1
|
Gong Z, Song T, Hu M, Che Q, Guo J, Zhang H, Li H, Wang Y, Liu B, Shi N. Natural and socio-environmental factors in the transmission of COVID-19: a comprehensive analysis of epidemiology and mechanisms. BMC Public Health 2024; 24:2196. [PMID: 39138466 PMCID: PMC11321203 DOI: 10.1186/s12889-024-19749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE OF REVIEW There are significant differences in the transmission rate and mortality rate of COVID-19 under environmental conditions such as seasons and climates. However, the impact of environmental factors on the role of the COVID-19 pandemic and the transmission mechanism of the SARS-CoV-2 is unclear. Therefore, a comprehensive understanding of the impact of environmental factors on COVID-19 can provide innovative insights for global epidemic prevention and control policies and COVID-19 related research. This review summarizes the evidence of the impact of different natural and social environmental factors on the transmission of COVID-19 through a comprehensive analysis of epidemiology and mechanism research. This will provide innovative inspiration for global epidemic prevention and control policies and provide reference for similar infectious diseases that may emerge in the future. RECENT FINDINGS Evidence reveals mechanisms by which natural environmental factors influence the transmission of COVID-19, including (i) virus survival and transport, (ii) immune system damage, (iii) inflammation, oxidative stress, and cell death, and (iiii) increasing risk of complications. All of these measures appear to be effective in controlling the spread or mortality of COVID-19: (1) reducing air pollution levels, (2) rational use of ozone disinfection and medical ozone therapy, (3) rational exposure to sunlight, (4) scientific ventilation and maintenance of indoor temperature and humidity, (5) control of population density, and (6) control of population movement. Our review indicates that with the continuous mutation of SARS-CoV-2, high temperature, high humidity, low air pollution levels, and low population density more likely to slow down the spread of the virus.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tian Song
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingzhi Hu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haili Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huizhen Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Girón Pérez DA, Fonseca-Agüero A, Toledo-Ibarra GA, Gomez-Valdivia JDJ, Díaz-Resendiz KJG, Benitez-Trinidad AB, Razura-Carmona FF, Navidad-Murrieta MS, Covantes-Rosales CE, Giron-Pérez MI. Post-COVID-19 Syndrome in Outpatients and Its Association with Viral Load. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15145. [PMID: 36429864 PMCID: PMC9690223 DOI: 10.3390/ijerph192215145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION The COVID-19 pandemic is the result of the SARS-CoV-2 virus, which has caused more than 100 million infections and more than 2.5 million deaths worldwide, representing a serious public health problem. The gold method for detecting this virus is qRT-PCR, which is a semiquantitative technique where the viral load can be established through its cycle threshold (Ct). It has also been reported that COVID-19 generates long-term symptoms (post-COVID-19). METHODS After three months, a survey was performed on 70 COVID-19 confirmed patients; subsequently, we divided them into four groups (persistent symptoms, chemo-sensitive, cognitive issues, and changes in habit) in order to determine the correlation between viral load and post-COVID-19 symptoms. RESULTS Data show that fatigue, nervousness, anosmia, and diet changes are common long-term symptoms; in addition, a negative correlation was found between viral load and the number of post-COVID-19 symptoms. CONCLUSION COVID-19 generates long-term symptoms which can cause problems with psychological and social repercussions.
Collapse
Affiliation(s)
- Daniel Alberto Girón Pérez
- Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (LANIIA) Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Aimee Fonseca-Agüero
- Laboratorio de Psicofisiología y Conducta, Unidad Académica de Ciencias Sociales, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Gladys Alejandra Toledo-Ibarra
- Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (LANIIA) Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Jaqueline de Jesus Gomez-Valdivia
- Laboratorio de Psicofisiología y Conducta, Unidad Académica de Ciencias Sociales, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | | | - Alma Benitez Benitez-Trinidad
- Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (LANIIA) Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Francisco Fabian Razura-Carmona
- Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (LANIIA) Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Migdalia Sarahy Navidad-Murrieta
- Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (LANIIA) Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (LANIIA) Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Manuel Ivan Giron-Pérez
- Laboratorio Nacional de Investigación Para la Inocuidad Alimentaria (LANIIA) Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| |
Collapse
|
3
|
Ferreira JC, Moreira TCL, de Araújo AL, Imamura M, Damiano RF, Garcia ML, Sawamura MV, Pinna FR, Guedes BF, Gonçalves FAR, Mancini M, Burdmann EA, da Silva Filho DF, Polizel JL, Bento RF, Rocha V, Nitrini R, de Souza HP, Levin AS, Kallas EG, Forlenza OV, Busatto GF, Batistella LR, de Carvalho CRR, Mauad T, Gouveia N. Clinical, sociodemographic and environmental factors impact post-COVID-19 syndrome. J Glob Health 2022; 12:05029. [PMID: 35939273 PMCID: PMC9359428 DOI: 10.7189/jogh.12.05029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Sociodemographic and environmental factors are associated with incidence, severity, and mortality of COVID-19. However, little is known about the role of such factors in persisting symptoms among recovering patients. We designed a cohort study of hospitalized COVID-19 survivors to describe persistent symptoms and identify factors associated with post-COVID-19 syndrome. Methods We included patients hospitalized between March to August 2020 who were alive six months after hospitalization. We collected individual and clinical characteristics during hospitalization and at follow-up assessed ten symptoms with standardized scales, 19 yes/no symptoms, a functional status and a quality-of-life scale and performed four clinical tests. We examined individual exposure to greenspace and air pollution and considered neighbourhood´s population density and socioeconomic conditions as contextual factors in multilevel regression analysis. Results We included 749 patients with a median follow-up of 200 (IQR = 185-235) days, and 618 (83%) had at least one of the ten symptoms measured with scales. Pain (41%), fatigue (38%) and posttraumatic stress disorder (35%) were the most frequent. COVID-19 severity, comorbidities, BMI, female sex, younger age, and low socioeconomic position were associated with different symptoms. Exposure to ambient air pollution was associated with higher dyspnoea and fatigue scores and lower functional status. Conclusions We identified a high frequency of persistent symptoms among COVID-19 survivors that were associated with clinical, sociodemographic, and environmental variables. These findings indicate that most patients recovering from COVID-19 will need post-discharge care, and an additional burden to health care systems, especially in LMICs, should be expected.
Collapse
Affiliation(s)
- Juliana Carvalho Ferreira
- Divisao de Pneumologia, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
- Intensive Care Unit, AC Camargo Cancer Center, São Paulo, Brasil
| | - Tiana C Lopes Moreira
- Departamento de Patologia, LIM/05- Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Adriana Ladeira de Araújo
- Diretoria Executiva dos LIMs, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Marta Imamura
- Instituto de Medicina fisica e Reabilitação do Hospital das Clinicas, Departamento de Medicina Legal, Etica Médica e Medicina Social e do Trabalho, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Rodolfo F Damiano
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Michelle L Garcia
- Divisao de Pneumologia, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Marcio Vy Sawamura
- Departamento de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Fabio R Pinna
- Departamento de Oftalmologia e Otorrinolaringologia, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Bruno F Guedes
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Fabio A Rodrigues Gonçalves
- Departamento de Cardiopneumologia, Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Marcio Mancini
- Unidade de Obesidade e Síndrome Metabólica, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Emmanuel A Burdmann
- Departamento de Clínica Médica, LIM/12 - Laboratório de Pesquisa Básica em Doenças Renais, Disciplina de Nefrologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Jefferson Lordello Polizel
- Departamento de Ciências Florestais-ESALQ/USP, Laboratório de Métodos Quantitativos, Universidade de São Paulo, Piracicaba, SP, Brasil
| | - Ricardo F Bento
- Departamento de Oftalmologia e Otorrinolaringologia, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
- Divisão de Otorrinolaringologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Vanderson Rocha
- Serviço de Hematologia, Hemoterapia e Terapia Celular, Divisão de Clínica Médica I do ICHC, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Ricardo Nitrini
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Heraldo Possolo de Souza
- Departamento de Clínica Médica, Disciplina de Emergências Clínicas, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Anna S Levin
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Esper G Kallas
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Orestes V Forlenza
- Departamento e Instituto de Psiquiatria, Laboratório de Neurociências - LIM-27, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Geraldo F Busatto
- Diretoria Executiva dos LIMs, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Linamara R Batistella
- Instituto de Medicina fisica e Reabilitação do Hospital das Clinicas, Departamento de Medicina Legal, Etica Médica e Medicina Social e do Trabalho, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Carlos R Ribeiro de Carvalho
- Divisao de Pneumologia, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Thais Mauad
- Departamento de Patologia, LIM/05- Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| | - Nelson Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Santurtún A, Colom ML, Fdez-Arroyabe P, Real ÁD, Fernández-Olmo I, Zarrabeitia MT. Exposure to particulate matter: Direct and indirect role in the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 206:112261. [PMID: 34687752 PMCID: PMC8527737 DOI: 10.1016/j.envres.2021.112261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 05/16/2023]
Abstract
Knowing the transmission factors and the natural environment that favor the spread of a viral infection is crucial to stop outbreaks and develop effective preventive strategies. This work aims to evaluate the role of Particulate Matter (PM) in the COVID-19 pandemic, focusing especially on that of PM as a vector for SARS-CoV-2. Exposure to PM has been related to new cases and to the clinical severity of people infected by SARS-CoV-2, which can be explained by the oxidative stress and the inflammatory response generated by these particles when entering the respiratory system, as well as by the role of PM in the expression of ACE-2 in respiratory cells in human hosts. In addition, different authors have detected SARS-CoV-2 RNA in PM sampled both in outdoor and indoor environments. The results of various studies lead to the hypothesis that the aerosols emitted by an infected person could be deposited in other suspended particles, sometimes of natural but especially of anthropogenic origin, that form the basal PM. However, the viability of the virus in PM has not yet been demonstrated. Should PM be confirmed as a vector of transmission, prevention strategies ought to be adapted, and PM sampling in outdoor environments could become an indicator of viral load in a specific area.
Collapse
Affiliation(s)
- Ana Santurtún
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain.
| | - Marina L Colom
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group. University of Cantabria, Santander, Spain
| | - Álvaro Del Real
- Medicine and Psychiatry Department. University of Cantabria, Santander, Spain
| | - Ignacio Fernández-Olmo
- Chemical and Molecular Engineering Department. University of Cantabria, Santander, Spain
| | - María T Zarrabeitia
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain
| |
Collapse
|
5
|
Weaver AK, Head JR, Gould CF, Carlton EJ, Remais JV. Environmental Factors Influencing COVID-19 Incidence and Severity. Annu Rev Public Health 2022; 43:271-291. [PMID: 34982587 PMCID: PMC10044492 DOI: 10.1146/annurev-publhealth-052120-101420] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging evidence supports a link between environmental factors-including air pollution and chemical exposures, climate, and the built environment-and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and coronavirus disease 2019 (COVID-19) susceptibility and severity. Climate, air pollution, and the built environment have long been recognized to influence viral respiratory infections, and studies have established similar associations with COVID-19 outcomes. More limited evidence links chemical exposures to COVID-19. Environmental factors were found to influence COVID-19 through four major interlinking mechanisms: increased risk of preexisting conditions associated with disease severity; immune system impairment; viral survival and transport; and behaviors that increase viral exposure. Both data and methodologic issues complicate the investigation of these relationships, including reliance on coarse COVID-19 surveillance data; gaps in mechanistic studies; and the predominance of ecological designs. We evaluate the strength of evidence for environment-COVID-19 relationships and discuss environmental actions that might simultaneously address the COVID-19 pandemic, environmental determinants of health, and health disparities.
Collapse
Affiliation(s)
- Amanda K Weaver
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA; ,
| | - Jennifer R Head
- Department of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA;
| | - Carlos F Gould
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA;
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, Colorado, USA;
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA; ,
| |
Collapse
|
6
|
Yu Z, Bellander T, Bergström A, Dillner J, Eneroth K, Engardt M, Georgelis A, Kull I, Ljungman P, Pershagen G, Stafoggia M, Melén E, Gruzieva O, and the BAMSE COVID-19 Study Group. Association of Short-term Air Pollution Exposure With SARS-CoV-2 Infection Among Young Adults in Sweden. JAMA Netw Open 2022; 5:e228109. [PMID: 35442452 PMCID: PMC9021914 DOI: 10.1001/jamanetworkopen.2022.8109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Mounting ecological evidence shows an association between short-term air pollution exposure and COVID-19, yet no study has examined this association on an individual level. OBJECTIVE To estimate the association between short-term exposure to ambient air pollution and SARS-CoV-2 infection among Swedish young adults. DESIGN, SETTING, AND PARTICIPANTS This time-stratified case-crossover study linked the prospective BAMSE (Children, Allergy Milieu, Stockholm, Epidemiology [in Swedish]) birth cohort to the Swedish national infectious disease registry to identify cases with positive results for SARS-CoV-2 polymerase chain reaction (PCR) testing from May 5, 2020, to March 31, 2021. Case day was defined as the date of the PCR test, whereas the dates with the same day of the week within the same calendar month and year were selected as control days. Data analysis was conducted from September 1 to December 31, 2021. EXPOSURES Daily air pollutant levels (particulate matter with diameter ≤2.5 μm [PM2.5], particulate matter with diameter ≤10 μm [PM10], black carbon [BC], and nitrogen oxides [NOx]) at residential addresses were estimated using dispersion models with high spatiotemporal resolution. MAIN OUTCOMES AND MEASURES Confirmed SARS-CoV-2 infection among participants within the BAMSE cohort. Distributed-lag models combined with conditional logistic regression models were used to estimate the association. RESULTS A total of 425 cases were identified, of whom 229 (53.9%) were women, and the median age was 25.6 (IQR, 24.9-26.3) years. The median exposure level for PM2.5 was 4.4 [IQR, 2.6-6.8] μg/m3 on case days; for PM10, 7.7 [IQR, 4.6-11.3] μg/m3 on case days; for BC, 0.3 [IQR, 0.2-0.5] μg/m3 on case days; and for NOx, 8.2 [5.6-14.1] μg/m3 on case days. Median exposure levels on control days were 3.8 [IQR, 2.4-5.9] μg/m3 for PM2.5, 6.6 [IQR, 4.5-10.4] μg/m3 for PM10, 0.2 [IQR, 0.2-0.4] μg/m3 for BC, and 7.7 [IQR, 5.3-12.8] μg/m3 for NOx. Each IQR increase in short-term exposure to PM2.5 on lag 2 was associated with a relative increase in positive results of SARS-CoV-2 PCR testing of 6.8% (95% CI, 2.1%-11.8%); exposure to PM10 on lag 2, 6.9% (95% CI, 2.0%-12.1%); and exposure to BC on lag 1, 5.8% (95% CI, 0.3%-11.6%). These findings were not associated with NOx, nor were they modified by sex, smoking, or having asthma, overweight, or self-reported COVID-19 respiratory symptoms. CONCLUSIONS AND RELEVANCE The findings of this case-crossover study of Swedish young adults suggest that short-term exposure to particulate matter and BC was associated with increased risk of positive PRC test results for SARS-CoV-2, supporting the broad public health benefits of reducing ambient air pollution levels.
Collapse
Affiliation(s)
- Zhebin Yu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Joakim Dillner
- Medical Diagnostics Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Eneroth
- SLB-analys, Environment and Health Administration, Stockholm, Sweden
| | - Magnuz Engardt
- SLB-analys, Environment and Health Administration, Stockholm, Sweden
| | - Antonios Georgelis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
- Department of Pediatrics, Sachs Children’s Hospital, Stockholm, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
- Department of Pediatrics, Sachs Children’s Hospital, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | | |
Collapse
|
7
|
Direct and Indirect Effects of COVID-19 in Frail Elderly: Interventions and Recommendations. J Pers Med 2021; 11:jpm11100999. [PMID: 34683141 PMCID: PMC8539433 DOI: 10.3390/jpm11100999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Frailty is a state of vulnerability to stressors because of a decreased physiological reserve, resulting in poor health outcomes. This state is related to chronic conditions, many of which are risk factors for outcomes in elderly patients having SARS-COV-2. This review aims to describe frailty as a physiological vulnerability agent during the COVID-19 pandemic in elderly patients, summarizing the direct and indirect effects caused by the SARS-COV-2 infection and its prognosis in frail individuals, as well as the interventions and recommendations to reduce their effects. Cohort studies have shown that patients with a Clinical Frailty Scale higher than five have a higher risk of mortality and use of mechanical ventilation after COVID-19; nonetheless, other scales have also associated frailty with longer hospital stays and more severe forms of the disease. Additionally, the indirect effects caused by the pandemic have a negative impact on the health status of older people. Due to the above, a holistic intervention is proposed based on a comprehensive geriatric assessment for frail patients (preventive or post-infection) with emphasis on physical activity and nutritional recommendations, which could be a potential preventive intervention in viral infections by COVID-19.
Collapse
|