1
|
Naderi R, Salimi R, Jafari A, Mehranfard N. Age-dependent increase in apoptosis is associated with dysregulation of miR-92a/Akt/mTOR and NF-κB signaling pathways in male rats. Neurosci Lett 2025; 848:138115. [PMID: 39800254 DOI: 10.1016/j.neulet.2025.138115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/02/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Brain aging is the leading risk factor for most neurodegenerative diseases and has been linked with high rates of neuron loss. Thus, identifying molecular mechanisms underlying neuron loss and pharmacological modulation may be of great importance for slowing or preventing age-related diseases. Herein, we investigated the roles of miR-92a, Akt, mTOR, and NF-κB in age-associated apoptosis in the hippocampus (a critical structure involved in brain aging) of male rats alone and in combination with prazosin. Twenty-four male Wistar rats were grouped into young control (3-month-old), aged (18-month-old), and aged + prazosin groups (n = 8 for each). Prazosin (1 mg/kg; i.p.) was administered for 4 weeks to aged rats. Apoptosis was detected by TUNEL staining. Western blot for Akt, mTOR, and NF-κB was conducted. miR-92a gene expression was performed by using RT-PCR. The results indicated a marked enhancement of apoptosis in the aging hippocampus. We also detected substantial up-regulation of NF-κB as well as substantial down-regulation of phosphorylated-Akt and mTOR in the aging hippocampus. Moreover, miR-92a gene expression was markedly reduced in the aging hippocampus. Treatment with prazosin significantly suppressed apoptosis and reversed miR-92a gene expression, as well as Akt, mTOR, and NF-κB protein expressions in the aging hippocampus. Considering the NF-κB regulatory role on miRNAs, our results suggest that NF-κB may be a negative transcriptional regulator of miR-92a, which in turn could regulate the Akt/mTOR signaling. In this regard, NF-κB upregulation may mediate the downregulation of miR-92a/Akt/mTOR axis, and thereby contribute to age-related neurodegeneration. This may provide a novel treatment target for delaying or preventing age-related problems.
Collapse
Affiliation(s)
- Roya Naderi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Rahil Salimi
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Sessa F, Pomara C, Schembari F, Esposito M, Capasso E, Pesaresi M, Osuna E, Ulas E, Zammit C, Salerno M. MiRNA Dysregulation in Brain Injury: An In Silico Study to Clarify the Role of a MiRNA Set. Curr Neuropharmacol 2025; 23:209-231. [PMID: 39129166 PMCID: PMC11793054 DOI: 10.2174/1570159x22666240808124427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND The identification of specific circulating miRNAs has been proposed as a valuable tool for elucidating the pathophysiology of brain damage or injury and predicting patient outcomes. OBJECTIVE This study aims to apply several bioinformatic tools in order to clarify miRNA interactions with potential genes involved in brain injury, emphasizing the need of using a computational approach to determine the most likely correlations between miRNAs and target genes. Specifically, this study centers on elucidating the roles of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a. METHODS After a careful evaluation of different software available (analyzing the strengths and limitations), we applied three tools, one to perform an analysis of the validated targets (miRTarBase), and two to evaluate functional annotations (miRBase and TAM 2.0). RESULTS Research findings indicate elevated levels of miR-135a and miR-34b in patients with traumatic brain injury (TBI) within the first day post-injury, while miR-200c and miR-34c were found to be upregulated after 7 days. Moreover, miR-451a and miR-135a were found overexpressed in the serum, while miRNAs 34b, 34c, and 200c, had lower serum levels at baseline post brain injury. CONCLUSION This study emphasizes the use of computational methods in determining the most likely relationships between miRNAs and target genes by investigating several bioinformatic techniques to elucidate miRNA interactions with potential genes. Specifically, this study focuses on the functions of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a, providing an up-to-date overview and suggesting future research directions for identifying theranomiRNAs related to brain injury, both at the tissue and serum levels.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Flavia Schembari
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | | | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Ancona, 60126, Italy
| | - Eduardo Osuna
- Department of Forensic Medicine. University of Murcia. 30120 Murcia, Spain
| | - Efehan Ulas
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Kirklareli University, Kirklareli, Turkey
| | - Christian Zammit
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Lozupone M, Solfrizzi V, Sardone R, Dibello V, Castellana F, Zupo R, Lampignano L, Bortone I, Daniele A, Panza F. The epigenetics of frailty. Epigenomics 2024; 16:189-202. [PMID: 38112012 DOI: 10.2217/epi-2023-0279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
The conceptual change of frailty, from a physical to a biopsychosocial phenotype, expanded the field of frailty, including social and behavioral domains with critical interaction between different frailty models. Environmental exposures - including physical exercise, psychosocial factors and diet - may play a role in the frailty pathophysiology. Complex underlying mechanisms involve the progressive interactions of genetics with epigenetics and of multimorbidity with environmental factors. Here we review the literature on possible mechanisms explaining the association between epigenetic hallmarks (i.e., global DNA methylation, DNA methylation age acceleration and microRNAs) and frailty, considered as biomarkers of aging. Frailty could be considered the result of environmental epigenetic factors on biological aging, caused by conflicting DNA methylation age and chronological age.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine & Neuroscience 'DiBraiN', University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Vittorio Dibello
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
- Department of Orofacial Pain & Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fabio Castellana
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Zupo
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Ilaria Bortone
- Department of Translational Biomedicine & Neuroscience 'DiBraiN', University of Bari Aldo Moro, Bari, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Francesco Panza
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Li J, Tong L, Schock BC, Ji LL. Post-traumatic Stress Disorder: Focus on Neuroinflammation. Mol Neurobiol 2023; 60:3963-3978. [PMID: 37004607 DOI: 10.1007/s12035-023-03320-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Post-traumatic stress disorder (PTSD), gaining increasing attention, is a multifaceted psychiatric disorder that occurs following a stressful or traumatic event or series of events. Recently, several studies showed a close relationship between PTSD and neuroinflammation. Neuroinflammation, a defense response of the nervous system, is associated with the activation of neuroimmune cells such as microglia and astrocytes and with changes in inflammatory markers. In this review, we first analyzed the relationship between neuroinflammation and PTSD: the effect of stress-derived activation of the hypothalamic-pituitary-adrenal (HPA) axis on the main immune cells in the brain and the effect of stimulated immune cells in the brain on the HPA axis. We then summarize the alteration of inflammatory markers in brain regions related to PTSD. Astrocytes are neural parenchymal cells that protect neurons by regulating the ionic microenvironment around neurons. Microglia are macrophages of the brain that coordinate the immunological response. Recent studies on these two cell types provided new insight into neuroinflammation in PTSD. These contribute to promoting comprehension of neuroinflammation, which plays a pivotal role in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Jimeng Li
- Department of 2nd Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Lei Tong
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bettina C Schock
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Li-Li Ji
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Gupta DP, Park SH, Lee YS, Lee S, Lim S, Byun J, Cho IH, Song GJ. Daphne genkwa flower extract promotes the neuroprotective effects of microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154486. [PMID: 36240609 DOI: 10.1016/j.phymed.2022.154486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microglia are innate immune cells in the central nervous system that play a crucial role in neuroprotection by releasing neurotrophic factors, removing pathogens through phagocytosis, and regulating brain homeostasis. The constituents extracted from the roots and stems of the Daphne genkwa plant have shown neuroprotective effects in an animal model of Parkinson's disease. However, the effect of Daphne genkwa plant extract on microglia has yet to be demonstrated. PURPOSE To study the anti-inflammatory and neuroprotective effects of Daphne genkwa flower extract (GFE) in microglia and explore the underlying mechanisms. METHODS In-vitro mRNA expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase, Arginase1, and brain derived neurotropic factor (BDNF) were analyzed by reverse transcription polymerase chain reaction in microglia cells. Nitric oxide (NO) and TNF-α protein were respectively analyzed by Griess reagent and Enzyme Linked Immunosorbent Assay. Immunoreactivity of Iba-1, Neu-N, and BDNF in mouse brain were analyzed by immunofluorescence staining. Phagocytosis capacity of microglia was examined using fluorescent zymosan-red particles. RESULTS GFE significantly inhibited lipopolysaccharide (LPS)-induced neuroinflammation and promoted neuroprotection both in vitro and in vivo. First, GFE inhibited the LPS-induced inflammatory factors NO, iNOS, and TNF-α in microglial cell lines and primary glial cells, thus demonstrating anti-inflammatory effects. Arginase1 and BDNF mRNA levels were increased in primary glial cells treated with GFE. Phagocytosis was also increased in microglia treated with GFE, suggesting a neuroprotective effect of GFE. In vivo, neuroprotective and anti-neuroinflammatory effects of GFE were also found in the mouse brain, as oral administration of GFE significantly inhibited LPS-induced neuronal loss and inflammatory activation of microglia. CONCLUSION GFE has anti-inflammatory effects and promotes microglial neuroprotective effects. GFE inhibited the pro-inflammatory mediators and enhanced neuroprotective microglia activity by increasing BDNF expression and phagocytosis. These novel findings of the GFE effect on microglia show an innovative approach that can potentially promote neuroprotection for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea
| | - Sung Hee Park
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea
| | - Young-Sun Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea; The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Korea
| | - Sujin Lim
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Jiin Byun
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea; The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea.
| |
Collapse
|
6
|
miRNome Profiling Detects miR-101-3p and miR-142-5p as Putative Blood Biomarkers of Frailty Syndrome. Genes (Basel) 2022; 13:genes13020231. [PMID: 35205276 PMCID: PMC8872439 DOI: 10.3390/genes13020231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Frailty is an aging-related pathology, defined as a state of increased vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs (miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related pathologies. The primary objective of this study was to identify blood miRNAs that could serve as potential biomarkers and candidate mechanisms of frailty. Using the Fried index, we enrolled 22 robust and 19 frail subjects. Blood and urine samples were analysed for several biochemical parameters. We observed that sTNF-R was robustly upregulated in the frail group, indicating the presence of an inflammatory state. Further, by RNA-seq, we profiled 2654 mature miRNAs in the whole blood of the two groups. Expression levels of selected differentially expressed miRNAs were validated by qPCR, and target prediction analyses were performed for the dysregulated miRNAs. We identified 2 miRNAs able to significantly differentiate frail patients from robust subjects. Both miR-101-3p and miR-142-5p were found to be downregulated in the frail vs. robust group. Finally, using bioinformatics targets prediction tools, we explored the potential molecular mechanisms and cellular pathways regulated by the two miRNAs and potentially involved in frailty.
Collapse
|
7
|
Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, Wu W. Kynurenine Pathway Metabolites as Biomarkers in Alzheimer's Disease. DISEASE MARKERS 2022; 2022:9484217. [PMID: 35096208 PMCID: PMC8791723 DOI: 10.1155/2022/9484217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that deteriorates cognitive function. Patients with AD generally exhibit neuroinflammation, elevated beta-amyloid (Aβ), tau phosphorylation (p-tau), and other pathological changes in the brain. The kynurenine pathway (KP) and several of its metabolites, especially quinolinic acid (QA), are considered to be involved in the neuropathogenesis of AD. The important metabolites and key enzymes show significant importance in neuroinflammation and AD. Meanwhile, the discovery of changed levels of KP metabolites in patients with AD suggests that KP metabolites may have a prominent role in the pathogenesis of AD. Further, some KP metabolites exhibit other effects on the brain, such as oxidative stress regulation and neurotoxicity. Both analogs of the neuroprotective and antineuroinflammation metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic and neuroinflammation compounds may have potential therapeutic significance. This review focused on the KP metabolites through the relationship of neuroinflammation in AD, significant KP metabolites, and associated molecular mechanisms as well as the utility of these metabolites as biomarkers and therapeutic targets for AD. The objective is to provide references to find biomarkers and therapeutic targets for patients with AD.
Collapse
Affiliation(s)
- Yuqing Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shan Xie
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yanyun He
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Manru Xu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xi Qiao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yue Zhu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Wenbin Wu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
8
|
Zhu Y, Geng X, Stone C, Guo S, Syed S, Ding Y. Forkhead Box 1(FoxO1) mediates psychological stress-induced neuroinflammation. Neurol Res 2022; 44:483-495. [PMID: 34983317 DOI: 10.1080/01616412.2021.2022913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Neuroinflammation plays a key role in cerebrovascular disease (CVD). Neuropsychiatric disorders appear to share an epidemiological association with inflammation, but the mechanisms are unclear. Forkhead box 1 (FoxO1) regulates inflammatory signaling in diabetes and cardiovascular diseases, but its role in psychological stress-induced neuroinflammation remains unknown. Therefore, we investigated the potential involvement of FoxO1 in repeated social defeat stress (RSDS)-induced neuroinflammation. METHODS 6-week-old male C57BL/6 J mice were randomly divided into RSDS or control groups. In the RSDS group, mice (18-22 g) were individually subjected to social defeat by an 8-week-old CD-1 mouse (28-32 g) for 10 min daily for 10 consecutive days. At 24 h after this 10-day process, corticosterone (CORT), epinephrine (EPI), hydrogen peroxide, and inflammatory factors (TNF-α, IL-6, IL-1β, and VCAM-1) from serum and brain tissues were assayed using ELISA, real-time PCR, and Western blot. Iba-1 was determined by immunofluorescence (IF), and FoxO1 siRNA was transfected into BV2 cells to further analyze the expression of inflammatory factors. RESULTS RSDS significantly increased the levels of TNF-α, IL-6, IL-1β, and VCAM-1 in the serum; it also increased both mRNA and protein expression of these in the brain. FoxO1 was significantly increased after stress, while its knockdown significantly suppressed stress-induced inflammation. Immunofluorescence demonstrated the activation of microglia in the setting of RSDS. CONCLUSION RSDS induced a measurable inflammatory response in the blood and brain, and FoxO1 was demonstrated in vitro to aggravate stress-induced inflammation.
Collapse
Affiliation(s)
- Yuequan Zhu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China.,Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| |
Collapse
|
9
|
Carini G, Musazzi L, Bolzetta F, Cester A, Fiorentini C, Ieraci A, Maggi S, Popoli M, Veronese N, Barbon A. The Potential Role of miRNAs in Cognitive Frailty. Front Aging Neurosci 2021; 13:763110. [PMID: 34867290 PMCID: PMC8632944 DOI: 10.3389/fnagi.2021.763110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions. Accordingly, it has been suggested that frailty and cognitive impairment share common pathways, and some authors proposed "cognitive frailty" as a single complex phenotype. Nevertheless, so far, no clear common underlying pathways have been discovered for both conditions. microRNAs (miRNAs) have emerged as key fine-tuning regulators in most physiological processes, as well as pathological conditions. Importantly, miRNAs have been proposed as both peripheral biomarkers and potential molecular factors involved in physiological and pathological aging. In this review, we discuss the evidence linking changes of selected miRNAs expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p, as well as other miRNAs implicated in pathological aging, should be investigated as potential biomarkers (and putative molecular effectors) of cognitive frailty.
Collapse
Affiliation(s)
- Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bolzetta
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Alberto Cester
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Nicola Veronese
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy.,Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Zhu Z, Huang P, Sun R, Li X, Li W, Gong W. A Novel Long-Noncoding RNA LncZFAS1 Prevents MPP +-Induced Neuroinflammation Through MIB1 Activation. Mol Neurobiol 2021; 59:778-799. [PMID: 34775541 PMCID: PMC8857135 DOI: 10.1007/s12035-021-02619-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease remains one of the leading neurodegenerative diseases in developed countries. Despite well-defined symptomology and pathology, the complexity of Parkinson's disease prevents a full understanding of its etiological mechanism. Mechanistically, α-synuclein misfolding and aggregation appear to be central for disease progression, but mitochondrial dysfunction, dysfunctional protein clearance and ubiquitin/proteasome systems, and neuroinflammation have also been associated with Parkinson's disease. Particularly, neuroinflammation, which was initially thought to be a side effect of Parkinson's disease pathogenesis, has now been recognized as driver of Parkinson's disease exacerbation. Next-generation sequencing has been used to identify a plethora of long noncoding RNAs (lncRNA) with important transcriptional regulatory functions. Moreover, a myriad of lncRNAs are known to be regulators of inflammatory signaling and neurodegenerative diseases, including IL-1β secretion and Parkinson's disease. Here, LncZFAS1 was identified as a regulator of inflammasome activation, and pyroptosis in human neuroblast SH-SY5Y cells following MPP+ treatment, a common in vitro Parkinson's disease cell model. Mechanistically, TXNIP ubiquitination through MIB1 E3 ubiquitin ligase regulates NLRP3 inflammasome activation in neuroblasts. In contrast, MPP+ activates the NLPR3 inflammasome through miR590-3p upregulation and direct interference with MIB1-dependent TXNIP ubiquitination. LncZFAS overexpression inhibits this entire pathway through direct interference with miR590-3p, exposing a novel research idea regarding the mechanism of Parkinson's disease.
Collapse
Affiliation(s)
- Ziman Zhu
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Ruifeng Sun
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Xiaoling Li
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Wenshan Li
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| |
Collapse
|
11
|
Ebrahimi R, Golestani A. The emerging role of noncoding RNAs in neuroinflammation: Implications in pathogenesis and therapeutic approaches. J Cell Physiol 2021; 237:1206-1224. [PMID: 34724212 DOI: 10.1002/jcp.30624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Noncoding RNAs (ncRNAs) are important regulators of gene expression in different cell processes. Due to their ability in monitoring neural development genes, these transcripts confer neurons with the potential to exert broad control over the expression of genes for performing neurobiological functions. Although the change of ncRNA expression in different neurodegenerative diseases has been reviewed elsewhere, only recent evidence drove our attention to unravel the involvement of these molecules in neuroinflammation within these devastating disorders. Remarkably, the interactions between ncRNAs and inflammatory pathways are not fully recognized. Therefore, this review has focused on the interplay between diverse inflammatory pathways and the related ncRNAs, including microRNAs, long noncoding RNAs, and competing endogenous RNAs in Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, multiple sclerosis, Huntington's disease, and prion diseases. Providing novel insights in the field of combining biomarkers is a critical step for using them as diagnostic tools and therapeutic targets in clinical settings.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zhu S, Li H, Xu X, Luo Y, Deng B, Guo X, Guo Y, Yang W, Wei X, Wang Q. The Pathogenesis and Treatment of Cardiovascular Autonomic Dysfunction in Parkinson's Disease: What We Know and Where to Go. Aging Dis 2021; 12:1675-1692. [PMID: 34631214 PMCID: PMC8460297 DOI: 10.14336/ad.2021.0214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular autonomic dysfunctions (CAD) are prevalent in Parkinson’s disease (PD). It contributes to the development of cognitive dysfunction, falls and even mortality. Significant progress has been achieved in the last decade. However, the underlying mechanisms and effective treatments for CAD have not been established yet. This review aims to help clinicians to better understand the pathogenesis and therapeutic strategies. The literatures about CAD in patients with PD were reviewed. References for this review were identified by searches of PubMed between 1972 and March 2021, with the search term “cardiovascular autonomic dysfunctions, postural hypotension, orthostatic hypotension (OH), supine hypertension (SH), postprandial hypotension, and nondipping”. The pathogenesis, including the neurogenic and non-neurogenic mechanisms, and the current pharmaceutical and non-pharmaceutical treatment for CAD, were analyzed. CAD mainly includes four aspects, which are OH, SH, postprandial hypotension and nondipping, among them, OH is the main component. Both non-neurogenic and neurogenic mechanisms are involved in CAD. Failure of the baroreflex circulate, which includes the lesions at the afferent, efferent or central components, is an important pathogenesis of CAD. Both non-pharmacological and pharmacological treatment alleviate CAD-related symptoms by acting on the baroreflex reflex circulate. However, pharmacological strategy has the limitation of failing to enhance baroreflex sensitivity and life quality. Novel OH treatment drugs, such as pyridostigmine and atomoxetine, can effectively improve OH-related symptoms via enhancing residual sympathetic tone, without adverse reactions of supine hypertension. Baroreflex impairment is a crucial pathological mechanism associated with CAD in PD. Currently, non-pharmacological strategy was the preferred option for its advantage of enhancing baroreflex sensitivity. Pharmacological treatment is a second-line option. Therefore, to find drugs that can enhance baroreflex sensitivity, especially via acting on its central components, is urgently needed in the scientific research and clinical practice.
Collapse
Affiliation(s)
- Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hualing Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Xu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingfang Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wucheng Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Massanett Aparicio J, Xu Y, Li Y, Colantuoni C, Dastgheyb R, Williams DW, Asahchop EL, McMillian JM, Power C, Fujiwara E, Gill MJ, Rubin LH. Plasma microRNAs are associated with domain-specific cognitive function in people with HIV. AIDS 2021; 35:1795-1804. [PMID: 34074816 PMCID: PMC8524348 DOI: 10.1097/qad.0000000000002966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cognitive impairment remains common in people with HIV (PWH) on antiretroviral therapy (ART). The clinical presentation and severity are highly variable in PWH suggesting that the pathophysiological mechanisms of cognitive complications are likely complex and multifactorial. MicroRNA (miRNA) expression changes may be linked to cognition as they are gene regulators involved in immune and stress responses as well as the development, plasticity, and differentiation of neurons. We examined plasma miRNA expression changes in relation to domain-specific and global cognitive function in PWH. DESIGN Cross-sectional observational study. METHODS Thirty-three PWH receiving care at the Southern Alberta Clinic, Canada completed neuropsychological (NP) testing and blood draw. Plasma miRNA extraction was followed by array hybridization. Random forest analysis was used to identify the top 10 miRNAs upregulated and downregulated in relation to cognition. RESULTS Few miRNAs were identified across cognitive domains; however, when evident a miRNA was only associated with two or three domains. Notably, miR-127-3p was related to learning/memory and miR-485-5p to motor function, miRNAs previously identified in CSF or plasma in Alzheimer's and Parkinson's, respectively. Using miRNET 2.0, a software-platform for understanding the biological relevance of the miRNA-targets (genes) relating to cognition through a network-based approach, we identified genes involved in signaling, cell cycle, and transcription relating to executive function, learning/memory, and language. CONCLUSION Findings support the idea that evaluating miRNA expression (or any molecular measure) in the context of global NP function might exclude miRNAs that could be important contributors to the domain-specific mechanisms leading to the variable neuropsychiatric outcomes seen in PWH.
Collapse
Affiliation(s)
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore
- Division of Biostatistics and Bioinformatics at The Sidney Kimmel Comprehensive Cancer Center
| | - Yuliang Li
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore
| | - Carlo Colantuoni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
- Institute for Genome Sciences, University of Maryland, Baltimore
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Christopher Power
- Southern Alberta Clinic, Calgary
- Department of Medicine
- Neuroscience and Mental Health Institute
| | - Esther Fujiwara
- Neuroscience and Mental Health Institute
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - M John Gill
- Cumming School of Medicine, University of Calgary
- Southern Alberta Clinic, Calgary
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Meng Q, Yang P, Lu Y. MicroRNA-410 serves as a candidate biomarker in hypoxic-ischemic encephalopathy newborns and provides neuroprotection in oxygen-glucose deprivation-injured PC12 and SH-SY5Y cells. Brain Behav 2021; 11:e2293. [PMID: 34331407 PMCID: PMC8413830 DOI: 10.1002/brb3.2293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MicroRNA-410 (miR-410) has been found to be deregulated in neonatal hypoxic-ischemic encephalopathy (HIE). However, the clinical significance and biological function of miR-410 remain largely elusive. This study aims to investigate the expression and diagnostic performance of miR-410 in HIE newborns, and explores the neuroprotective effect of miR-410 in an oxygen-glucose deprivation (OGD)-induced cell injury model. METHODS Expression of miR-410 was examined using quantitative real-time PCR, and its diagnostic performance was evaluated using a receiver operating characteristic analysis. We used OGD-injured PC12 and SH-SY5Y cells to construct an in vitro HIE model. The effect of miR-410 on OGD-induced cell injury was analyzed by assessing cell viability and apoptosis. Enzyme-linked immunosorbent assay was used to evaluate inflammation in cell model. A target gene was assessed according to the luciferase reporter assay. RESULTS Serum miR-410 expression was significantly decreased in HIE newborns and OGD-injured cell model. The reduced miR-410 expression served as a biomarker for the diagnosis and progression of HIE. The OGD-induced impaired cell viability, enhanced cell apoptosis, and activated neuroinflammation were abrogated by the overexpression of miR-140 in both PC12 and SH-SY5S cells. Regarding the mechanisms underlying the function of miR-410, phosphatase and tensin homolog (PTEN) was proposed as a direct target of miR-410. CONCLUSION All data revealed that serum downregulated miR-410 in HIE serves as candidate diagnostic biomarker, and that miR-410 exerts a neuroprotective role in OGD-injured cells by improving cell viability and inhibiting cell apoptosis through targeting PTEN.
Collapse
Affiliation(s)
- Qinghong Meng
- Department of Neonatology, Weifang People's Hospital, Weifang, Shandong, China
| | - Peipei Yang
- Department of Neonatology, Weifang People's Hospital, Weifang, Shandong, China
| | - Yuanyuan Lu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
15
|
Huang S, Chen T, Suo Q, Shi R, Khan H, Ma Y, Tang Y, Yang GY, Zhang Z. BK Channel-Mediated Microglial Phagocytosis Alleviates Neurological Deficit After Ischemic Stroke. Front Cell Neurosci 2021; 15:683769. [PMID: 34276309 PMCID: PMC8281043 DOI: 10.3389/fncel.2021.683769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Microglial phagocytosis benefits neurological recovery after stroke. Large-conductance Ca2+-activated K+ currents are expressed in activated microglia, and BK channel knockout aggravates cerebral ischemic injury. However, the effect of BK channels on microglial phagocytosis after ischemic stroke remains unknown. Here, we explored whether BK channel activation is beneficial for neurological outcomes through microglial phagocytosis after ischemic stroke. ICR mice after transient middle cerebral artery occlusion (tMCAO) were treated with dimethyl sulfoxide (DMSO), BK channel activator NS19504, and inhibitor Paxilline. The results showed a decrease in BK channel expression after tMCAO. BK channel activator NS19504 alleviates neurological deficit after experimental modeling of tMCAO in mice compared to the control. Furthermore, we treated primary microglia with DMSO, NS19504, and Paxilline after oxygen glucose deprivation (OGD). NS19504 promoted primary microglial phagocytosing fluorescent beads and neuronal debris, which reduced neuronal apoptosis after stroke. These effects could be reversed by BK channel inhibitor Paxilline. Finally, NS19504 increased relative phosphorylated extracellular signal-regulated kinase 1/2 expression compared to the Paxilline group at the third day after stroke. Our findings indicate that microglial BK channels are a potential target for acute stage of ischemic stroke therapy.
Collapse
Affiliation(s)
- Shuxian Huang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Suo
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Haroon Khan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Song Y, Wang X, Hou A, Li H, Lou J, Liu Y, Cao J, Mi W. Integrative Analysis of lncRNA and mRNA and Profiles in Postoperative Delirium Patients. Front Aging Neurosci 2021; 13:665935. [PMID: 34093168 PMCID: PMC8171121 DOI: 10.3389/fnagi.2021.665935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Delirium is a common serious complication that often occurs after major surgery. The goals of this study were to explore the expression profiles and functional networks of long non-coding RNAs (lncRNAs) and mRNAs in patients of postoperative delirium (POD). Microarray analysis was performed on the peripheral blood samples to identify differentially expressed (DE) lncRNAs and mRNAs in 4 POD patients and 4 non-POD volunteers. DE lncRNAs and mRNAs were validated by quantitative reverse transcription PCR (RT-qPCR). Bioinformatic analyses were performed to identify the critical biological functions and signaling pathways involved in POD. A total of 1195 DE lncRNAs and 735 DE mRNAs were identified between the POD and non-POD groups. Verified by the RT-qPCR, we identified 14 DE lncRNAs that may relate to the pathogenesis of POD. These 14 DE lncRNAs play important regulatory roles in “glutamate and 5-hydroxytryptamine,” “synaptotagmin 7,” “transient receptor potential channel,” “interleukin-2 production.” There was a regulatory relationship between lncRNA ENST00000530057 and synaptotagmin (Syt) 7 mRNA. The mRNA level of PCLO was up-regulated in POD group. This study showed abundant DE lncRNAs and mRNAs in POD that might help in deciphering the disease pathogenesis.
Collapse
Affiliation(s)
- Yuxiang Song
- Medical School of Chinese PLA, Beijing, China.,Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Wang
- Department of Anesthesiology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aisheng Hou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingsheng Lou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Abstract
Calorie restriction (CR) has been shown to be one of the most effective methods in alleviating the effects of ageing and age-related diseases. Although the protective effects of CR have been reported, the exact molecular mechanism still needs to be clarified. This study aims to determine differentially expressed (DE) miRNAs and altered gene pathways due to long-term chronic (CCR) and intermittent (ICR) CR in the brain of mice to understand the preventive roles of miRNAs resulting from long-term CR. Ten weeks old mice were enrolled into three different dietary groups; ad libitum, CCR or ICR, and fed until 82 weeks of age. miRNAs were analysed using GeneChip 4.1 microarray and the target of DE miRNAs was determined using miRNA target databases. Out of a total 3,163 analysed miRNAs, 55 of them were differentially expressed either by different CR protocols or by ageing. Brain samples from the CCR group had increased expression levels of mmu-miR-713 while decreasing expression levels of mmu-miR-184-3p and mmu-miR-351-5p compared to the other dietary groups. Also, current results indicated that CCR showed better preventive effects than that of ICR. Thus, CCR may perform its protective effects by modulating these specific miRNAs since they are shown to play roles in neurogenesis, chromatin and histone regulation. In conclusion, these three miRNAs could be potential targets for neurodegenerative and ageing-related diseases and may play important roles in the protective effects of CR in the brain.
Collapse
|
18
|
Hoang NMH, Kim S, Nguyen HD, Kim M, Kim J, Kim BC, Park D, Lee S, Yu BP, Chung HY, Kim MS. Age-Dependent Sensitivity to the Neurotoxic Environmental Metabolite, 1,2-Diacetylbenzene. Biomol Ther (Seoul) 2021; 29:399-409. [PMID: 33820880 PMCID: PMC8255141 DOI: 10.4062/biomolther.2020.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
1,2-Diacetylbenzene (DAB) is a metabolite of 1,2-diethylbenzene, which is commonly used in the manufacture of plastics and gasoline. We examined the neurotoxic effects of DAB in young and old rats, particularly its effects on hippocampus. Previously, we reported DAB impairs hippocampal neurogenesis but that the underlying mechanism remained unclear. In this study, we evaluate the toxicities exhibited by DAB in the hippocampi of 6-month-old (young) and 20-month-old (old) male SD rats by treating animals intraperitoneally with DAB at 3 mg/kg/day for 1 week. Hippocampal areas were dissected from brains and RNA was extracted and subjected to RNA-seq analysis. RNA results showed animals exhibited age-dependent sensitivity to the neurotoxic effects of DAB. We observed that inflammatory pathways were up-regulated in old rats but that metabolism- and detoxification-related pathways were up-regulated in young rats. This result in old rats, especially upregulation of the TREM1 signaling pathway (an inflammatory response involved in Alzheimer’s disease (AD)) was confirmed by RT-PCR. Our study results provide a better understanding of age-dependent responses to DAB and new insight into the association between DAB and AD.
Collapse
Affiliation(s)
- Ngoc Minh Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sungjin Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Minjo Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Byoung-Chul Kim
- Systems Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Daeui Park
- Systems Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sujun Lee
- Department of Pharmacology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
19
|
Exploring the secrets of brain transcriptional regulation: developing methodologies, recent significant findings, and perspectives. Brain Struct Funct 2021; 226:313-322. [PMID: 33547496 DOI: 10.1007/s00429-021-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
Exploring and revealing the secret of the function of the human brain has been the dream of mankind and science. Delineating brain transcriptional regulation has been extremely challenging, but recent technological advances have facilitated a deeper investigation of molecular processes in the brain. Tracing the molecular regulatory mechanisms of different gene expression profiles in the brain is divergent and has made it possible to connect spatial and temporal variations in gene expression to distributed properties of brain structure and function. Here, we review the molecular diversity of the brain among rodents, non-human primates and humans. We also discuss the molecular mechanism of non-coding DNA/RNA at the transcriptional/post-transcriptional level based on recent technical advances to highlight an improved understanding of the complex transcriptional network in the brain. Spatiotemporal and single-cell transcriptomics have attempted to gain novel insight into the development and evolution of the brain as well as the progression of human diseases. Although it is clear that the field is developing and challenges remain to be resolved, the impressive recent progress provides a solid foundation to better understand the brain and evidence-based recommendations for the diagnosis and treatment of brain diseases.
Collapse
|
20
|
Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, Niculescu A, Saykin AJ, Rinaldi C, Counts SE, Lahiri DK. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry 2021; 26:5636-5657. [PMID: 31942037 PMCID: PMC8758483 DOI: 10.1038/s41380-019-0610-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related form of dementia, associated with deposition of intracellular neuronal tangles consisting primarily of hyperphosphorylated microtubule-associated protein tau (p-tau) and extracellular plaques primarily comprising amyloid- β (Aβ) peptide. The p-tau tangle unit is a posttranslational modification of normal tau protein. Aβ is a neurotoxic peptide excised from the amyloid-β precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. MicroRNAs (miRNAs) are short, single-stranded RNAs that modulate protein expression as part of the RNA-induced silencing complex (RISC). We identified miR-298 as a repressor of APP, BACE1, and the two primary forms of Aβ (Aβ40 and Aβ42) in a primary human cell culture model. Further, we discovered a novel effect of miR-298 on posttranslational levels of two specific tau moieties. Notably, miR-298 significantly reduced levels of ~55 and 50 kDa forms of the tau protein without significant alterations of total tau or other forms. In vivo overexpression of human miR-298 resulted in nonsignificant reduction of APP, BACE1, and tau in mice. Moreover, we identified two miR-298 SNPs associated with higher cerebrospinal fluid (CSF) p-tau and lower CSF Aβ42 levels in a cohort of human AD patients. Finally, levels of miR-298 varied in postmortem human temporal lobe between AD patients and age-matched non-AD controls. Our results suggest that miR-298 may be a suitable target for AD therapy.
Collapse
Affiliation(s)
- Nipun Chopra
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ruizhi Wang
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Bryan Maloney
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
| | - Kwangsik Nho
- grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Departments of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - John S. Beck
- grid.17088.360000 0001 2150 1785Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Naemeh Pourshafie
- grid.94365.3d0000 0001 2297 5165Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Alexander Niculescu
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Andrew J. Saykin
- grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Departments of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| | - Carlo Rinaldi
- grid.4991.50000 0004 1936 8948Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Scott E. Counts
- grid.17088.360000 0001 2150 1785Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
21
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
22
|
Shi L, Zhang R, Li T, Han X, Yuan N, Jiang L, Zhou H, Xu S. Decreased miR-132 plays a crucial role in diabetic encephalopathy by regulating the GSK-3β/Tau pathway. Aging (Albany NY) 2020; 13:4590-4604. [PMID: 33406505 PMCID: PMC7906212 DOI: 10.18632/aging.202418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Diabetic encephalopathy (DE) is a global concern and Gordian knot worldwide. miRNA-132 (miR-132) is a class of negative gene regulators that promote diabetic pathologic mechanisms and its complications. However, the molecular mechanisms of miR-132 in DE are elusive, thus an alternative therapeutic strategy is urgently in demand. The present study explored the protective effect and the underlying mechanism of miR-132 on DE via the GSK-β/Tau signaling pathway. Experimentally, a type 2 DM rat model was developed by incorporating a high-fat diet and streptozotocin injection. Further, the DE model was screened via the Morris Water Maze test. Primary hippocampal neurons and HT-22 cells were used for in vitro analysis. We found that hyperglycemia exacerbates cognitive impairment in T2DM rats. When we isolated the primary hippocampus neurons, the expression of miR-132 RNA was low in both the DE hippocampus and primary neurons. GSK-3β and Tau 404 were highly expressed in injured HT-22 cells and diabetic hippocampal tissues. miR-132 downregulated the expression of GSK-3β. Besides, a binding and colocalized relationship between GSK3β and Tau was also reported. These findings suggest that miR-132 exerts protective effects from DE injury by repressing GSK-3β expression and alleviating Tau hyperphosphorylation in HT-22 cells and hippocampus tissues.
Collapse
Affiliation(s)
- Li Shi
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Department of Endocrinology, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 075000, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang 075000, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Xue Han
- Department of General Practice, Xingtai People’s Hospital, Xingtai 054000, China
| | - Nannan Yuan
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 075000, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang 075000, China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 075000, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang 075000, China
| | - Huimin Zhou
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 075000, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang 075000, China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 075000, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang 075000, China
| |
Collapse
|
23
|
Zmyslowska A, Stanczak M, Nowicka Z, Waszczykowska A, Baranska D, Fendler W, Borowiec M, Młynarski W. Serum microRNA as indicators of Wolfram syndrome's progression in neuroimaging studies. BMJ Open Diabetes Res Care 2020; 8:8/2/e001379. [PMID: 33132210 PMCID: PMC7607591 DOI: 10.1136/bmjdrc-2020-001379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Patients with the ultra-rare Wolfram syndrome (WFS) develop insulin-dependent diabetes and progressive neurodegeneration. The aim of the study was to quantify microRNAs (miRNAs) in sera from patients with WFS, correlate their expression with neurological imaging over time and compare miRNA levels with those observed in patients with type 1 diabetes mellitus (T1DM). RESEARCH DESIGN AND METHODS We quantified miRNA expression (Qiagen, Germany) in two groups of patients: with WFS at study entry (n=14) and after 2 years of follow-up and in 15 glycated hemoglobin-matched (p=0.72) patients with T1DM. RESULTS We observed dynamic changes in the expression of multiple miRNAs in patients with WFS parallel to disease progression and in comparison to the T1DM patients group. Among miRNAs that differed between baseline and follow-up WFS samples, the level of 5 increased over time (miR-375, miR-30d-5p, miR-30e-30, miR-145-5p and miR-193a-5p) and was inversely correlated with macular average thickness, while the expression of 2 (let-7g-5p and miR-22-3p) decreased and was directly correlated with neuroimaging indicators of neurodegeneration. CONCLUSIONS Our findings show for the first time that serum miRNAs can be used as easily accessible indicators of disease progression in patients with WFS, potentially facilitating clinical trials on mitigating neurodegeneration.
Collapse
Affiliation(s)
| | - Marcin Stanczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Arleta Waszczykowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, Lodz, Poland
| | - Dobromila Baranska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
Rahmani A, Saleki K, Javanmehr N, Khodaparast J, Saadat P, Nouri HR. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res Rev 2020; 62:101106. [PMID: 32565329 DOI: 10.1016/j.arr.2020.101106] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Stem cell-based treatments have been suggested as promising candidates for stroke. Recently, mesenchymal stem cells (MSCs) have been reported as potential therapeutics for a wide range of diseases. In particular, clinical trial studies have suggested MSCs for stroke therapy. The focus of MSC treatments has been directed towards cell replacement. However, recent research has lately highlighted their paracrine actions. The secretion of extracellular vesicles (EVs) is offered to be the main therapeutic mechanism of MSC therapy. However, EV-based treatments may provide a wider therapeutic window compared to tissue plasminogen activator (tPA), the traditional treatment for stroke. Exosomes are nano-sized EVs secreted by most cell types, and can be isolated from conditioned cell media or body fluids such as plasma, urine, and cerebrospinal fluid (CSF). Exosomes apply their effects through targeting their cargos such as microRNAs (miRs), DNAs, messenger RNAs, and proteins at the host cells, which leads to a shift in the behavior of the recipient cells. It has been indicated that exosomes, in particular their functional cargoes, play a significant role in the coupled pathogenesis and recovery of stroke through affecting the neurovascular unit (NVU). Therefore, it seems that exosomes could be utilized as diagnostic and therapeutic tools in stroke treatment. The miRs are small endogenous non-coding RNA molecules which serve as the main functional cargo of exosomes, and apply their effects as epigenetic regulators. These versatile non-coding RNA molecules are involved in various stages of stroke and affect stroke-related factors. Moreover, the involvement of aging-induced changes to specific miRs profile in stroke further highlights the role of miRs. Thus, miRs could be utilized as diagnostic, prognostic, and therapeutic tools in stroke. In this review, we discuss the roles of stem cells, exosomes, and their application in stroke therapy. We also highlight the usage of miRs as a therapeutic choice in stroke therapy.
Collapse
|
25
|
Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 2020; 331:113382. [DOI: 10.1016/j.expneurol.2020.113382] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
|
26
|
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that are evolutionarily conserved across many different species. miRNA regulation of gene expression, specifically in the context of the mammalian brain, has been well characterized; however, the regulation of miRNA degradation is still a focus of ongoing research. This review focuses on recent findings concerning the cellular mechanisms that govern miRNA degradation, with an emphasis on target-mediated miRNA degradation and how this phenomenon is uniquely poised to maintain homeostasis in neuronal systems.
Collapse
Affiliation(s)
- Chun K Kim
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
27
|
Sessa F, Salerno M, Cipolloni L, Bertozzi G, Messina G, Mizio GD, Asmundo A, Pomara C. Anabolic-androgenic steroids and brain injury: miRNA evaluation in users compared to cocaine abusers and elderly people. Aging (Albany NY) 2020; 12:15314-15327. [PMID: 32756006 PMCID: PMC7467388 DOI: 10.18632/aging.103512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Anabolic-androgenic steroids (AASs) can be used to treat both hormonal diseases and other pathologies characterized by muscle loss (aging, cancer, and AIDS). Even if the adverse effects related to the misuse of AASs have been well studied in different systems and apparatuses, knowledge about brain damage is poor.In this scenario, this experimental study aimed to analyze the role of several microRNAs (miRNAs) in brain damage after AAS misuse, to better comprehend the underlying mechanisms. The research hypothesis at the base of this experimental study is that the chronic use of AASs may be associated to brain damage with a dysregulation of these miRNAs. Moreover, miRNA expression values were compared among three different groups, "AAS" group, "Cocaine" group and "Aging" group, in order to define if AAS brain damage can be compared with the brain impairment linked to aging and/or cocaine assumption.This experimental study revealed that the tested miRNAs (hsa-miR-21-5p, hsa-miR-34a-5p, hsa-miR-124-5p, hsa-miR-132-3p, and hsa-miR-144-3p) were overexpressed in all enrolled groups. In the light of the presented results, the identification of specific circulating and/or tissue biomarkers is challenging for the scientific community. Further studies with larger samples are needed to confirm these interesting findings.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania 95121, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Giulio Di Mizio
- Department of Legal, Historical, Economic and Social Sciences, University of Catanzaro, Catanzaro 88100, Italy
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences, and of Morphological and Functional Images, Section of Legal Medicine, University of Messina, Messina 98121, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania 95121, Italy
| |
Collapse
|
28
|
Miao J, Jing J, Shao Y, Sun H. MicroRNA-138 promotes neuroblastoma SH-SY5Y cell apoptosis by directly targeting DEK in Alzheimer's disease cell model. BMC Neurosci 2020; 21:33. [PMID: 32736520 PMCID: PMC7393818 DOI: 10.1186/s12868-020-00579-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neuro-degenerative disease with a major manifestation of dementia. MicroRNAs were reported to regulate the transcript expression in patients with Alzheimer's disease (AD). In this study, we investigated the roles of miR-138, a brain-enriched miRNA, in the AD cell model. METHODS The targets of miRNA-138 was predicted by bioinformatic analysis. The expression levels of DEK at both mRNA and protein levels were determined by qRT-PCR and Western blot, respectively. Luciferase assays were carried out to examine cell viabilities. Hoechst 33258 staining was used to detect cell apoptosis. RESULTS Our results demonstrated that the expression levels of miR-138 were increased in AD model, and DEK was a target of miR-138. Overexpression of miR-138 in SH-SY5Y cells obviously down-regulated the expression of DEK in SH-SY5Y cells, resulting in the inactivation of AKT and increased expression levels of proapoptotic caspase-3. MiR-138 mediated-suppression of DEK increased the susceptibility of cell apoptosis. CONCLUSIONS MicroRNA-138 promotes cell apoptosis of SH-SY5Y by targeting DEK in SH-SY5Y AD cell model. The regulation of miR-138 may contribute to AD via down-regulation of the DEK/AKT pathway.
Collapse
Affiliation(s)
- Jin Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Laboratory Animal Center, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Jin Jing
- Laboratory Animal Center, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Yixiang Shao
- Laboratory Animal Center, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China.
| | - Huaichang Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Gupta DP, Park SH, Yang HJ, Suk K, Song GJ. Neuroprotective and Anti-Neuroinflammatory Effects of a Poisonous Plant Croton Tiglium Linn. Extract. Toxins (Basel) 2020; 12:toxins12040261. [PMID: 32316571 PMCID: PMC7232518 DOI: 10.3390/toxins12040261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is involved in various neurological diseases. Activated microglia secrete many pro-inflammatory factors and induce neuronal cell death. Thus, the inhibition of excessive proinflammatory activity of microglia leads to a therapeutic effect that alleviates the progression of neuronal degeneration. In this study, we investigated the effect of Croton tiglium (C. tiglium) Linn. extract (CTE) on the production of pro- and anti-inflammatory mediators in microglia and astrocytes via RT-PCR, Western blot, and nitric oxide assay. Neurotoxicity was measured by cell viability assay and GFP image analysis. Phagocytosis of microglia was measured using fluorescent zymosan particles. CTE significantly inhibited the production of neurotoxic inflammatory factors, including nitric oxide and tumor necrosis factor-α. In addition, CTE increased the production of the neurotrophic factor, brain-derived neurotrophic factor, and the M2 phenotype of microglia. The culture medium retained after CTE treatment increased the survival of neurons, thereby indicating the neuroprotective effect of CTE. Our findings indicated that CTE inhibited pro-inflammatory response and increased the neuroprotective ability of microglia. In conclusion, although CTE is known to be a poisonous plant and listed on the FDA poisonous plant database, it can be used as a medicine if the amount is properly controlled. Our results suggested the potential benefits of CTE as a therapeutic agent for different neurodegenerative disorders involving neuroinflammation.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Korea
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sung Hee Park
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Korea
- Translational Brain Research Center, International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Korea
- Correspondence: ; Tel.: +82-32-280-6532
| |
Collapse
|
30
|
Weisz HA, Kennedy D, Widen S, Spratt H, Sell SL, Bailey C, Sheffield-Moore M, DeWitt DS, Prough DS, Levin H, Robertson C, Hellmich HL. MicroRNA sequencing of rat hippocampus and human biofluids identifies acute, chronic, focal and diffuse traumatic brain injuries. Sci Rep 2020; 10:3341. [PMID: 32094409 PMCID: PMC7040013 DOI: 10.1038/s41598-020-60133-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/29/2020] [Indexed: 01/17/2023] Open
Abstract
High-throughput sequencing technologies could improve diagnosis and classification of TBI subgroups. Because recent studies showed that circulating microRNAs (miRNAs) may serve as noninvasive markers of TBI, we performed miRNA-seq to study TBI-induced changes in rat hippocampal miRNAs up to one year post-injury. We used miRNA PCR arrays to interrogate differences in serum miRNAs using two rat models of TBI (controlled cortical impact [CCI] and fluid percussion injury [FPI]). The translational potential of our results was evaluated by miRNA-seq analysis of human control and TBI (acute and chronic) serum samples. Bioinformatic analyses were performed using Ingenuity Pathway Analysis, miRDB, and Qlucore Omics Explorer. Rat miRNA profiles identified TBI across all acute and chronic intervals. Rat CCI and FPI displayed distinct serum miRNA profiles. Human miRNA profiles identified TBI across all acute and chronic time points and, at 24 hours, discriminated between focal and diffuse injuries. In both species, predicted gene targets of differentially expressed miRNAs are involved in neuroplasticity, immune function and neurorestoration. Chronically dysregulated miRNAs (miR-451a, miR-30d-5p, miR-145-5p, miR-204-5p) are linked to psychiatric and neurodegenerative disorders. These data suggest that circulating miRNAs in biofluids can be used as "molecular fingerprints" to identify acute, chronic, focal or diffuse TBI and potentially, presence of neurodegenerative sequelae.
Collapse
Affiliation(s)
- Harris A Weisz
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Deborah Kennedy
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Steven Widen
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Heidi Spratt
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Stacy L Sell
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Christine Bailey
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Douglas S DeWitt
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Donald S Prough
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | | | - Helen L Hellmich
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
31
|
Zhang H, Zhang M, Meng L, Guo M, Piao M, Huang Z, Yu H. Investigation of key miRNAs and their target genes involved in cell apoptosis during intervertebral disc degeneration development using bioinformatics methods. J Neurosurg Sci 2020; 66:125-132. [PMID: 32031354 DOI: 10.23736/s0390-5616.20.04773-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to identify important miRNAs and their target genes involved in cell apoptosis in intervertebral disc degeneration (IDD) patients. METHODS The dataset, GSE63492, was obtained from the gene expression omnibus platform. After preprocessing, the differentially expressed miRNAs (DEMs) and their target genes were identified using the Limma package and miRWalk2.0 database, respectively. The clusterProfiler package in R was used to perform functional enrichment analysis of these target genes. Subsequently, protein-protein interaction (PPI) network and subnet clusters of the coregulated genes were conducted using the STRING database and MCODE, respectively. Further, the co-regulatory network of the key miRNAs and PPI networks were visualized using Cytoscape. Finally, cell apoptosis-related pathways and the genes enriched in these pathways were identified. RESULTS The genes targeted by the upregulated (hsa-miR-302c-5p, hsa-miR-631, hsa-let-7f-1-3p, hsa-miR-3675-3p, and hsa-miR-585-3p) and downregulated miRNAs (hsa-miR-185-5p, hsa-miR-486-5p, hsa-miR-4306, and hsa-miR-4674) were interrelated with cell apoptosis-related pathways. MAPK1 and MAPK3 were targeted by hsa-miR-185-5p, while GSK3B was targeted hsa-miR-4306, hsa-miR-486-5p, hsa-miR-185-5p, hsa-let-7f-1-3p, and hsa-miR-631. Besides, MAPK3 and VEGFA were regulated by hsa-miR-3675-3p and hsa-miR-631, respectively. CONCLUSIONS The expression of GSK3B may be coregulated by miR-4306, miR-185-5p, miR-486-5p, hsa-let-7f-1-3p, and miR-631 and may affect IDD development. Besides, miR-185-5p and miR-3675-3p may control nucleus pulposus (NP) cell apoptosis through the MAPK signaling pathway in IDD patients. VEGFA expression may be regulated by miR-631, and help maintain NP cell survival in IDD patients. Our findings may help guide further research into the role of miRNAs in IDD progression.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Meng Zhang
- The Second Clinical College of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Lingzhi Meng
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Mingming Guo
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Meihui Piao
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Zijun Huang
- The Second Clinical College of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China -
| |
Collapse
|
32
|
Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J, Jin K, Yenari MA, Song T, Wang Q. Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Exp Neurol 2019; 322:113060. [PMID: 31505162 DOI: 10.1016/j.expneurol.2019.113060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
Abstract
Our previous studies have indicated that depression and declined cognition have been involved in some neurodegenerative diseases including Stroke, Parkinson's diseases and Vascular Parkinsonism. Post-stroke depression (PSD) is the most common psychiatric disorder following a stroke and has high morbidity and mortality. Studies on PSD are increasingly common, but the specific mechanisms remain unknown. Current research mainly includes clinical and animal aspects. Questionnaires and peripheral blood examination are two of the most common methods used to study clinical PSD. The results of questionnaires are influenced by multiple factors such as disease history, education background, occupation, economic status, family relationships and social support. There are certain limitations to blood sample testing; for example, it is influenced by cerebrovascular diseases and some other disruptions of the internal environment. It is difficult for either method to fully clarify the pathophysiological mechanism of PSD. Animal models provide alternative methods to further understand the pathophysiological mechanisms of PSD, such as the involvement of neuronal circuits and cytokines. More than ten animal models of PSD have been developed, and new models are constantly being introduced. Therefore, it is important to choose the appropriate model for any given study. In this paper, we will discuss the characteristics of the different models of PSD and comment on the advantages and disadvantages of each model, drawing from research on model innovation. Finally, we briefly describe the current assessment methods for the core symptoms of PSD models, point out the shortcomings, and present the improved sucrose preference test as a rational evaluation of anhedonia.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chujuan Liu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jia Wang
- Department of Scientific Research, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Danheng Mo
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Jieqiong Tan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
33
|
Wang J, Chen C, Zhang Y. An investigation of microRNA-103 and microRNA-107 as potential blood-based biomarkers for disease risk and progression of Alzheimer's disease. J Clin Lab Anal 2019; 34:e23006. [PMID: 31420923 PMCID: PMC6977154 DOI: 10.1002/jcla.23006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to assess the correlation of circulating microRNA-103 (miR-103) and microRNA-107 (miR-107) with disease risk and cognitive impairment of Alzheimer's disease (AD). METHODS Plasma samples from 120 AD patients, 120 Parkinson's disease (PD) patients (served as disease control), and 120 healthy controls were collected for miR-103 and miR-107 detections using real-time quantitative polymerase chain reaction. Mini-Mental State Examination (MMSE) score was documented and was used to accordingly assess the dementia severity. RESULTS miR-103 expression was decreased in AD patients compared with PD patients and healthy controls, and receiver operating characteristic (ROC) curve analyses illustrated that it was able to differentiate AD patients from PD patients and healthy controls. Additionally, miR-103 positively correlated with MMSE score and negatively correlated with dementia severity in AD patients. miR-107 expression was lower in AD patients compared with healthy controls but similar between AD patients and PD patients, and ROC curve analyses revealed that it was able to differentiate AD patients from healthy controls but not AD patients from PD patients. miR-107 was positively correlated with MMSE score and negatively correlated with dementia severity in AD patients, while the correlation coefficient of miR-107 with MMSE score was lower than that of miR-103 with MMSE score. Besides, miR-103 was positively correlated with miR-107 in AD patients, PD patients, and healthy controls. CONCLUSION miR-103 may be a better choice than miR-107 to serve as a potential biomarker for disease risk and disease progression of AD.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Chen
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Zhang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Shetty AK, Upadhya R, Madhu LN, Kodali M. Novel Insights on Systemic and Brain Aging, Stroke, Amyotrophic Lateral Sclerosis, and Alzheimer's Disease. Aging Dis 2019; 10:470-482. [PMID: 31011489 PMCID: PMC6457051 DOI: 10.14336/ad.2019.0330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that underlie the pathophysiology of aging, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and stroke are not fully understood and have been the focus of intense and constant investigation worldwide. Studies that provide insights on aging and age-related disease mechanisms are critical for advancing novel therapies that promote successful aging and prevent or cure multiple age-related diseases. The April 2019 issue of the journal, "Aging & Disease" published a series of articles that confer fresh insights on numerous age-related conditions and diseases. The age-related topics include the detrimental effect of overweight on energy metabolism and muscle integrity, senoinflammation as the cause of neuroinflammation, the link between systemic C-reactive protein and brain white matter loss, the role of miR-34a in promoting healthy heart and brain, the potential of sirtuin 3 for reducing cardiac and pulmonary fibrosis, and the promise of statin therapy for ameliorating asymptomatic intracranial atherosclerotic stenosis. Additional aging-related articles highlighted the involvement of miR-181b-5p and high mobility group box-1 in hypertension, Yes-associated protein in cataract formation, multiple miRs and long noncoding RNAs in coronary artery disease development, the role of higher meat consumption on sleep problems, and the link between glycated hemoglobin and depression. The topics related to ALS suggested that individuals with higher education and living in a rural environment have a higher risk for developing ALS, and collagen XIX alpha 1 is a prognostic biomarker of ALS. The topics discussed on AD implied that extracellular amyloid β42 is likely the cause of intraneuronal neurofibrillary tangle accumulation in familial AD and traditional oriental concoctions may be useful for slowing down the progression of AD. The article on stroke suggested that inhibition of the complement system is likely helpful in promoting brain repair after ischemic stroke. The significance of the above findings for understanding the pathogenesis in aging, ALS, AD, and stroke, slowing down the progression of aging, ALS and AD, and promoting brain repair after stroke are discussed.
Collapse
Affiliation(s)
- Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas, USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas, USA
| |
Collapse
|
35
|
Ren X, Engler-Chiurazzi EB, Russell AE, Sarkar SN, Rellick SL, Lewis S, Corbin D, Clapper J, Simpkins JW. MiR-34a and stroke: Assessment of non-modifiable biological risk factors in cerebral ischemia. Neurochem Int 2018; 127:73-79. [PMID: 30365981 DOI: 10.1016/j.neuint.2018.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
Abstract
Aging of the nervous system, and the occurrence of age-related brain diseases such as stroke, are associated with changes to a variety of cellular processes controlled by many distinct genes. MicroRNAs (miRNAs), short non-coding functional RNAs that can induce translational repression or site-specific cleavage of numerous target mRNAs, have recently emerged as important regulators of cellular senescence, aging, and the response to neurological insult. Here, we focused on the assessment of the role of miR-34a in stroke. We noted increases in miR-34a expression in the blood of stroke patients as well as in blood and brain of mice subjected to experimental stroke. Our methodical genetic manipulation of miR-34a expression substantially impacted stroke-associated preclinical outcomes and we have in vitro evidence that these changes may be driven at least in part by disruptions to blood brain barrier integrity and mitochondrial oxidative phosphorylation in endothelial cells. Finally, aging, independent of brain injury, appears to be associated with shifts in circulating miRNA profiles. Taken together, these data support a role for miRNAs, and specifically miR-34a, in brain aging and the physiological response to age-related neurological insult, and lay the groundwork for future investigation of this novel therapeutic target.
Collapse
Affiliation(s)
- Xuefang Ren
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Stephanie L Rellick
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Sara Lewis
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Deborah Corbin
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Jared Clapper
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|