1
|
Mostafa RG, Hashim MI, Bawahab AA, Baloush RAA, Abdelwahed MS, Hasan A, Ismail KA, Abd-Elhameed NR, Embaby A, Sharfeldeen AERM. Immunohistochemical Expression of Glucose Transporter-1 in Oral Epithelial Dysplasia and Different Grades of Oral Squamous Cell Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:557. [PMID: 40282848 PMCID: PMC12028480 DOI: 10.3390/medicina61040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Glucose Transporter-1 (GLUT1) is the key target gene for hypoxia-inducible factor (HIF), which helps cells uptake glucose during cell division, malignant transformation, and nutrient depletion. Cancer hypoxia is a well-known condition caused by an oxygen imbalance in the cancer microenvironment. During chronic hypoxia, certain cancer cells can survive and adapt. These cellular alterations can make cancer more aggressive, causing invasion and metastasis. The study investigated the presence of GLUT1 in oral epithelial dysplasia (OED) and various histopathological grades of oral squamous cell carcinoma (OSCC) to assess the significance of GLUT1 as a prognostic indicator. Material and Methods: A total of 40 samples of tissue blocks, including 5 cases of normal oral mucosa, 5 cases of epithelial dysplasia, and 30 cases of OSCC with 10 cases each of well-differentiated, moderately differentiated, and poorly differentiated OSCCs, these cases were diagnosed using the Hematoxylin and Eosin (H&E) staining technique. GLUT1 expression was assessed using immunohistochemical staining, which involved evaluating the location of the stain and the percentage of staining. Results: The mean area percent was highest in poorly differentiated cases (47.37) and lowest in well-differentiated cases (13.42). In poorly differentiated cases, diffuse expression was observed in almost all malignant cells, exhibiting membrane, cytoplasmic and nuclear staining. A significant difference (p < 0.001) between all groups in regard to immunostaining was detected. Conclusions: GLUT1 expression increased from oral epithelial dysplasia to oral squamous cell carcinoma histological grades. GLUT1 in actively dividing cells may reflect the tumor's aggressiveness and treatment response. Hypoxia increases this marker's expression, indicating division and proliferation.
Collapse
Affiliation(s)
- Rahma Gamal Mostafa
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Assiut University, Assiut 71524, Egypt
| | - Mohammad Ibrahim Hashim
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Assiut University, Assiut 71524, Egypt
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Razan Abed A. Baloush
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Mohammed S. Abdelwahed
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo 11561, Egypt
| | - Abdulkarim Hasan
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo 11561, Egypt
| | - Khadiga A. Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | | | - Ahmed Embaby
- Department of Surgical Oncology, Faculty of Medicine, Al-Azhar University, Cairo 11561, Egypt
- Department of General Surgery, Lister Hospital, Stevenage SG1 4AB, UK
| | - Abd El Rahman M. Sharfeldeen
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Assiut University, Assiut 71524, Egypt
- Department of Oral Pathology, College of Dentistry, City University Ajman, Ajman P.O. Box 18484, United Arab Emirates
| |
Collapse
|
2
|
Singla P, Jain A. Deciphering the complex landscape of post-translational modifications on PKM2: Implications in head and neck cancer pathogenesis. Life Sci 2024; 349:122719. [PMID: 38759866 DOI: 10.1016/j.lfs.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
In the vast landscape of human health, head and neck cancer (HNC) poses a significant health burden globally, necessitating the exploration of novel diagnostics and therapeutics. Metabolic alterations occurring within tumor microenvironment are crucial to understand the foundational cause of HNC. Post-translational modifications (PTMs) have recently emerged as a silent foe exerting a significantly heightened influence on various aspects of the biological processes associated with the onset and advancement of cancer, particularly in the context of HNC. There are numerous targets involved in HNC but recently, the enzyme pyruvate kinase M2 (PKM2) has come out as a hot target due to its involvement in glycolysis resulting in metabolic reprogramming of cancer cells. Various PTMs have been reported to affect the structure and function of PKM2 by modulating its activity. This review aims to investigate the impact of PTMs on the interaction between PKM2 and several signaling pathways and transcription factors in the context of HNC. These interactions possess significant ramification for cellular proliferation, apoptosis, angiogenesis and metastasis. This review primarily explores the role of PTMs influencing PKM2 and its involvement in tumor development. While acknowledging the significance of PKM2 interactions with other tumor regulators, the emphasis lies on dissecting PTM-related mechanisms rather than solely scrutinizing individual regulators. It lays the framework for the development of more sophisticated diagnostic tools and uncovers exciting possibilities for precision medicine essential for effectively addressing the complexity of this malignancy in a precise and focused manner.
Collapse
Affiliation(s)
- Palak Singla
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
3
|
Han F, Wang HZ, Chang MJ, Hu YT, Liang LZ, Li S, Liu F, He PF, Yang XT, Li F. Development and validation of a GRGPI model for predicting the prognostic and treatment outcomes in head and neck squamous cell carcinoma. Front Oncol 2023; 12:972215. [PMID: 36713509 PMCID: PMC9877611 DOI: 10.3389/fonc.2022.972215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is among the most lethal and most prevalent malignant tumors. Glycolysis affects tumor growth, invasion, chemotherapy resistance, and the tumor microenvironment. Therefore, we aimed at identifying a glycolysis-related prognostic model for HNSCC and to analyze its relationship with tumor immune cell infiltrations. Methods The mRNA and clinical data were obtained from The Cancer Genome Atlas (TCGA), while glycolysis-related genes were obtained from the Molecular Signature Database (MSigDB). Bioinformatics analysis included Univariate cox and least absolute shrinkage and selection operator (LASSO) analyses to select optimal prognosis-related genes for constructing glycolysis-related gene prognostic index(GRGPI), as well as a nomogram for overall survival (OS) evaluation. GRGPI was validated using the Gene Expression Omnibus (GEO) database. A predictive nomogram was established based on the stepwise multivariate regression model. The immune status of GRGPI-defined subgroups was analyzed, and high and low immune groups were characterized. Prognostic effects of immune checkpoint inhibitor (ICI) treatment and chemotherapy were investigated by Tumor Immune Dysfunction and Exclusion (TIDE) scores and half inhibitory concentration (IC50) value. Reverse transcription-quantitative PCR (RT-qPCR) was utilized to validate the model by analyzing the mRNA expression levels of the prognostic glycolysis-related genes in HNSCC tissues and adjacent non-tumorous tissues. Results Five glycolysis-related genes were used to construct GRGPI. The GRGPI and the nomogram model exhibited robust validity in prognostic prediction. Clinical correlation analysis revealed positive correlations between the risk score used to construct the GRGPI model and the clinical stage. Immune checkpoint analysis revealed that the risk model was associated with immune checkpoint-related biomarkers. Immune microenvironment and immune status analysis exhibited a strong correlation between risk score and infiltrating immune cells. Gene set enrichment analysis (GSEA) pathway enrichment analysis showed typical immune pathways. Furthermore, the GRGPIdel showed excellent predictive performance in ICI treatment and drug sensitivity analysis. RT-qPCR showed that compared with adjacent non-tumorous tissues, the expressions of five genes were significantly up-regulated in HNSCC tissues. Conclusion The model we constructed can not only be used as an important indicator for predicting the prognosis of patients but also had an important guiding role for clinical treatment.
Collapse
Affiliation(s)
- Fei Han
- Department of Head and Neck Surgery, Shanxi Province Tumor Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong-Zhi Wang
- Department of Anesthesiology, Shanxi Province Tumor Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Min-Jing Chang
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Yu-Ting Hu
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Li-Zhong Liang
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Shuai Li
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Feng Liu
- Department of Head and Neck Surgery, Shanxi Province Tumor Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Medical Data Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiao-Tang Yang
- Department of Radiology, Shanxi Province Tumor Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Feng Li
- Department of Cell biology, Shanxi Province Tumor Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Mireștean CC, Iancu RI, Iancu DPT. New horizons in modulating the radio-sensitivity of head and neck cancer - 100 years after Warburg' effect discovery. Front Oncol 2022; 12:908695. [PMID: 36568220 PMCID: PMC9780029 DOI: 10.3389/fonc.2022.908695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor radiation resistance along with chemotherapy resistance is one of the main causes of therapeutic failure of radiotherapy-treated head and neck cancers. 100 years after the discovery of the Warburg effect, a process specific to malignant cells to metabolize glucose especially anaerobically even under normoxia condition, its modulation has become a viable therapeutic target for improving the results of cancer therapies. Improving the radio-sensitivity of head and neck tumors by reversing the Warburg effect can increase the rate of local control and reduce the toxicity associated with irradiation. P53 status can be used as a biomarker in the choice of a single agent strategy (cell respiration inhibition with Metformin) or double inhibition, both of respiration and glycolysis. Targeting of enzymes involved in the Warburg effect, such as Hexokinase-II, are strategies with potential to be applied in clinical practice with radio-sensitizing effect for head and neck squamous cell carcinoma. Even if anti-Warburg therapies tested in clinical trials have been associated with either toxic deaths or a minor clinical benefit, the identification of both potential radio-sensitivity biomarkers and methods of reversing the Warburg effect will play an important role in the radiobiology of head and neck cancers.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Medical Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, Craiova, Romania,Department of Surgery, Railways Clinical Hospital, Iasi, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania,Department of Clinical Laboratory, St. Spiridon Emergency Hospital, Iasi, Romania,*Correspondence: Roxana Irina Iancu,
| | - Dragoș Petru Teodor Iancu
- Department of Medical Oncology and Radiotherapy, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania,Department of Radiation Oncology, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
5
|
Mireștean CC, Iancu RI, Iancu DPT. p53 Modulates Radiosensitivity in Head and Neck Cancers-From Classic to Future Horizons. Diagnostics (Basel) 2022; 12:3052. [PMID: 36553058 PMCID: PMC9777383 DOI: 10.3390/diagnostics12123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
p53, initially considered a tumor suppressor, has been the subject of research related to cancer treatment resistance in the last 30 years. The unfavorable response to multimodal therapy and the higher recurrence rate, despite an aggressive approach, make HNSCC a research topic of interest for improving therapeutic outcomes, even if it is only the sixth most common malignancy worldwide. New advances in molecular biology and genetics include the involvement of miRNA in the control of the p53 pathway, the understanding of mechanisms such as gain/loss of function, and the development of different methods to restore p53 function, especially for HPV-negative cases. The different ratio between mutant p53 status in the primary tumor and distant metastasis originating HNSCC may serve to select the best therapeutic target for activating an abscopal effect by radiotherapy as a "booster" of the immune system. P53 may also be a key player in choosing radiotherapy fractionation regimens. Targeting any pathway involving p53, including tumor metabolism, in particular the Warburg effect, could modulate the radiosensitivity and chemo-sensitivity of head and neck cancers.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, “St. Spiridon” Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Oncology and Radiotherapy Department, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania
| |
Collapse
|
6
|
Lee EH, Chung JW, Sung E, Yoon BH, Jeon M, Park S, Chun SY, Lee JN, Kim BS, Kim HT, Kim TH, Choi SH, Yoo ES, Kwon TG, Kang HW, Kim WJ, Yun SJ, Lee S, Ha YS. Anti-Metastatic Effect of Pyruvate Dehydrogenase Kinase 4 Inhibition in Bladder Cancer via the ERK, SRC, and JNK Pathways. Int J Mol Sci 2022; 23:13240. [PMID: 36362028 PMCID: PMC9658024 DOI: 10.3390/ijms232113240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/30/2023] Open
Abstract
Bladder cancer is a common global cancer with a high percentage of metastases and high mortality rate. Thus, it is necessary to identify new biomarkers that can be helpful in diagnosis. Pyruvate dehydrogenase kinase 4 (PDK4) belongs to the PDK family and plays an important role in glucose utilization in living organisms. In the present study, we evaluated the role of PDK4 in bladder cancer and its related protein changes. First, we observed elevated PDK4 expression in high-grade bladder cancers. To screen for changes in PDK4-related proteins in bladder cancer, we performed a comparative proteomic analysis using PDK4 knockdown cells. In bladder cancer cell lines, PDK4 silencing resulted in a lower rate of cell migration and invasion. In addition, a PDK4 knockdown xenograft model showed reduced bladder cancer growth in nude mice. Based on our results, PDK4 plays a critical role in the metastasis and growth of bladder cancer cells through changes in ERK, SRC, and JNK.
Collapse
Affiliation(s)
- Eun Hye Lee
- Joint Institute of Regenerative Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Eunji Sung
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Bo Hyun Yoon
- Joint Institute of Regenerative Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Minji Jeon
- Joint Institute of Regenerative Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Song Park
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Tae Hwan Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Seock Hwan Choi
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Institute of Urotech, Cheongju 28120, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Korea
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| |
Collapse
|
7
|
Apatinib and Ginsenoside-Rb1 Synergetically Control the Growth of Hypopharyngeal Carcinoma Cells. DISEASE MARKERS 2022; 2022:3833489. [PMID: 35069931 PMCID: PMC8776476 DOI: 10.1155/2022/3833489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Background Apatinib is an anticancer drug known to inhibit the vascular endothelial growth factor receptor-2 (VEGFR-2) through regulating tyrosine kinases. Drug resistance and reduced activity in various cancers is the matter of great concern; thus, researchers opt to use combination of the two or more drugs. So far, its gynergetic anticancer role with a traditional Chinese drug Ginsenoside-Rb1 (G-Rb1) has not been studied in cancers including hypopharyngeal carcinoma. Objective The current study is aimed at investigating the anticancer synergetic effects of G-Rb1 and apatinib in hypopharyngeal carcinoma. Methods The synergetic effects of both drugs on cell proliferation, wound healing and cell migration, and cell apoptosis were studied in hypopharyngeal carcinoma cells. Furthermore, the xenograft rat model was generated, and tumor inhibition was monitored after treating rats with both drugs as mono- and combination therapy. In addition, protein expression and localization were performed by western blotting and immunofluorescent staining, respectively. Results The analyses of the data showed that combination therapy of apatinib and G-Rb1 significantly inhibited the proliferation, migration, and wound healing capability of hypopharyngeal carcinoma cells. Moreover, the glycolysis rate of the cells in the combination therapy (apatinib and G-Rb1) group was significantly decreased as compared to that in the monotherapy group or no treatment group, suggesting that the glycolysis inhibition led to the inhibition of tumor growth. Moreover, the combination therapy on xenograft rats dramatically reduced the tumor size. Furthermore, combination therapy also exhibited an increased count of CD3+ and CD4+ T cells, as well as the ratio between CD4+ and CD8+ T cells. Conclusion Interestingly, a combination of apatinib and G-Rb1 induced more tumor cell apoptosis and reduced cell proliferation than the individual drug treatment and promote antitumor immunity by enhancing immunomodulatory molecules. Thus, we believe that this study could serve as a valuable platform to assess the synergetic anticancer effects of the herbal as well as synthetic medicines.
Collapse
|
8
|
Yadav S, Pant D, Samaiya A, Kalra N, Gupta S, Shukla S. ERK1/2-EGR1-SRSF10 Axis Mediated Alternative Splicing Plays a Critical Role in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:713661. [PMID: 34616729 PMCID: PMC8489685 DOI: 10.3389/fcell.2021.713661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant alternative splicing is recognized to promote cancer pathogenesis, but the underlying mechanism is yet to be clear. Here, in this study, we report the frequent upregulation of SRSF10 (serine and arginine-rich splicing factor 10), a member of an expanded family of SR splicing factors, in the head and neck cancer (HNC) patients sample in comparison to paired normal tissues. We observed that SRSF10 plays a crucial role in HNC tumorigenesis by affecting the pro-death, pro-survical splice variants of BCL2L1 (BCL2 Like 1: BCLx: Apoptosis Regulator) and the two splice variants of PKM (Pyruvate kinase M), PKM1 normal isoform to PKM2 cancer-specific isoform. SRSF10 is a unique splicing factor with a similar domain organization to that of SR proteins but functions differently as it acts as a sequence-specific splicing activator in its phosphorylated form. Although a body of research studied the role of SRSF10 in the splicing process, the regulatory mechanisms underlying SRSF10 upregulation in the tumor are not very clear. In this study, we aim to dissect the pathway that regulates the SRSF10 upregulation in HNC. Our results uncover the role of transcription factor EGR1 (Early Growth Response1) in elevating the SRSF10 expression; EGR1 binds to the promoter of SRSF10 and promotes TET1 binding leading to the CpG demethylation (hydroxymethylation) in the adjacent position of the EGR1 binding motif, which thereby instigate SRSF10 expression in HNC. Interestingly we also observed that the EGR1 level is in the sink with the ERK1/2 pathway, and therefore, inhibition of the ERK1/2 pathway leads to the decreased EGR1 and SRSF10 expression level. Together, this is the first report to the best of our knowledge where we characterize the ERK 1/2-EGR1-SRSF10 axis regulating the cancer-specific splicing, which plays a critical role in HNC and could be a therapeutic target for better management of HNC patients.
Collapse
Affiliation(s)
- Sandhya Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deepak Pant
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | | | - Sanjay Gupta
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
9
|
Chandel V, Kumar D. Targeting Signalling Cross-Talk between Cancer Cells and Cancer-Associated Fibroblast through Monocarboxylate Transporters in Head and Neck Cancer. Anticancer Agents Med Chem 2021; 21:1369-1378. [PMID: 32698754 DOI: 10.2174/1871520620666200721135230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive malignancy affecting more than 600,000 cases worldwide annually, associated with poor prognosis and significant morbidity. HNSCC tumors are dysplastic, with up to 80% fibroblasts. It has been reported that Cancer-Associated Fibroblasts (CAFs) facilitate HNSCC progression. Unlike normal cells, malignant cells often display increased glycolysis, even in the presence of oxygen; a phenomenon known as the Warburg effect. As a consequence, there is an increase in Lactic Acid (LA) production. Earlier, it has been reported that HNSCC tumors exhibit high LA levels that correlate with reduced survival. It has been reported that the activation of the receptor tyrosine kinase, c- MET, by CAF-secreted Hepatocyte Growth Factor (HGF) is a major contributing event in the progression of HNSCC. In nasopharyngeal carcinoma, c-MET inhibition downregulates the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) and NADPH production resulting in apoptosis. Previously, it was demonstrated that HNSCC tumor cells are highly glycolytic. Further, CAFs show a higher capacity to utilize LA as a carbon source to fuel mitochondrial respiration than HNSCC. Earlier, we have reported that in admixed cultures, both cell types increase the expression of Monocarboxylate Transporters (MCTs) for a bidirectional LA transporter. Consequently, MCTs play an important role in signalling cross-talk between cancer cells and cancer associate fibroblast in head and neck cancer, and targeting MCTs would lead to the development of a potential therapeutic approach for head and neck cancer. In this review, we focus on the regulation of MCTs in head and neck cancer through signalling cross-talk between cancer cells and cancer-associated fibroblasts, and targeting this signalling cross talk would lead to the development of a potential therapeutic approach for head and neck cancer.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| |
Collapse
|
10
|
Melatonin Targets Metabolism in Head and Neck Cancer Cells by Regulating Mitochondrial Structure and Function. Antioxidants (Basel) 2021; 10:antiox10040603. [PMID: 33919790 PMCID: PMC8070770 DOI: 10.3390/antiox10040603] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming, which is characteristic of cancer cells that rapidly adapt to the hypoxic microenvironment and is crucial for tumor growth and metastasis, is recognized as one of the major mechanisms underlying therapeutic resistance. Mitochondria, which are directly involved in metabolic reprogramming, are used to design novel mitochondria-targeted anticancer agents. Despite being targeted by melatonin, the functional role of mitochondria in melatonin’s oncostatic activity remains unclear. In this study, we aim to investigate the role of melatonin in mitochondrial metabolism and its functional consequences in head and neck cancer. We analyzed the effects of melatonin on head and neck squamous cell carcinoma (HNSCC) cell lines (Cal-27 and SCC-9), which were treated with 100, 500, and 1500 µM of melatonin for 1, 3, and 5 days, and found a connection between a change of metabolism following melatonin treatment and its effects on mitochondria. Our results demonstrate that melatonin induces a shift to an aerobic mitochondrial metabolism that is associated with changes in mitochondrial morphology, function, fusion, and fission in HNSCC. We found that melatonin increases oxidative phosphorylation (OXPHOS) and inhibits glycolysis in HNSCC, resulting in increased ROS production, apoptosis, and mitophagy, and decreased cell proliferation. Our findings highlight new molecular pathways involved in melatonin’s oncostatic activity, suggesting that it could act as an adjuvant agent in a potential therapy for cancer patients. We also found that high doses of melatonin, such as those used in this study for its cytotoxic impact on HNSCC cells, might lead to additional effects through melatonin receptors.
Collapse
|
11
|
Chandel V, Sharma PP, Nayar SA, Jha NK, Jha SK, Rathi B, Kumar D. In silico identification of potential inhibitor for TP53-induced glycolysis and apoptosis regulator in head and neck squamous cell carcinoma. 3 Biotech 2021; 11:117. [PMID: 33604233 DOI: 10.1007/s13205-021-02665-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the six most common cancer globally and most common cancer in men in India. The metabolic regulation is highly altered and is considered as a hall mark of HNSCC. TP53-induced glycolysis and apoptosis regulator (TIGAR) plays very important role in the development and progression of HNSCC. The aim of our study is to identify a novel FDA approved anticancer inhibitor against mutated TP53-induced glycolysis and apoptosis regulator (TIGAR) through drug repurposing approach. A library of 105 FDA approved anticancer compounds were screened using molecular docking approach against TIGAR (PDB: 3DCY) both Wild-Type (WT) and mutated (Mut). Specific mutations in TIGAR were identified using cBioPortal, a cancer genomics database and mutated structure was modelled using SWISS-MODEL. Out of 510 sequenced cases/patients samples, 17(3%) patients showed alteration in TIGAR [TIGARWT and TIGARMut (R88W)]. The virtual drug screening showed 45 drugs out of 105 high binding affinity with TIGAR, Trabectedin showed highest binding affinity with both TIGARWT (- 13.3 kcal/mol) as well as TIGARMut (R88W) (- 13.8 kcal/mol). The molecular docking studies were validated using molecular dynamics simulation (MD Simulation) of protein-ligand complex of TIGAR and Trabectedin for 100 ns. The MD Simulation of Trabectedin complex showed more stable with TIGARMut (R88W) compared to TIGARWT. Moreover, the string analysis revealed that metabolic-related genes, HK2, PFKFB1, PFKM, PFKP, PFKL, FBP1 are closely associated with TIGAR in HNSCC. Our findings suggest that Trabectedin can be proposed as an inhibitor for [TIGARMut (R88W)] which can be used to target metabolic signalings in HNSCC. However, further investigation and in vitro and in vivo validation our findings required to understand the molecular mechanisms of regulation of Trabectedin in HNSCC.
Collapse
|
12
|
A Novel Prognostic Index Based on the Analysis of Glycolysis-Related Genes in Head and Neck Squamous Cell Carcinomas. JOURNAL OF ONCOLOGY 2020; 2020:7353874. [PMID: 33029143 PMCID: PMC7532401 DOI: 10.1155/2020/7353874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
Aims The preferential dependence on glycolysis as a pathway of energy metabolism is a hallmark of cancer cells. However, the prognostic significance of glycolysis-related genes in head and neck squamous cell carcinoma (HNSCC) remains obscure. The purpose of this study was to identify glycolysis-related genes of prognostic value in HNSCC. Results Transcriptional and clinical data of 544 HNSCC samples were obtained from The Cancer Genome Atlas (TCGA) dataset. By gene set enrichment analysis (GSEA) and by employing a univariate and subsequently a stepwise multivariate Cox proportional regression model, eight glycolysis-related genes of prognostic significance in HNSCC (KIF2A, JMJD8, HMMR, STC2, HK1, EXT2, GPR8, and STC1) were identified. The patients were clustered into two groups (high and low risk) based on the expression of these genes. High-risk patients had significantly a shorter overall survival than low-risk patients. Furthermore, a new prognostic indicator based on selected glycolysis-related genes was developed by multivariate Cox analysis that proved to be a better predictor of patient outcome compared to other clinical factors. Conclusion Our findings provide new insights into the role of glycolysis in HNSCC. The identified genes predict the patient prognosis and might substantially contribute to the development of individualized treatments.
Collapse
|
13
|
Chandel V, Raj S, Kumar P, Gupta S, Dhasmana A, Kesari KK, Ruokolainen J, Mehra P, Das BC, Kamal MA, Kumar D. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci 2020; 258:118236. [PMID: 32795537 DOI: 10.1016/j.lfs.2020.118236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Cancer cells exhibit distinct energy metabolic pathways due to multiple oncogenic events. In normoxia condition, the anaerobic glycolysis (Warburg effect) is highly observed in head and neck squamous cell carcinoma (HNSCC). HNSCC is associated with smoking, chewing tobacco, consumption of alcohol or Human Papillomavirus (HPV) infection primarily HPV16. In recent years, the correlation of HPV with HNSCC has significantly expanded. Despite the recent advancement in therapeutic approaches, the rate of HPV infected HNSCC has significantly increased in the last few years, specifically, in lower middle-income countries. The oncoproteins of High-risk Human Papillomavirus (HR-HPV), E6 and E7, alter the metabolic phenotype in HNSCC, which is distinct from non-HPV associated HNSCC. These oncoproteins, modulate the cell cycle and metabolic signalling through interacting with tumor suppressor proteins, p53 and pRb. Since, metabolic alteration represents a major hallmark for tumorigenesis, HPV acts as a source of biomarker linked to cancer progression in HNSCC. The dependency of cancer cells to specific nutrients and alteration of various metabolic associated genes may provide a unique opportunity for pharmacological intervention in HPV infected HNSCC. In this review, we have discussed the molecular mechanism (s) and metabolic regulation in HNSCC depending on the HPV status. We have also discussed the possible potential therapeutic approaches for HPV associated HNSCC through targeting metabolic pathways.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Sibi Raj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Prabhat Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Shilpi Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Anupam Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Doiwala, Dehradun 248016, India; Department of Immunology and Microbiology, School of Medicine, University of Rio Grande Valley, McAllen, TX, USA
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Pravesh Mehra
- Department of Oral and Maxillofacial surgery, Lady Hardinge Medical College, New Delhi, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, NSW, Australia
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India.
| |
Collapse
|
14
|
Choi J, Gim JA, Oh C, Ha S, Lee H, Choi H, Im HJ. Association of metabolic and genetic heterogeneity in head and neck squamous cell carcinoma with prognostic implications: integration of FDG PET and genomic analysis. EJNMMI Res 2019; 9:97. [PMID: 31754877 PMCID: PMC6872695 DOI: 10.1186/s13550-019-0563-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose The linkage between the genetic and phenotypic heterogeneity of the tumor has not been thoroughly evaluated. Herein, we investigated how the genetic and metabolic heterogeneity features of the tumor are associated with each other in head and neck squamous cell carcinoma (HNSC). We further assessed the prognostic significance of those features. Methods The mutant-allele tumor heterogeneity (MATH) score (n = 508), a genetic heterogeneity feature, and tumor glycolysis feature (GlycoS) (n = 503) were obtained from the HNSC dataset in the cancer genome atlas (TCGA). We identified matching patients (n = 33) who underwent 18F-fluorodeoxyglucose positron emission tomography (FDG PET) from the cancer imaging archive (TCIA) and obtained the following information from the primary tumor: metabolic, metabolic-volumetric, and metabolic heterogeneity features. The association between the genetic and metabolic features and their prognostic values were assessed. Results Tumor metabolic heterogeneity and metabolic-volumetric features showed a mild degree of association with MATH (n = 25, ρ = 0.4~0.5, P < 0.05 for all features). The patients with higher FDG PET features and MATH died sooner. Combination of MATH and tumor metabolic heterogeneity features showed a better stratification of prognosis than MATH. Also, higher MATH and GlycoS were associated with significantly worse overall survival (n = 499, P = 0.002 and 0.0001 for MATH and GlycoS, respectively). Furthermore, both MATH and GlycoS independently predicted overall survival after adjusting for clinicopathologic features and the other (P = 0.015 and 0.006, respectively). Conclusion Both tumor metabolic heterogeneity and metabolic-volumetric features assessed by FDG PET showed a mild degree of association with genetic heterogeneity in HNSC. Both metabolic and genetic heterogeneity features were predictive of survival and there was an additive prognostic value when the metabolic and genetic heterogeneity features were combined. Also, MATH and GlycoS were independent prognostic factors in HNSC; they can be used for precise prognostication once validated.
Collapse
Affiliation(s)
- Jinyeong Choi
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jeong-An Gim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Chiwoo Oh
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Seunggyun Ha
- Radiation Medicine Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul ST. Mary's Hospital, Seoul, Republic of Korea
| | - Howard Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyung-Jun Im
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Yadav S, Bhagat SD, Gupta A, Samaiya A, Srivastava A, Shukla S. Dietary-phytochemical mediated reversion of cancer-specific splicing inhibits Warburg effect in head and neck cancer. BMC Cancer 2019; 19:1031. [PMID: 31675998 PMCID: PMC6823945 DOI: 10.1186/s12885-019-6257-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The deregulated alternative splicing of key glycolytic enzyme, Pyruvate Kinase muscle isoenzyme (PKM) is implicated in metabolic adaptation of cancer cells. The splicing switch from normal PKM1 to cancer-specific PKM2 isoform allows the cancer cells to meet their energy and biosynthetic demands, thereby facilitating the cancer cells growth. We have investigated the largely unexplored epigenetic mechanism of PKM splicing switch in head and neck cancer (HNC) cells. Considering the reversible nature of epigenetic marks, we have also examined the utility of dietary-phytochemical in reverting the splicing switch from PKM2 to PKM1 isoform and thereby inhibition of HNC tumorigenesis. METHODS We present HNC-patients samples, showing the splicing-switch from PKM1-isoform to PKM2-isoform analyzed via immunoblotting and qRT-PCR. We performed methylated-DNA-immunoprecipitation to examine the DNA methylation level and chromatin-immunoprecipitation to assess the BORIS (Brother of Regulator of Imprinted Sites) recruitment and polII enrichment. The effect of dietary-phytochemical on the activity of denovo-DNA-methyltransferase-3b (DNMT3B) was detected by DNA-methyltransferase-activity assay. We also analyzed the Warburg effect and growth inhibition using lactate, glucose uptake assay, invasion assay, cell proliferation, and apoptosis assay. The global change in transcriptome upon dietary-phytochemical treatment was assayed using Human Transcriptome Array 2.0 (HTA2.0). RESULTS Here, we report the role of DNA-methylation mediated recruitment of the BORIS at exon-10 of PKM-gene regulating the alternative-splicing to generate the PKM2-splice-isoform in HNC. Notably, the reversal of Warburg effect was achieved by employing a dietary-phytochemical, which inhibits the DNMT3B, resulting in the reduced DNA-methylation at exon-10 and hence, PKM-splicing switch from cancer-specific PKM2 to normal PKM1. Global-transcriptome-analysis of dietary-phytochemical-treated cells revealed its effect on alternative splicing of various genes involved in HNC. CONCLUSION This study identifies the epigenetic mechanism of PKM-splicing switch in HNC and reports the role of dietary-phytochemical in reverting the splicing switch from cancer-specific PKM2 to normal PKM1-isoform and hence the reduced Warburg effect and growth inhibition of HNC. We envisage that this approach can provide an effective way to modulate cancer-specific-splicing and thereby aid in the treatment of HNC.
Collapse
Affiliation(s)
- Sandhya Yadav
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Somnath D Bhagat
- Dept of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Amit Gupta
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Atul Samaiya
- Bansal Hospital, Bhopal, Madhya Pradesh, 462016, India
| | - Aasheesh Srivastava
- Dept of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
16
|
Yang H, Zhong JT, Zhou SH, Han HM. Roles of GLUT-1 and HK-II expression in the biological behavior of head and neck cancer. Oncotarget 2019; 10:3066-3083. [PMID: 31105886 PMCID: PMC6508962 DOI: 10.18632/oncotarget.24684] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
The Warburg effect plays an important role in the proliferation and invasion of malignant tumors. Glucose transporter 1 and hexokinase II are two key energy transporters involved in mediating the Warburg effect. This review will analyze the mechanisms of these two markers in their effects on the biological behavior of head and neck cancer.
Collapse
Affiliation(s)
- Hang Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Present Address: Department of Otorhinolaryngology, The People's Hospital of Jiangshan City, Jiangshan, Zhejiang, 324100, China
| | - Jiang-Tao Zhong
- Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shui-Hong Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - He-Ming Han
- Department of Otorhinolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|