1
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
2
|
Sánchez-Velázquez OA, Luna-Vital DA, Morales-Hernandez N, Contreras J, Villaseñor-Tapia EC, Fragoso-Medina JA, Mojica L. Nutritional, bioactive components and health properties of the milpa triad system seeds (corn, common bean and pumpkin). Front Nutr 2023; 10:1169675. [PMID: 37538927 PMCID: PMC10395131 DOI: 10.3389/fnut.2023.1169675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
The milpa system is a biocultural polyculture technique. Heritage of Mesoamerican civilizations that offers a wide variety of plants for food purposes. Corn, common beans, and pumpkins are the main crops in this agroecosystem, which are important for people's nutritional and food security. Moreover, milpa system seeds have great potential for preventing and ameliorating noncommunicable diseases, such as obesity, dyslipidemia, type 2 diabetes, among others. This work reviews and analyzes the nutritional and health benefits of milpa system seeds assessed by recent preclinical and clinical trials. Milpa seeds protein quality, vitamins and minerals, and phytochemical composition are also reviewed. Evidence suggests that regular consumption of milpa seeds combination could exert complementing effect to control nutritional deficiencies. Moreover, the combination of phytochemicals and nutritional components of the milpa seed could potentialize their individual health benefits. Milpa system seeds could be considered functional foods to fight nutritional deficiencies and prevent and control noncommunicable diseases.
Collapse
Affiliation(s)
- Oscar Abel Sánchez-Velázquez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | | | - Norma Morales-Hernandez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Jonhatan Contreras
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Elda Cristina Villaseñor-Tapia
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | | | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| |
Collapse
|
3
|
van’t Sant LJ, White JJ, Hoeijmakers JHJ, Vermeij WP, Jaarsma D. In vivo 5-ethynyluridine (EU) labelling detects reduced transcription in Purkinje cell degeneration mouse mutants, but can itself induce neurodegeneration. Acta Neuropathol Commun 2021; 9:94. [PMID: 34020718 PMCID: PMC8139001 DOI: 10.1186/s40478-021-01200-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorescent staining of newly transcribed RNA via metabolic labelling with 5-ethynyluridine (EU) and click chemistry enables visualisation of changes in transcription, such as in conditions of cellular stress. Here, we tested whether EU labelling can be used to examine transcription in vivo in mouse models of nervous system disorders. We show that injection of EU directly into the cerebellum results in reproducible labelling of newly transcribed RNA in cerebellar neurons and glia, with cell type-specific differences in relative labelling intensities, such as Purkinje cells exhibiting the highest levels. We also observed EU-labelling accumulating into cytoplasmic inclusions, indicating that EU, like other modified uridines, may introduce non-physiological properties in labelled RNAs. Additionally, we found that EU induces Purkinje cell degeneration nine days after EU injection, suggesting that EU incorporation not only results in abnormal RNA transcripts, but also eventually becomes neurotoxic in highly transcriptionally-active neurons. However, short post-injection intervals of EU labelling in both a Purkinje cell-specific DNA repair-deficient mouse model and a mouse model of spinocerebellar ataxia 1 revealed reduced transcription in Purkinje cells compared to controls. We combined EU labelling with immunohistology to correlate altered EU staining with pathological markers, such as genotoxic signalling factors. These data indicate that the EU-labelling method provided here can be used to identify changes in transcription in vivo in nervous system disease models.
Collapse
|
4
|
Birkisdóttir MB, Jaarsma D, Brandt RMC, Barnhoorn S, Vliet N, Imholz S, Oostrom CT, Nagarajah B, Portilla Fernández E, Roks AJM, Elgersma Y, Steeg H, Ferreira JA, Pennings JLA, Hoeijmakers JHJ, Vermeij WP, Dollé MET. Unlike dietary restriction, rapamycin fails to extend lifespan and reduce transcription stress in progeroid DNA repair-deficient mice. Aging Cell 2021; 20:e13302. [PMID: 33484480 PMCID: PMC7884048 DOI: 10.1111/acel.13302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Dietary restriction (DR) and rapamycin extend healthspan and life span across multiple species. We have recently shown that DR in progeroid DNA repair‐deficient mice dramatically extended healthspan and trippled life span. Here, we show that rapamycin, while significantly lowering mTOR signaling, failed to improve life span nor healthspan of DNA repair‐deficient Ercc1∆/− mice, contrary to DR tested in parallel. Rapamycin interventions focusing on dosage, gender, and timing all were unable to alter life span. Even genetically modifying mTOR signaling failed to increase life span of DNA repair‐deficient mice. The absence of effects by rapamycin on P53 in brain and transcription stress in liver is in sharp contrast with results obtained by DR, and appoints reducing DNA damage and transcription stress as an important mode of action of DR, lacking by rapamycin. Together, this indicates that mTOR inhibition does not mediate the beneficial effects of DR in progeroid mice, revealing that DR and rapamycin strongly differ in their modes of action.
Collapse
Affiliation(s)
- María B. Birkisdóttir
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
| | - Dick Jaarsma
- Department of Neuroscience Erasmus MC Rotterdam The Netherlands
| | | | - Sander Barnhoorn
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
| | - Nicole Vliet
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
| | - Sandra Imholz
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Conny T. Oostrom
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Bhawani Nagarajah
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Eliana Portilla Fernández
- Division of Vascular Medicine and Pharmacology Department of Internal Medicine Erasmus MC Rotterdam The Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology Department of Internal Medicine Erasmus MC Rotterdam The Netherlands
| | - Ype Elgersma
- Department of Neuroscience Erasmus MC Rotterdam The Netherlands
| | - Harry Steeg
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - José A. Ferreira
- Department of Statistics, Informatics and Modelling National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
- CECAD Forschungszentrum Köln Germany
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
| | - Martijn E. T. Dollé
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| |
Collapse
|
5
|
Kaźmierczak-Barańska J, Boguszewska K, Karwowski BT. Nutrition Can Help DNA Repair in the Case of Aging. Nutrients 2020; 12:nu12113364. [PMID: 33139613 PMCID: PMC7692274 DOI: 10.3390/nu12113364] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Micronutrients such as vitamins and trace elements are crucial for maintaining the health of all organisms. Micronutrients are involved in every cellular/biochemical process. They play roles in proper heart and brain functioning, influence immunological responses, and antioxidant defense systems. Therefore, prolonged deficiency in one or more micronutrients leads to cardiovascular or neurodegenerative disorders. Keeping micronutrients at adequate levels is especially important for seniors. They are prone to deficiencies due to age-associated functional decline and often to a diet poor in nutrients. Moreover, lack of micronutrients has an indirect impact on the genome. Their low levels reduce the activity of antioxidant enzymes, and therefore inhibit the efficiency of defense against free radicals which can lead to the formation of DNA lesions. The more DNA damage in the genetic material, the faster aging at the cellular level and a higher risk of pathological processes (e.g., carcinogenesis). Supplementation of crucial antioxidative micronutrients such as selenium, zinc, vitamin C, and vitamin E seems to have the potential to positively influence the condition of an aging organism, including minimizing inflammation, enhancing antioxidative defense, and limiting the formation of DNA lesions. In consequence, it may lead to lowering the risk and incidence of age-related diseases such as cardiovascular diseases, neurodegenerative diseases, and malnutrition. In this article, we attempt to present the synergistic action of selected antioxidant micronutrients (vitamin C, vitamin E, selenium, and zinc) for inhibiting oxidative stress and DNA damage, which may impede the process of healthy aging.
Collapse
|
6
|
Cui X, Lin Q, Liang Y. Plant-Derived Antioxidants Protect the Nervous System From Aging by Inhibiting Oxidative Stress. Front Aging Neurosci 2020; 12:209. [PMID: 32760268 PMCID: PMC7372124 DOI: 10.3389/fnagi.2020.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) has become a major disease contributing to human death and is thought to be closely related to the aging process. The rich antioxidant substances in plants have been shown to play a role in delaying aging, and in recent years, significant research has focused on also examining their potential role in AD onset and progression. Many plant-derived antioxidant research studies have provided insights for the future treatment and prevention of AD. This article reviews various types of plant-derived antioxidants with anti-aging effects on neurons. Also it distinguishes the different types of active substances that exhibit different degrees of protection for the nervous system and summarizes the mechanism thereof. Plant-derived antioxidants with neuroprotective functions can protect various components of the nervous system in a variety of ways and can have a positive impact on interventions to prevent and alleviate AD. Furthermore, when considering neuroprotective agents, glial cells also contribute to the defense of the nervous system and should not be ignored.
Collapse
Affiliation(s)
- Xiaoji Cui
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
7
|
Liu B, Tu Y, He W, Liu Y, Wu W, Fang Q, Tang H, Tang R, Wan Z, Sun W, Wan Y. Hyperoside attenuates renal aging and injury induced by D-galactose via inhibiting AMPK-ULK1 signaling-mediated autophagy. Aging (Albany NY) 2018; 10:4197-4212. [PMID: 30585174 PMCID: PMC6326678 DOI: 10.18632/aging.101723] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
The kidney is a typical organ undergoing age and injury. Hyperoside is reported to be useful for preventing aging induced by D-galactose (D-gal). However, therapeutic mechanisms remain unclear. We thereby aimed to verify whether hyperoside, compared to vitamin E (VE), could alleviate renal aging and injury by regulating autophagic activity and its related signaling pathways. In vivo, rats were administered with either hyperoside or VE after renal aging modeling induced by D-gal. Changes in renal aging and injury markers, autophagic activity and AMPK-ULK1 signaling pathway in the kidneys were analysed. In vitro, the NRK-52E cells exposed to D-gal were used to investigate regulative actions of hyperoside and VE on cell viability, renal tubular cellular aging markers, autophagic activity and its related signaling pathways by histomorphometry, immunohistochemistry, immunofluorescence, lentiviral transfection and Western blot. Aging and injury in the kidneys and renal tubular cells induced by D-gal were ameliorated by hyperoside and VE. Hyperoside and VE inhibited autophagic activity through mTOR-independent and AMPK-ULK1 signaling pathways. Hyperoside, as a component of phytomedicine similar to VE, attenuated renal aging and injury induced by D-gal via inhibiting AMPK-ULK1-mediated autophagy. This study provides the first evidence that hyperoside contributes to the prevention of age-associated renal injury.
Collapse
Affiliation(s)
- Buhui Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Department of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Equal contribution
| | - Yue Tu
- Department of TCM Health Preservation, Second Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Equal contribution
| | - Weiming He
- Department of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yinglu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qijun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Haitao Tang
- Institute of Huangkui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou 225500, China
| | - Renmao Tang
- Institute of Huangkui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou 225500, China
| | - Ziyue Wan
- Department of Social Work, Meiji Gakuin University, Tokyo 108-8636, Japan
| | - Wei Sun
- Department of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yigang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|