1
|
Lambrichts I, Wolfs E, Bronckaers A, Gervois P, Vangansewinkel T. The Effect of Leukocyte- and Platelet-Rich Fibrin on Central and Peripheral Nervous System Neurons-Implications for Biomaterial Applicability. Int J Mol Sci 2023; 24:14314. [PMID: 37762617 PMCID: PMC10532231 DOI: 10.3390/ijms241814314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.
Collapse
Affiliation(s)
- Ivo Lambrichts
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Esther Wolfs
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Annelies Bronckaers
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Pascal Gervois
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Fu C, Zhou Y, Wang L. The Effect of Bone Marrow Mesenchymal Stem Cells (BMSCs) on Brain Injury Repair and Synapse Regeneration in Mice Under Different Conditions of Intrauterine Ischemia and Hypoxia Through Wnt Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can be differentiated into a variety of cells and repair damaged cells. We explore whether BMSCs can repair brain damage and synapses regeneration in mice under intrauterine ischemia and hypoxia. Twenty-five pregnant mice were assigned into
control group, 6% hypoxic injury group, 8% hypoxic injury group, 6% treatment group, 8% treatment group followed by analysis of the expression of MBP, MAG, CSPGs, IGF-1, NCAN, COLIV, SynD1G1, GFAP, GSK-3β, and β-actin by RT-PCR and Western blot. Our results showed that
the expression of MBP, MAG, COL IV, SynD1G1, IGF-1 in the treatment group were significantly higher than those in hypoxic injury group with significant differences between the 8% treatment group and 6% treatment group (P < 0.05). In conclusion, BMSCs can repair brain damage and synapse
regeneration in mice under different intrauterine ischemia and hypoxia conditions which might be through Wnt signaling pathway.
Collapse
Affiliation(s)
- Changtao Fu
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Youdong Zhou
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Lei Wang
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| |
Collapse
|
3
|
Strategies to Improve the Efficiency of Transplantation with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Review of Recent Progress. Stem Cells Int 2021; 2021:9929128. [PMID: 34490053 PMCID: PMC8418553 DOI: 10.1155/2021/9929128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is a common global disease that is characterized by a loss of neurological function and a poor prognosis in many patients. However, only a limited number of treatments are available for this condition at present. Given that the efficacies of these treatments tend to be poor, cerebral ischemia can create a significant burden on patients, families, and society. Mesenchymal stem cell (MSC) transplantation treatment has shown significant potential in animal models of ischemic stroke; however, the specific mechanisms underlying this effect have yet to be elucidated. Furthermore, clinical trials have yet to yield promising results. Consequently, there is an urgent need to identify new methods to improve the efficiency of MSC transplantation as an optimal treatment for ischemic stroke. In this review, we provide an overview of recent scientific reports concerning novel strategies that promote MSC transplantation as an effective therapeutic approach, including physical approaches, chemical agents, traditional Chinese medicines and extracts, and genetic modification. Our analyses showed that two key factors need to be considered if we are to improve the efficacy of MSC transplantation treatments: survival ability and homing ability. We also highlight the importance of other significant mechanisms, including the enhanced activation of MSCs to promote neurogenesis and angiogenesis, and the regulation of permeability in the blood-brain barrier. Further in-depth investigations of the specific mechanisms underlying MSC transplantation treatment will help us to identify effective methods that improve the efficiency of MSC transplantation for ischemic stroke. The development of safer and more effective methods will facilitate the application of MSC transplantation as a promising adjuvant therapy for the treatment of poststroke brain damage.
Collapse
|
4
|
Liu H, Reiter S, Zhou X, Chen H, Ou Y, Lenahan C, He Y. Insight Into the Mechanisms and the Challenges on Stem Cell-Based Therapies for Cerebral Ischemic Stroke. Front Cell Neurosci 2021; 15:637210. [PMID: 33732111 PMCID: PMC7959708 DOI: 10.3389/fncel.2021.637210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Strokes are the most common types of cerebrovascular disease and remain a major cause of death and disability worldwide. Cerebral ischemic stroke is caused by a reduction in blood flow to the brain. In this disease, two major zones of injury are identified: the lesion core, in which cells rapidly progress toward death, and the ischemic penumbra (surrounding the lesion core), which is defined as hypoperfusion tissue where cells may remain viable and can be repaired. Two methods that are approved by the Food and Drug Administration (FDA) include intravenous thrombolytic therapy and endovascular thrombectomy, however, the narrow therapeutic window poses a limitation, and therefore a low percentage of stroke patients actually receive these treatments. Developments in stem cell therapy have introduced renewed hope to patients with ischemic stroke due to its potential effect for reversing the neurological sequelae. Over the last few decades, animal tests and clinical trials have been used to treat ischemic stroke experimentally with various types of stem cells. However, several technical and ethical challenges must be overcome before stem cells can become a choice for the treatment of stroke. In this review, we summarize the mechanisms, processes, and challenges of using stem cells in stroke treatment. We also discuss new developing trends in this field.
Collapse
Affiliation(s)
- Huiyong Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sydney Reiter
- Department of Kinesiology, University of Texas at Austin, Austin, TX, United States
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Wang J, Li X, Song Y, Su Q, Xiaohalati X, Yang W, Xu L, Cai B, Wang G, Wang Z, Wang L. Injectable silk sericin scaffolds with programmable shape-memory property and neuro-differentiation-promoting activity for individualized brain repair of severe ischemic stroke. Bioact Mater 2020; 6:1988-1999. [PMID: 33474513 PMCID: PMC7786039 DOI: 10.1016/j.bioactmat.2020.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023] Open
Abstract
Severe ischemic stroke damages neuronal tissue, forming irregular-shaped stroke cavities devoid of supporting structure. Implanting biomaterials to provide structural and functional support is thought to favor ingrowth of regenerated neuronal networks. Injectable hydrogels capable of in situ gelation are often utilized for stroke repair, but challenged by incomplete gelation and imprecise control over end-macrostructure. Injectable shape-memory scaffolds might overcome these limitations, but are not explored for stroke repair. Here, we report an injectable, photoluminescent, carbon-nanotubes-doped sericin scaffold (CNTs-SS) with programmable shape-memory property. By adjusting CNTs' concentrations, CNTs-SS' recovery dynamics can be mathematically calculated at the scale of seconds, and its shapes can be pre-designed to precisely match any irregular-shaped cavities. Using a preclinical stroke model, we show that CNTs-SS with the customized shape is successfully injected into the cavity and recovers its pre-designed shape to well fit the cavity. Notably, CNTs-SS' near-infrared photoluminescence enables non-invasive, real-time tracking after in vivo implantation. Moreover, as a cell carrier, CNTs-SS not only deliver bone marrow mesenchymal stem cells (BMSCs) into brain tissues, but also functionally promote their neuronal differentiation. Together, we for the first time demonstrate the feasibility of applying injectable shape-memory scaffolds for stroke repair, paving the way for personalized stroke repair.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaolin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiangfei Su
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiakeerzhati Xiaohalati
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Yang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author. Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author. Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Rey F, Barzaghini B, Nardini A, Bordoni M, Zuccotti GV, Cereda C, Raimondi MT, Carelli S. Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases. Cells 2020; 9:cells9071636. [PMID: 32646008 PMCID: PMC7407518 DOI: 10.3390/cells9071636] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds. In this review, recent advances in additive manufacturing techniques are presented and discussed, with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques, and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy. In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties are to be considered of great relevance for their subsequent translational applications. Moreover, this work reports numerous recent advances in neural diseases modelling and specifically focuses on pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Alessandra Nardini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| |
Collapse
|
7
|
Oligodendrocyte precursor cells transplantation protects blood-brain barrier in a mouse model of brain ischemia via Wnt/β-catenin signaling. Cell Death Dis 2020; 11:9. [PMID: 31907363 PMCID: PMC6944692 DOI: 10.1038/s41419-019-2206-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
Blood–brain barrier damage is a critical pathological feature of ischemic stroke. Oligodendrocyte precursor cells are involved in maintaining blood–brain barrier integrity during the development. However, whether oligodendrocyte precursor cell could sustain blood–brain barrier permeability during ischemic brain injury is unknown. Here, we investigate whether oligodendrocyte precursor cell transplantation protects blood–brain barrier integrity and promotes ischemic stroke recovery. Adult male ICR mice (n = 68) underwent 90 min transient middle cerebral artery occlusion. After ischemic assault, these mice received stereotactic injection of oligodendrocyte precursor cells (6 × 105). Oligodendrocyte precursor cells transplantation alleviated edema and infarct volume, and promoted neurological recovery after ischemic stroke. Oligodendrocyte precursor cells reduced blood–brain barrier leakage via increasing claudin-5, occludin and β-catenin expression. Administration of β-catenin inhibitor blocked the beneficial effects of oligodendrocyte precursor cells. Wnt7a protein treatment increased β-catenin and claudin-5 expression in endothelial cells after oxygen–glucose deprivation, which was similar to the results of the conditioned medium treatment of oligodendrocyte precursor cells on endothelial cells. We demonstrated that oligodendrocyte precursor cells transplantation protected blood–brain barrier in the acute phase of ischemic stroke via activating Wnt/β-catenin pathway. Our results indicated that oligodendrocyte precursor cells transplantation was a novel approach to the ischemic stroke therapy.
Collapse
|
8
|
Bolan F, Louca I, Heal C, Cunningham CJ. The Potential of Biomaterial-Based Approaches as Therapies for Ischemic Stroke: A Systematic Review and Meta-Analysis of Pre-clinical Studies. Front Neurol 2019; 10:924. [PMID: 31507524 PMCID: PMC6718570 DOI: 10.3389/fneur.2019.00924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/09/2019] [Indexed: 01/07/2023] Open
Abstract
Background: In recent years pre-clinical stroke research has shown increased interest in the development of biomaterial-based therapies to promote tissue repair and functional recovery. Such strategies utilize biomaterials as structural support for tissue regeneration or as delivery vehicles for therapeutic agents. While a range of biomaterials have been tested in stroke models, currently no overview is available for evaluating the benefit of these approaches. We therefore performed a systematic review and meta-analysis of studies investigating the use of biomaterials for the treatment of stroke in experimental animal models. Methods: Studies were identified by searching electronic databases (PubMed, Web of Science) and reference lists of relevant review articles. Studies reporting lesion volume and/or neurological score were included. Standardized mean difference (SMD) and 95% confidence intervals were calculated using DerSimonian and Laird random effects. Study quality and risk of bias was assessed using the CAMARADES checklist. Publication bias was visualized by funnel plots followed by trim and fill analysis of missing publications. Results: A total of 66 publications were included in the systematic review, of which 44 (86 comparisons) were assessed in the meta-analysis. Overall, biomaterial-based interventions improved both lesion volume (SMD: -2.98, 95% CI: -3.48, -2.48) and neurological score (SMD: -2.3, 95% CI: -2.85, -1.76). The median score on the CAMARADES checklist was 5.5/10 (IQR 4.25-6). Funnel plots of lesion volume and neurological score data revealed pronounced asymmetry and publication bias. Additionally, trim and fill analysis estimated 19 "missing" studies for the lesion volume outcome adjusting the effect size to -1.91 (95% CI: -2.44, -1.38). Conclusions: Biomaterials including scaffolds and particles exerted a positive effect on histological and neurological outcomes in pre-clinical stroke models. However, heterogeneity in the field, publication bias and study quality scores which may be another source of bias call for standardization of outcome measures and improved study reporting.
Collapse
Affiliation(s)
- Faye Bolan
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Irene Louca
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Calvin Heal
- Faculty of Biology, Medicine and Health, Centre for Biostatistics, Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Catriona J. Cunningham
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom,*Correspondence: Catriona J. Cunningham
| |
Collapse
|
9
|
Ma L, Hu J, Cao Y, Xie Y, Wang H, Fan Z, Zhang C, Wang J, Wu CT, Wang S. Maintained Properties of Aged Dental Pulp Stem Cells for Superior Periodontal Tissue Regeneration. Aging Dis 2019; 10:793-806. [PMID: 31440385 PMCID: PMC6675537 DOI: 10.14336/ad.2018.0729] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/29/2018] [Indexed: 12/23/2022] Open
Abstract
Owing to excellent therapeutic potential, mesenchymal stem cells (MSCs) are gaining increasing popularity with researchers worldwide for applications in tissue engineering, and in treatment of inflammation-related and age-related disorders. However, the senescence of MSCs over passaging has limited their clinical application owing to adverse effect on physiological function maintenance of tissues as well as disease treatment. An inflammatory microenvironment is one of the key contributors to MSC senescence, resulting in low regeneration efficiency. Therefore, MSCs with high resistance to cellular senescence would be a benefit for tissue regeneration. Toward this end, we analyzed the senescence properties of different types of stem cells during culture and under inflammation, including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), bone marrow mesenchymal stem cells (BMMSCs), and adipose-derived stem cells (ADSCs). Overall, the DPSCs had higher proliferation rates, lower cellular senescence, and enhanced osteogenesis maintenance compared to those of non-dental MSCs cultured from passage three to six. The expression profiles of genes related to apoptosis, cell cycle, and cellular protein metabolic process (contributing to the cell self-renewal ability and metabolic processes) significantly differed between DPSCs and BMMSCs at passage three. Moreover, DPSCs were superior to BMMSCs with regards to resistance to lipopolysaccharide-induced apoptosis and senescence, with enhanced osteogenesis in vitro, and showed improved periodontal regeneration after injection in a miniature pig periodontitis model in vivo. Overall, the present study indicates that DPSCs show superior resistance to subculture and inflammation-induced senescence and would be suitable stem cells for tissue engineering with inflammation.
Collapse
Affiliation(s)
- Linsha Ma
- 1Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, School of Stomatology, Beijing, China
| | - Jingchao Hu
- 1Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, School of Stomatology, Beijing, China
| | - Yu Cao
- 1Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, School of Stomatology, Beijing, China
| | - Yilin Xie
- 1Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, School of Stomatology, Beijing, China
| | - Hua Wang
- 2Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhipeng Fan
- 1Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, School of Stomatology, Beijing, China
| | - Chunmei Zhang
- 1Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, School of Stomatology, Beijing, China
| | - Jinsong Wang
- 1Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, School of Stomatology, Beijing, China.,3Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Chu-Tse Wu
- 2Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Songlin Wang
- 1Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University, School of Stomatology, Beijing, China.,3Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Zhu C, Huang J, Xue C, Wang Y, Wang S, Bao S, Chen R, Li Y, Gu Y. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap. Neurosci Res 2018; 135:21-31. [DOI: 10.1016/j.neures.2017.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/24/2017] [Accepted: 12/25/2017] [Indexed: 12/12/2022]
|
11
|
Cheng Z, Wang L, Qu M, Liang H, Li W, Li Y, Deng L, Zhang Z, Yang GY. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice. J Neuroinflammation 2018; 15:135. [PMID: 29724240 PMCID: PMC5932816 DOI: 10.1186/s12974-018-1153-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Background Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Methods Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 105 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. Results We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p < 0.05). IgG leakage, tight junction protein loss, and inflammatory cytokines IL-1β, IL-6, and TNF-α reduced in mesenchymal stem cell-treated mice compared to the control group following ischemia (p < 0.05). After transplantation, MMP-9 was decreased in protein and activity levels as compared with controls (p < 0.05). Furthermore, myeloperoxidase-positive cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p < 0.05). Conclusion The results showed that mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.
Collapse
Affiliation(s)
- Zhuo Cheng
- School of Biomedical Engineering and Shanghai Jiao Tong University affiliated sixth people's hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Huaibin Liang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Wanlu Li
- School of Biomedical Engineering and Shanghai Jiao Tong University affiliated sixth people's hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lidong Deng
- School of Biomedical Engineering and Shanghai Jiao Tong University affiliated sixth people's hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Shanghai Jiao Tong University affiliated sixth people's hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Shanghai Jiao Tong University affiliated sixth people's hospital, Shanghai Jiao Tong University, Shanghai, 200000, China. .,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
12
|
Boshuizen MCS, Steinberg GK. Stem Cell-Based Immunomodulation After Stroke: Effects on Brain Repair Processes. Stroke 2018; 49:1563-1570. [PMID: 29724892 DOI: 10.1161/strokeaha.117.020465] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Marieke C S Boshuizen
- From the Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, CA
| | - Gary K Steinberg
- From the Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, CA.
| |
Collapse
|
13
|
Zhang Y, Zhang H, Lin S, Chen X, Yao Y, Mao X, Shao B, Zhuge Q, Jin K. SDF-1/CXCR7 Chemokine Signaling is Induced in the Peri-Infarct Regions in Patients with Ischemic Stroke. Aging Dis 2018; 9:287-295. [PMID: 29896417 PMCID: PMC5963349 DOI: 10.14336/ad.2017.1112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/12/2017] [Indexed: 12/11/2022] Open
Abstract
Stromal-derived factor-1 (SDF-1, also known as CXCL12) and its receptors CXCR4 and CXCR7 play important roles in brain repair after ischemic stroke, as SDF-1/ CXCR4/CXCR7 chemokine signaling is critical for recruiting stem cells to sites of ischemic injury. Upregulation of SDF-1/CXCR4/CXCR7 chemokine signaling in the ischemic regions has been well-documented in the animal models of ischemic stroke, but not in human ischemic brain. Here, we found that protein expression of SDF-1 and CXCR7, but not CXCR4, were significantly increased in the cortical peri-infarct regions (penumbra) after ischemic stroke in human, compared with adjacent normal tissues and control subjects. Double-label fluorescence immunohistochemistry shows that SDF-1 and CXCR4 proteins were expressed in neuronal cells and astrocytes in the normal brain tissue and peri-infarct regions. CXCR7 protein was also observed in neuronal cells and astrocytes in the normal cortical regions, but predominantly in astrocytes in the penumbra of ischemic brain. Our data suggest that ischemic stroke in human leads to an increase in the expression of SDF-1 and CXCR7, but not CXCR4, in the peri-infarct cerebral cortex. Our findings suggest that chemokine SFD-1 is expressed not only in animal models of stroke, but also in the human brain after an ischemic injury. In addition, unlike animals, CXCR7 may be the primary receptor of SDF-1 in human stroke brain.
Collapse
Affiliation(s)
- Yu Zhang
- 1Department of Neurosurgery, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongxia Zhang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA
| | - Siyang Lin
- 3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- 3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu Yao
- 4Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - XiaoOu Mao
- 5Buck Institute for Age Research, Novato, California 94945, USA
| | - Bei Shao
- 3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qichuan Zhuge
- 1Department of Neurosurgery, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA.,3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
14
|
A Look into Stem Cell Therapy: Exploring the Options for Treatment of Ischemic Stroke. Stem Cells Int 2017; 2017:3267352. [PMID: 29201059 PMCID: PMC5671750 DOI: 10.1155/2017/3267352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/21/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) offer a potential therapeutic benefit in the recovery from ischemic stroke. Understanding the role of endogenous neural stem and progenitor cells under normal physiological conditions aids in analyzing their effects after ischemic injury, including their impact on functional recovery and neurogenesis at the site of injury. Recent animal studies have utilized unique subsets of exogenous and endogenous stem cells as well as preconditioning with pharmacologic agents to better understand the best situation for stem cell proliferation, migration, and differentiation. These stem cell therapies provide a promising effect on stimulation of endogenous neurogenesis, neuroprotection, anti-inflammatory effects, and improved cell survival rates. Clinical trials performed using various stem cell types show promising results to their safety and effectiveness on reducing the effects of ischemic stroke in humans. Another important aspect of stem cell therapy discussed in this review is tracking endogenous and exogenous NSCs with magnetic resonance imaging. This review explores the pathophysiology of NSCs on ischemic stroke, stem cell therapy studies and their effects on neurogenesis, the most recent clinical trials, and techniques to track and monitor the progress of endogenous and exogenous stem cells.
Collapse
|
15
|
Potential Therapeutic Mechanisms and Tracking of Transplanted Stem Cells: Implications for Stroke Treatment. Stem Cells Int 2017; 2017:2707082. [PMID: 28904531 PMCID: PMC5585684 DOI: 10.1155/2017/2707082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/08/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy is a promising potential therapeutic strategy to treat cerebral ischemia in preclinical and clinical trials. Currently proposed treatments for stroke employing stem cells include the replacement of lost neurons and integration into the existing host circuitry, the release of growth factors to support and promote endogenous repair processes, and the secretion of extracellular vesicles containing proteins, noncoding RNA, or DNA to regulate gene expression in recipient cells and achieve immunomodulation. Progress has been made to elucidate the precise mechanisms underlying stem cell therapy and the homing, migration, distribution, and differentiation of transplanted stem cells in vivo using various imaging modalities. Noninvasive and safe tracer agents with high sensitivity and image resolution must be combined with long-term monitoring using imaging technology to determine the optimal therapy for stroke in terms of administration route, dosage, and timing. This review discusses potential therapeutic mechanisms of stem cell transplantation for the treatment of stroke and the limitations of current therapies. Methods to label transplanted cells and existing imaging systems for stem cell labeling and in vivo tracking will also be discussed.
Collapse
|