1
|
Shaughnessey EM, Kann SH, Charest JL, Vedula EM. Human Kidney Proximal Tubule-Microvascular Model Facilitates High-Throughput Analyses of Structural and Functional Effects of Ischemia-Reperfusion Injury. Adv Biol (Weinh) 2024; 8:e2300127. [PMID: 37786311 DOI: 10.1002/adbi.202300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/27/2023] [Indexed: 10/04/2023]
Abstract
Kidney ischemia reperfusion injury (IRI) poses a major global healthcare burden, but effective treatments remain elusive. IRI involves a complex interplay of tissue-level structural and functional changes caused by interruptions in blood and filtrate flow and reduced oxygenation. Existing in vitro models poorly replicate the in vivo injury environment and lack means of monitoring tissue function during the injury process. Here, a high-throughput human primary kidney proximal tubule (PT)-microvascular model is described, which facilitates in-depth structural and rapid functional characterization of IRI-induced changes in the tissue barrier. The PREDICT96 (P96) microfluidic platform's user-controlled fluid flow can mimic the conditions of IR to induce pronounced changes in cell structure that resemble clinical and in vivo phenotypes. High-throughput trans-epi/endo-thelial electrical resistance (TEER) sensing is applied to non-invasively track functional changes in the PT-microvascular barrier during the two-stage injury process and over repeated episodes of injury. Notably, ischemia causes an initial increase in tissue TEER followed by a sudden increase in permeability upon reperfusion, and this biphasic response occurs only with the loss of both fluid flow and oxygenation. This study demonstrates the potential of the P96 kidney IRI model to enhance understanding of IRI and fuel therapeutic development.
Collapse
Affiliation(s)
- Erin M Shaughnessey
- Draper Scholar, The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Samuel H Kann
- Draper Scholar, The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Joseph L Charest
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Else M Vedula
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Serag WM, Barakat N, Elshehabi ME, Hafez HS, Zahran F. Renoprotective effect of bone marrow mesenchymal stem cells with hyaluronic acid against adriamycin- induced kidney fibrosis via inhibition of Wnt/β-catenin pathway. Int J Biol Macromol 2022; 207:741-749. [PMID: 35354071 DOI: 10.1016/j.ijbiomac.2022.03.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/05/2022]
Abstract
AIM The current study aimed to explore the pretreatment of bone marrow mesenchymal stem cells (BMSCs) with hyaluronic acid (HA) on renal fibrosis in Adriamycin- induced CKD in rats. MATERIAL AND METHODS Sixty male SD rats were alienated into 4 equal groups; The control group: rats received two saline injections at 1 and 14 days, adriamycin (ADR) group: rats were injected i.v. twice via tail vein at day one and after 2 weeks, BMSCs group; rats were injected i.v. twice after 5 days of each ADR injection, and HA+BMSCs; rats were i.v. injected twice with BMSCs pretreated with 1 mg/ml HA after 5 days of each ADR injection. Protective role of BMSCs on renal function and morphology was detected using biochemical analysis, molecular studies, histopathological, and immunohistohemical investigations. RESULTS Pretreatment of BMSCs with HA showed significant decrease in KIM-1, and increase in serum albumin compared to CKD group (p <0.05). Moreover, it reduced the expression of the apoptotic marker Caspase-3, the inflammatory markers TNF and IL-6, and the fibrotic markers Wnt7a, β-catenin, and fibronectin1 than the CKD group (p < 0.05). CONCLUSION The current outcomes suggested that BMSCs preconditioned with HA could attenuate the renal fibrosis in adriamycin- induced CKD.
Collapse
Affiliation(s)
- Waleed M Serag
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Hani S Hafez
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Faten Zahran
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Exogenous biological renal support ameliorates renal pathology after ischemia reperfusion injury in elderly mice. Aging (Albany NY) 2020; 11:2031-2044. [PMID: 30978173 PMCID: PMC6503883 DOI: 10.18632/aging.101899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/31/2019] [Indexed: 12/28/2022]
Abstract
We established an exogenous biological renal support model through the generation of parabiotic mice. At 72 hours after ischemia reperfusion injury (IRI), the aged mice that received exogenous biological renal support showed significantly higher levels of renal cell proliferation and dedifferentiation, lower levels of renal tubular injury, improved renal function, and a lower mortality than those that did not receive exogenous biological renal support. Using the Quantibody Mouse Cytokine Antibody Array, we found that aged IRI mice that received exogenous biological renal support had an up-regulation of multiple inflammatory related cytokines compared to the group that did not receive exogenous biological renal support. We suggest that the exogenous biological renal support might promote renal tubular epithelial cell proliferation and dedifferentiation and improve the prognosis of aged IRI mice. Exogenous biological renal support may play an important role in the amelioration of renal IRI by regulating the expression of multiple cytokines.
Collapse
|
4
|
Suzuki C, Tanida I, Oliva Trejo JA, Kakuta S, Uchiyama Y. Autophagy Deficiency in Renal Proximal Tubular Cells Leads to an Increase in Cellular Injury and Apoptosis under Normal Fed Conditions. Int J Mol Sci 2019; 21:ijms21010155. [PMID: 31881660 PMCID: PMC6982095 DOI: 10.3390/ijms21010155] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Renal proximal tubular epithelial cells are significantly damaged during acute kidney injury. Renal proximal tubular cell-specific autophagy-deficient mice show increased sensitivity against renal injury, while showing few pathological defects under normal fed conditions. Considering that autophagy protects the proximal tubular cells from acute renal injury, it is reasonable to assume that autophagy contributes to the maintenance of renal tubular cells under normal fed conditions. To clarify this possibility, we generated a knock out mouse model which lacks Atg7, a key autophagosome forming enzyme, in renal proximal tubular cells (Atg7flox/flox;KAP-Cre+). Analysis of renal tissue from two months old Atg7flox/flox;KAP-Cre+ mouse revealed an accumulation of LC3, binding protein p62/sequestosome 1 (a selective substrate for autophagy), and more interestingly, Kim-1, a biomarker for early kidney injury, in the renal proximal tubular cells under normal fed conditions. TUNEL (TdT-mediated dUTP Nick End Labeling)-positive cells were also detected in the autophagy-deficient renal tubular cells. Analysis of renal tissue from Atg7flox/flox;KAP-Cre+ mice at different age points showed that tubular cells positive for p62 and Kim-1 continually increase in number in an age-dependent manner. Ultrastructural analysis of tubular cells from Atg7flox/flox;KAP-Cre+ revealed the presence of intracellular inclusions and abnormal structures. These results indicated that autophagy-deficiency in the renal proximal epithelial tubular cells leads to an increase in injured cells in the kidney even under normal fed conditions.
Collapse
Affiliation(s)
- Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; (C.S.); (J.A.O.T.); (S.K.)
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; (C.S.); (J.A.O.T.); (S.K.)
- Correspondence: (I.T.); (Y.U.); Tel.: +81-3-3813-3111 (I.T. & Y.U.)
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; (C.S.); (J.A.O.T.); (S.K.)
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; (C.S.); (J.A.O.T.); (S.K.)
- Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; (C.S.); (J.A.O.T.); (S.K.)
- Correspondence: (I.T.); (Y.U.); Tel.: +81-3-3813-3111 (I.T. & Y.U.)
| |
Collapse
|
5
|
Han F, Konkalmatt P, Mokashi C, Kumar M, Zhang Y, Ko A, Farino ZJ, Asico LD, Xu G, Gildea J, Zheng X, Felder RA, Lee REC, Jose PA, Freyberg Z, Armando I. Dopamine D 2 receptor modulates Wnt expression and control of cell proliferation. Sci Rep 2019; 9:16861. [PMID: 31727925 PMCID: PMC6856370 DOI: 10.1038/s41598-019-52528-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
The Wnt/β-catenin pathway is one of the most conserved signaling pathways across species with essential roles in development, cell proliferation, and disease. Wnt signaling occurs at the protein level and via β-catenin-mediated transcription of target genes. However, little is known about the underlying mechanisms regulating the expression of the key Wnt ligand Wnt3a or the modulation of its activity. Here, we provide evidence that there is significant cross-talk between the dopamine D2 receptor (D2R) and Wnt/β-catenin signaling pathways. Our data suggest that D2R-dependent cross-talk modulates Wnt3a expression via an evolutionarily-conserved TCF/LEF site within the WNT3A promoter. Moreover, D2R signaling also modulates cell proliferation and modifies the pathology in a renal ischemia/reperfusion-injury disease model, via its effects on Wnt/β-catenin signaling. Together, our results suggest that D2R is a transcriptional modulator of Wnt/β-catenin signal transduction with broad implications for health and development of new therapeutics.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Primary Cell Culture
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Transfection
- Wnt3A Protein/genetics
- Wnt3A Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Fei Han
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Prasad Konkalmatt
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Chaitanya Mokashi
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Megha Kumar
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Yanrong Zhang
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Allen Ko
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laureano D Asico
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Gaosi Xu
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - John Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiaoxu Zheng
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Robin E C Lee
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pedro A Jose
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Ines Armando
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|