Sport Sciences, School of Health and Welfare, Dalarna University, Falun, Sweden,Department of Physiotherapy, School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden,Correspondence: Marina Arkkukangas, Research and Development in Sörmland, Eskilstuna, Sweden, Tel +46 706468868, Email
| |
Collapse
|
13
|
Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5019752. [PMID: 36312896 PMCID: PMC9616658 DOI: 10.1155/2022/5019752] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022]
Abstract
The kynurenine pathway is implicated in aging, longevity, and immune regulation, but longitudinal studies and assessment of the cerebrospinal fluid (CSF) are lacking. We investigated tryptophan (Trp) and downstream kynurenine metabolites and their associations with age and change over time in four cohorts using comprehensive, targeted metabolomics. The study included 1574 participants in two cohorts with repeated metabolite measurements (mean age at baseline 58 years ± 8 SD and 62 ± 10 SD), 3161 community-dwelling older adults (age range 71-74 years), and 109 CSF donors (mean age 73 years ± 7 SD). In the first two cohorts, age was associated with kynurenine (Kyn), quinolinic acid (QA), and the kynurenine to tryptophan ratio (KTR), and inversely with Trp. Consistent with these findings, Kyn, QA, and KTR increased over time, whereas Trp decreased. Similarly, QA and KTR were higher in community-dwelling older adults of age 74 compared to 71, whereas Trp was lower. Kyn and QA were more strongly correlated with age in the CSF compared to serum and increased in a subset of participants with repeated CSF sampling (n = 33) over four years. We assessed associations with frailty and mortality in two cohorts. QA and KTR were most strongly associated with mortality and frailty. Our study provides robust evidence of changes in tryptophan and kynurenine metabolism with human aging and supports links with adverse health outcomes. Our results suggest that aging activates the inflammation and stress-driven kynurenine pathway systemically and in the brain, but we cannot determine whether this activation is harmful or adaptive. We identified a relatively stronger age-related increase of the potentially neurotoxic end-product QA in brain.
Collapse
|
14
|
Koons B, Anderson MR, Smith PJ, Greenland JR, Singer JP. The Intersection of Aging and Lung Transplantation: its Impact on Transplant Evaluation, Outcomes, and Clinical Care. CURRENT TRANSPLANTATION REPORTS 2022; 9:149-159. [PMID: 36341000 PMCID: PMC9632682 DOI: 10.1007/s40472-022-00365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Purpose Older adults (age ≥ 65 years) are the fastest growing age group undergoing lung transplantation. Further, international consensus document for the selection of lung transplant candidates no longer suggest a fixed upper age limit. Although carefully selected older adults can derive great benefit, understanding which older adults will do well after transplant with improved survival and health-related qualiy of life is key to informed decision-making. Herein, we review the epidemiology of aging in lung transplantation and its impact on outcomes, highlight selected physiological measures that may be informative when evaluating and managing older lung transplant patients, and identify directions for future research. Recent Findings In general, listing and transplanting older, sicker patients has contributed to worse clinical outcomes and greater healthcare use. Emerging evidence suggest that measures of physiological age, such as frailty, body composition, and neurocognitive and psychosocial function, may better identify risk for poor transplant outcomes than chronlogical age. Summary The evidence base to inform transplant decision-making and improvements in care for older adults is small but growing. Multipronged efforts at the intersection of aging and lung transplantation are needed to improve the clinical and patient centered outcomes for this large and growing cohort of patients. Future research should focus on identifying novel and ideally modifiable risk factors for poor outcomes specific to older adults, better approaches to measuring physiological aging (e.g., frailty, body composition, neurocognitive and psychosocial function), and the underlying mechanisms of physiological aging. Finally, interventions that can improve clinical and patient centered outcomes for older adults are needed.
Collapse
Affiliation(s)
- Brittany Koons
- M. Louise Fitzpatrick College of Nursing, Villanova University, 800 Lancaster Avenue, Driscoll Hall Room 350, Villanova, PA 19085, USA
| | - Michaela R. Anderson
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Medicine and Neurosciences, Duke University Medical Center, Durham, NC, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Jonathan P. Singer
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Justice JN, Pajewski NM, Espeland MA, Brubaker P, Houston DK, Marcovina S, Nicklas BJ, Kritchevsky SB, Kitzman DW. Evaluation of a blood-based geroscience biomarker index in a randomized trial of caloric restriction and exercise in older adults with heart failure with preserved ejection fraction. GeroScience 2022; 44:983-995. [PMID: 35013909 PMCID: PMC9135899 DOI: 10.1007/s11357-021-00509-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Intermediate endpoints are needed to evaluate the effect of interventions targeting the biology of aging in clinical trials. A working group identified five blood-based biomarkers that may serve such a purpose as an integrated index. We evaluated the responsiveness of the panel to caloric restriction or aerobic exercise in the context of a randomized clinical trial conducted in patients with heart failure with preserved ejection fraction (HFpEF) with obese phenotype who were predominantly female. Obese HFpEF is highly prevalent in women, and is a geriatric syndrome whose disease pathology is driven by non-cardiac factors and shared drivers of aging. We measured serum Interleukin-6, TNF-α-receptor-I, growth differentiating factor-15, cystatin C, and N-terminal pro-b-type natriuretic peptide at baseline and after 20 weeks in older participants with stable obese HFpEF participating in a randomized, controlled, 2 × 2 factorial trial of caloric restriction and/or aerobic exercise. We calculated a composite biomarker index, summing baseline quintile scores for each biomarker, and analyzed the effect of the interventions on the index and individual biomarkers and their associations with changes in physical performance. This post hoc analysis included 88 randomized participants (71 women [81%]). The mean ± SD age was 66.6 ± 5.3 years, and body mass index (BMI) was 39.3 ± 6.3 kg/m2. Using mixed models, mean values of the biomarker index improved over 20 weeks with caloric restriction (- 0.82 [Formula: see text] 0.58 points, p = 0.05), but not with exercise (- 0.28 [Formula: see text] 0.59 points, p = [Formula: see text]), with no evidence of an interaction effect of CR [Formula: see text] EX [Formula: see text] time (p = 0.80) with adjustment for age, gender, and BMI. At baseline, the biomarker index was inversely correlated with 6-min walk distance, scores on the short physical performance battery, treadmill test peak workload and exercise time to exhaustion (all [Formula: see text] s = between - 0.21 and - 0.24). A reduction in the biomarker index was also associated with increased 4-m usual walk speed ([Formula: see text] s = - 0.31). Among older patients with chronic obese HFpEF, caloric restriction improved a biomarker index designed to reflect biological aging. Moreover, the index was associated with physical performance and exercise tolerance.
Collapse
Affiliation(s)
- Jamie N Justice
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Nicholas M Pajewski
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark A Espeland
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Peter Brubaker
- Department of Health and Exercise Science at Wake, Forest University in Winston-Salem, NC, USA
| | - Denise K Houston
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Barbara J Nicklas
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W Kitzman
- Department of Internal Medicine, Section On Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Lee SH, Lee JY, Lim KH, Lee YS, Koh JM. Associations Between Plasma Growth and Differentiation Factor-15 with Aging Phenotypes in Muscle, Adipose Tissue, and Bone. Calcif Tissue Int 2022; 110:236-243. [PMID: 34499185 DOI: 10.1007/s00223-021-00912-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 02/04/2023]
Abstract
Growth and differentiation factor 15 (GDF-15) is associated with muscle, fat, and bone metabolism; however, this association has not been well characterized. Plasma GDF-15, appendicular skeletal muscle mass (ASM), fat mass (FM), and bone mineral density (BMD) were measured in 146 postmenopausal women. GDF-15 levels were higher in subjects with low Body Mass Index (BMI)-adjusted ASM than in those without (median [interquartile range] 831.3 [635.4-1011.4] vs. 583.8 [455.8-771.1] pg/mL, p = 0.018). The GDF-15 level was inversely correlated with BMI-adjusted ASM (r = - 0.377, p < 0.001) and BMD at femur neck (FN-BMD; r = - 0.201, p = 0.015), and positively correlated with percent FM (pFM; r = 0.328, p < 0.001). After adjusting for confounders, the GDF-15 level was inversely associated with BMI-adjusted ASM (β = -0.250, p = 0.006) and positively associated with pFM (β = 0.272, p = 0.004), and tended to be inversely associated with FN-BMD (β = - 0.176, p = 0.076). The area under the receiver-operating characteristic curve of GDF-15 level > 618.4 pg/mL for sarcopenia was 0.706 (95% confidence interval (CI) 0.625-0.779) with a sensitivity of 83.3% and a specificity of 54.5%. Using a GDF-15 level of 618.4 pg/mL as a cut-off, the GDF-15 level was associated with a significantly greater likelihood of sarcopenia (odds ratio [OR] 2.35; 95% CI 1.00-5.51; p = 0.049), obesity (OR 3.28; 95% CI 1.48-7.27; p = 0.001), osteopenic obesity (OR 3.10; 95% CI 1.31-7.30; p = 0.010), and sarcopenic or osteosarcopenic obesity (OR 4.84; 95% CI 0.88-26.69; p = 0.070). These findings support the potential of GDF-15 as a biomarker for age-related changes in muscle, fat, and bone.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Jee Yang Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Kyeong-Hye Lim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Seoul, 05505, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
17
|
miRNome Profiling Detects miR-101-3p and miR-142-5p as Putative Blood Biomarkers of Frailty Syndrome. Genes (Basel) 2022; 13:genes13020231. [PMID: 35205276 PMCID: PMC8872439 DOI: 10.3390/genes13020231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Frailty is an aging-related pathology, defined as a state of increased vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs (miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related pathologies. The primary objective of this study was to identify blood miRNAs that could serve as potential biomarkers and candidate mechanisms of frailty. Using the Fried index, we enrolled 22 robust and 19 frail subjects. Blood and urine samples were analysed for several biochemical parameters. We observed that sTNF-R was robustly upregulated in the frail group, indicating the presence of an inflammatory state. Further, by RNA-seq, we profiled 2654 mature miRNAs in the whole blood of the two groups. Expression levels of selected differentially expressed miRNAs were validated by qPCR, and target prediction analyses were performed for the dysregulated miRNAs. We identified 2 miRNAs able to significantly differentiate frail patients from robust subjects. Both miR-101-3p and miR-142-5p were found to be downregulated in the frail vs. robust group. Finally, using bioinformatics targets prediction tools, we explored the potential molecular mechanisms and cellular pathways regulated by the two miRNAs and potentially involved in frailty.
Collapse
|
18
|
Cesari M, Azzolino D, LeBrasseur NK, Whitson H, Rooks D, Sourdet S, Angioni D, Fielding RA, Vellas B, Rolland Y, Andrieu S, Leheudre MA, Barcons N, Beliën A, de Souto Barreto P, Delannoy C, John G, Robledo LMG, Hwee D, Mariani J, Reshma M, Morley J, Pereira S, Erin Q, Michelle R, Rueda R, Tarasenko L, Tourette C, Van Maanen R, Waters DL. Resilience: Biological Basis and Clinical Significance - A Perspective Report from the International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force. J Frailty Aging 2022; 11:342-347. [PMID: 36346720 PMCID: PMC9589704 DOI: 10.14283/jfa.2022.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Resilience is a construct receiving growing attention from the scientific community in geriatrics and gerontology. Older adults show extremely heterogeneous (and often unpredictable) responses to stressors. Such heterogeneity can (at least partly) be explained by differences in resilience (i.e., the capacity of the organism to cope with stressors). The International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force met in Boston (MA,USA) on April 20, 2022 to discuss the biological and clinical significance of resilience in older adults. The identification of persons with low resilience and the prompt intervention in this at-risk population may be critical to develop and implement preventive strategies against adverse events. Unfortunately, to date, it is still challenging to capture resilience, especially due to its dynamic nature encompassing biological, clinical, subjective, and socioeconomic factors. Opportunities to dynamically measure resilience were discussed during the ICFSR Task Force meeting, emphasizing potential biomarkers and areas of intervention. This article reports the results of the meeting and may serve to support future actions in the field.
Collapse
Affiliation(s)
- Matteo Cesari
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, University of Milan, Via Camaldoli 64, 20138 Milano, Italy
| | - D. Azzolino
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, University of Milan, Via Camaldoli 64, 20138 Milano, Italy
| | - N. K. LeBrasseur
- Robert and Arlene Kodod Center on Aging, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, USA
| | - H. Whitson
- Duke University School of Medicine & Durham VA Medical Center, Durham, USA
| | - D. Rooks
- Translational Medicine, Novartis Institutes for Biomedical Research Inc., Cambridge, USA
| | - S. Sourdet
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - D. Angioni
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - R. A. Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA, Human Nutrition Research Center on Aging at Tufts University, Boston, MA USA
| | - B. Vellas
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - Y. Rolland
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|