1
|
Wu Z, Liu X, Wang Y, Zeng Z, Chen W, Li H. Pseudogene Lamr1-ps1 Aggravates Early Spatial Learning Memory Deficits in Alzheimer's Disease Model Mice. Neurosci Bull 2025; 41:600-614. [PMID: 39746896 PMCID: PMC11979086 DOI: 10.1007/s12264-024-01336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/15/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder with complex etiologies, manifests through a cascade of pathological changes before clinical symptoms become apparent. Among these early changes, alterations in the expression of non-coding RNAs (ncRNAs) have emerged as pivotal events. In this study, we focused on the aberrant expression of ncRNAs and revealed that Lamr1-ps1, a pseudogene of the laminin receptor, significantly exacerbates early spatial learning and memory deficits in APP/PS1 mice. Through a combination of bioinformatics prediction and experimental validation, we identified the miR-29c/Bace1 pathway as a potential regulatory mechanism by which Lamr1-ps1 influences AD pathology. Importantly, augmenting the miR-29c-3p levels in mice ameliorated memory deficits, underscoring the therapeutic potential of targeting miR-29c-3p in early AD intervention. This study not only provides new insights into the role of pseudogenes in AD but also consolidates a foundational basis for considering miR-29c as a viable therapeutic target, offering a novel avenue for AD research and treatment strategies.
Collapse
Affiliation(s)
- Zhuoze Wu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaojie Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yuntai Wang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Zimeng Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Wei Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Wang C, Tang Y, Tang J, Zhang J, Wang S, Wu F, Wang S. Long-term effects of linear versus macrocyclic GBCAs on gene expression in the central nervous system of mice. Eur Radiol Exp 2025; 9:3. [PMID: 39792203 PMCID: PMC11723877 DOI: 10.1186/s41747-024-00546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND We examined chronic gadolinium retention impact on gene expression in the mouse central nervous system (CNS) after injection of linear or macrocyclic gadolinium-based contrast agents (GBCAs). METHODS From 05/2022 to 07/2023, 36 female mice underwent weekly intraperitoneal injections of gadodiamide (2.5 mmol/kg, linear), gadobutrol (2.5 mmol/kg, macrocyclic), or saline. Mice were sacrificed on day 29 or 391 after a 1-year washout. Assessments included magnetic resonance imaging (MRI), mechanical hyperalgesia tests, and inductively coupled plasma mass spectrometry to measure gadolinium levels. Ribonucleic acid (RNA) sequencing and bioinformatic analyses identified differentially expressed genes (DEGs), with validation by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB). RESULTS Post-gadodiamide, MRI showed increased signal intensity in the deep cerebellar nuclei (pre, 0.997 ± 0.006 versus post, 1.086 ± 0.013, p < 0.001). Mechanical hyperalgesia tests indicated transient sensory changes. After 1-year, gadolinium retention was noted in the brain (5.92 ± 0.32 nmol/kg) and spinal cord (1.23 ± 0.66 nmol/kg) with gadodiamide, compared to saline controls (0.06 ± 0.02 nmol/kg in brains and 0.28 ± 0.06 nmol/kg in spinal cords). RNA sequencing identified 17 shared DEGs between brain and spinal cord in the gadodiamide group on day 391, with altered Hmgb2 and Sgk1 expression confirmed by qRT-PCR and WB. Reactome pathway analysis showed enrichment in neuroinflammation pathways. No DEGs were detected in brains on day 29. CONCLUSION Chronic gadolinium deposition from repeated linear GBCA but not macrocyclic administration causes significant gene expression alterations in the mouse CNS, particularly affecting neuroinflammation pathways. RELEVANCE STATEMENT This study examined the long-term impact of chronic gadolinium retention on gene expression in the mouse CNS, uncovering significant changes associated with neuroinflammation pathways after repeated administration of linear GBCA, but not with macrocyclic GBCA. These findings highlight the importance of further research on the long-term safety of linear GBCA in medical imaging. KEY POINTS Chronic gadolinium retention alters gene expression in the mouse central nervous system. Significant neuroinflammatory pathway changes were observed after linear gadodiamide exposure. MRI showed increased signal intensity in deep cerebellar nuclei after gadodiamide injection.
Collapse
Affiliation(s)
- Chuanbing Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxia Tang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiajia Tang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zhang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siqi Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feiyun Wu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Liang T, Zhu L, Yang J, Huang X, Lv M, Liu S, Wen Z, Su L, Zhou L. Identification of Key Genes Mediated by N6-Methyladenosine Methyltransferase METTL3 in Ischemic Stroke via Bioinformatics Analysis and Experiments. Mol Biotechnol 2025; 67:160-174. [PMID: 38135832 DOI: 10.1007/s12033-023-00991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
The N6-methyladenosine (m6A) methyltransferase METTL3 has been demonstrated to function in mediating m6A modification, but its role in ischemic stroke (IS) has not been fully elucidated. This study aimed to explore the downstream mechanism of METTL3-mediated m6A modification in IS. GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus database for analysis of differentially expressed genes (DEGs), and it was found that METTL3 mRNA was downregulated in IS. Then quantitative real-time polymerase chain reaction was used to verify the downregulation of METTL3 mRNA in the peripheral blood of IS patients and the cortexes of transient middle cerebral artery occlusion mice. By combining DEGs with the m6A-downregulated genes in GSE142386 which performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) on METTL3-deficient and control endothelial cells, a total of 131 genes were identified as the METTL3-mediated m6A-modified genes in IS. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the genes were mainly involved in cytokine-cytokine receptor interaction, MAPK signaling pathway and NF-kappa B signaling pathway. CTSS and SBK1 were further screened as the key METTL3-mediated m6A-modified genes by random forest model and PCR validation. The ROC curve analysis showed that the combination with CTSS and SBK1 was of good diagnostic value for IS, with the AUC of 0.810, sensitivity of 0.780, and specificity of 0.773. Overall, we found that METTL3-mediated m6A modification may influence the occurrence and development of IS by participating in inflammation-related biological processes, and two key m6A-modified genes mediated by METTL3 (CTSS and SBK1) can be used as diagnostic biomarkers for IS.
Collapse
Affiliation(s)
- Tian Liang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Lulu Zhu
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaolan Huang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Miao Lv
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shengying Liu
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zheng Wen
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Li Su
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Lifang Zhou
- Liuzhou Center for Disease Control and Prevention, Liuzhou, 545005, Guangxi, China.
| |
Collapse
|
4
|
Li Y, Liu J, Zhu Y, Xue M, He J. Effects of butylphthalide sodium chloride injection combined with edaravone dexborneol on neurological function and serum inflammatory factor levels in sufferers having acute progressive cerebral infarction. Front Neurol 2024; 15:1415977. [PMID: 39748862 PMCID: PMC11693505 DOI: 10.3389/fneur.2024.1415977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Objectives For investigating an influence on butylphthalide sodium chloride injection combined with edaravone dextromethorphan on neurological function, serum free radical levels, and serum inflammatory factor levels in sufferers having acute progressive cerebral infarction (APCI). Methods A cohort of 200 patients, afflicted by APCI and admitted to our healthcare institution between December 2018 through July 2023, were incorporated into this longitudinal prospective analysis. Employing a random number table methodology, the patient cohort was bifurcated into a control group (n = 100) and an observation group (n = 100). The control group is treated with butylphthalide sodium chloride injection and the study group is treated with edaravone dexborneol, based on the control group. The posttreatment curative efficacy on the two groups is recorded, and treatment of both the two groups is compared. Before and after neurological function indexes (NIHSS and BI), inflammatory factor indexes (hs-CRP, IL-8, and TNF-a), serum free radical levels (ROS, NO, and SOD), and contrasted between the two groups of treatment effect during therapy. Results Compared with the control (65%), the observation group exhibited a significantly higher effective rate of around 89%. In the observation group, the improvement in NIHSS, and Barthel index scores; inflammatory indexes including hs-CRP, IL-8, and TNF-a; and serum free radical levels including ROS, NO, and SOD in peripheral blood was better than the control group, with significant difference (all P<0.05). Conclusion The clinical efficacy of edaravone dexborneol combined with butylphthalide sodium chloride injection in the treatment of acute progressive cerebral infarction is precise, which can effectively reduce the level of inflammatory factors and serum free radicals in patients, improve the neurological function of patients, and reduce the damage of cerebral cells, and the safety is high.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Neurology, People's Hospital of Lixin Country, Bozhou, China
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
| | - Jie Liu
- Department of Neurology, People's Hospital of Lixin Country, Bozhou, China
| | - Yuanyuan Zhu
- Department of Neurology, People's Hospital of Lixin Country, Bozhou, China
| | - Min Xue
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
| | - Jiale He
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
| |
Collapse
|
5
|
Xu Z, Yang F, Zheng L. Uncovering the dual roles of peripheral immune cells and their connections to brain cells in stroke and post-stroke stages through single-cell sequencing. Front Neurosci 2024; 18:1443438. [PMID: 39633897 PMCID: PMC11614781 DOI: 10.3389/fnins.2024.1443438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease that affects the blood vessels and the blood supply to the brain, making it the second leading cause of death worldwide. Studies suggest that immune cells play a dual role during the inflammatory and recovery phases of stroke. However, in-depth investigations of specific cell subtypes and their differentiation trajectories remain to be elucidated. In this review, we highlight the application of single-cell RNA sequencing (scRNA-seq) for the unbiased identification of cell heterogeneity in brain and peripheral blood mononuclear cells (PBMCs) during and after a stroke. Our goal is to explore the phenotypic landscape of cells with different roles in this context. Specifically, we provide an overview of the roles, cell surface markers, immune cell-released cytokines, and intercellular interactions identified in major immune cells during and after stroke, as identified by different technologies. Additionally, we summarize the connection between immune cells in peripheral blood and the brain via their differentiation trajectories. By synthesizing the application of scRNA-seq in the combined analysis of PBMCs and brain tissue at higher sampling frequencies, we aim to unveil the dual role of peripheral immune cells, which could facilitate the development of new treatment strategies for ischemic stroke.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Neurology, Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lifang Zheng
- Department of Neurology, Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
| |
Collapse
|
6
|
Wu Z, Dong L, Tian Z, Yu C, Shu Q, Chen W, Li H. Integrative Analysis of the Age-Related Dysregulated Genes Reveals an Inflammation and Immunity-Associated Regulatory Network in Alzheimer's Disease. Mol Neurobiol 2024; 61:5353-5368. [PMID: 38190023 DOI: 10.1007/s12035-023-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a long incubation period. While extensive research has led to the construction of long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) regulatory networks, which primarily derived from differential analyses between clinical AD patients and control individuals or mice, there remains a critical knowledge gap pertaining to the dynamic alterations in transcript expression profiles that occur with age, spanning from the pre-symptomatic stage to the onset of AD. In the present study, we examined the transcriptomic changes in AD model mice at three distinct stages: the unaffected (un-) stage, the pre-onset stage, and the late-onset stage, and identified 14, 57, and 99 differentially expressed mRNAs (DEmRs) in AD model mice at 3, 6, and 12 months, respectively. Among these, we pinpointed 16 mRNAs closely associated with inflammation and immunity and excavated their lncRNA-mRNA regulatory network based on a comprehensive analysis. Notably, our preliminary analysis suggested that four lncRNAs (NONMMUT102943, ENSMUST00000160309, NONMMUT083044, and NONMMUT126468), eight miRNAs (miR-34a-5p, miR-22-5p, miR-302a/b-3p, miR-340-5p, miR-376a/b-5p, and miR-487b-5p), and four mRNAs (C1qa, Cd68, Ctss, and Slc11a1) may play pivotal roles in orchestrating immune and inflammatory responses during the early stages of AD. Our study has unveiled age-related AD risk genes, and provided an analytical framework for constructing lncRNA-mRNA networks using time series data and correlation analysis. Most notably, we have successfully constructed a comprehensive regulatory ceRNA network comprising genes intricately linked to inflammatory and immune functions in AD.
Collapse
Affiliation(s)
- Zhuoze Wu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Lei Dong
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhixiao Tian
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Chenhui Yu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Qingrong Shu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Wei Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Zhou J, Ye W, Chen L, Li J, Zhou Y, Bai C, Luo L. Triptolide alleviates cerebral ischemia/reperfusion injury via regulating the Fractalkine/CX3CR1 signaling pathway. Brain Res Bull 2024; 211:110939. [PMID: 38574865 DOI: 10.1016/j.brainresbull.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE To evaluate the potential efficacy of Triptolide (TP) on cerebral ischemia/reperfusion injury (CIRI) and to uncover the underlying mechanism through which TP regulates CIRI. METHODS We constructed a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to simulate CIRI, and established a lipopolysaccharide (LPS)-stimulated BV-2 cell model to mimic the inflammatory state during CIRI. The neurological deficits score (NS) of mice were measured for assessment of neurologic functions. Both the severity of cerebral infarction and the apoptosis level in mouse brain tissues or cells were respectively evaluated using corresponding techniques. The expression levels of Ionized calcium binding adapter molecule 1 (IBA-1), Inductible Nitric Oxide Synthase (iNOS), Arginase 1 (Arg-1), Tumor necrosis factor-α (TNF-α), Interleukin 1β (IL-1β), Cysteine histoproteinase S (CTSS), Fractalkine, chemokine C-X3-C motif receptor 1 (CX3CR1), BCL-2-associated X protein (BAX), and antiapoptotic proteins (Bcl-2) were detected using immunofluorescence, qRT-PCR as well as Western blot, respectively. RESULTS Relative to the Sham group, treatment with TP attenuated the increased NS, infarct area and apoptosis levels observed in MCAO/R mice. Upregulated expression levels of IBA-1, iNOS, Arg-1, TNF-α and IL-1β were found in MCAO/R mice, while TP suppressed iNOS, TNF-α and IL-1β expression, and enhanced Arg-1 expression in both MCAO/R mice and LPS-stimulated BV-2 cells. Besides, TP inhibited the CTSS/Fractalkine/CX3CR1 pathway activation in both MCAO/R mice and LPS-induced BV-2 cells, while overexpression of CTSS reversed such effect. Co-culturing HT-22 cells with TP+LPS-treated BV-2 cells led to enhanced cell viability and decreased apoptosis levels. However, overexpression of CTSS further aggravated HT-22 cell injury. CONCLUSION TP inhibits not only microglia polarization towards the M1 phenotype by suppressing the CTSS/Fractalkine/CX3CR1 pathway activation, but also HT-22 apoptosis by crosstalk with BV-2 cells, thereby ameliorating CIRI. These findings reveal a novel mechanism of TP in improving CIRI, and offer potential implications for addressing the preventive and therapeutic strategies of CIRI.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Wei Ye
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Ling Chen
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Junheng Li
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Yijun Zhou
- Department of Liver Diseases, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Chunfeng Bai
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Lian Luo
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Song Z, Ding Y, Sim N, Yun HJ, Feng J, Gu P, Geng X. Vestibular function is associated with immune inflammatory response. Rev Neurosci 2024; 35:293-301. [PMID: 38158886 DOI: 10.1515/revneuro-2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Association between vestibular function and immune inflammatory response has garnered increasing interest. Immune responses can lead to anatomical or functional alterations of the vestibular system, and inflammatory reactions may impair hearing and balance. Vestibular disorders comprise a variety of conditions, such as vestibular neuritis, benign paroxysmal positional vertigo, Meniere's disease, vestibular migraine, posterior circulation ischemia, and bilateral vestibular disease. Moreover, some patients with autoimmune diseases develop vestibulocochlear symptom. This paper offers an overview of prevalent vestibular diseases and discusses associations between vestibular dysfunction and immune diseases.
Collapse
Affiliation(s)
- Zhaohui Song
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, 48201, Detroit, MI, USA
| | - Nathan Sim
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, 48201, Detroit, MI, USA
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, 48201, Detroit, MI, USA
| | - Jing Feng
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
| | - Pan Gu
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
| | - Xiaokun Geng
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, 48201, Detroit, MI, USA
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
| |
Collapse
|
9
|
Xu W, Geng X, Fayyaz AI, Ding Y. The Modulatory Role of Hypothermia in Poststroke Brain Inflammation: Mechanisms and Clinical Implications. Cerebrovasc Dis 2024; 53:776-788. [PMID: 38286123 PMCID: PMC11633906 DOI: 10.1159/000536384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Acute ischemic stroke remains a major contributor to mortality and disability worldwide. The use of hypothermia has emerged as a promising neuroprotective strategy, with proven effectiveness in cardiac arrest and neonatal hypoxic-ischemic injury. SUMMARY This review explores the therapeutic potential of hypothermia in ischemic stroke by examining its impact on poststroke inflammatory responses. We synthesized evidence from basic and clinical studies to illustrate the inhibitory effects of hypothermia on poststroke brain inflammation. The underlying mechanisms include modulation of microglial activation and polarization; downregulation of key inflammatory pathways such as MAPKs, NF-KB, and JAK/STAT; protection of the blood-brain barrier integrity; and reduction of immune cell infiltration into the brain. We also discuss the current limitations of hypothermia treatment in clinical practice and highlight future research directions for optimizing protocols and evaluating its clinical efficacy in stroke patients. KEY MESSAGES Therapeutic hypothermia (TH) has evolved significantly with advancements in medical technologies, especially with the introduction of automated cooling devices, both intravascular and surface based. However, a refined, highly individualized, and effective hypothermia protocol may stand robust against the devastating consequences of ischemic stroke, and we think it should become the future development goal.
Collapse
Affiliation(s)
- Wei Xu
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China,
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China,
| | - Xiaokun Geng
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aminah I Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
10
|
Yu W, Jia M, Guo W, Xu J, Ren C, Li S, Zhao W, Chen J, Duan J, Ma Q, Song H, Ji X. Predicting Futile Recanalization in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy: The Role of White Blood Cell Count to Mean Platelet Volume Ratio. Curr Neurovasc Res 2024; 21:6-14. [PMID: 38141190 DOI: 10.2174/0115672026288143231212051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Approximately half of AIS patients have an unfavorable outcome even after complete reperfusion. White blood cell (WBC) count to mean platelet volume (MPV) ratio (WMR) may be a promising predictive factor for futile recanalization. This study aimed to determine the predictive value of WMR in identifying individuals at higher risk of futile recanalization. METHODS In this retrospective cohort study, 296 patients who achieved complete reperfusion after endovascular treatment (EVT) were included in the analysis. WBC count and MPV were collected at admission. Multivariable logistic regression was used to examine the independent association of the WMR with functional outcomes at three months. Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) analyses were used to compare the accuracy of WMR for predicting futile recanalization. RESULTS The adjusted odds ratios for the fourth quartile of WMR were 3.142 (95% CI 1.405- 7.027, P = 0.005) for unfavorable outcomes at 3 months in comparison with the first quartile. The inclusion of WMR in the traditional model enabled a more accurate prediction of unfavorable outcomes (NRI 0.250, P = 0.031; IDI 0.022, P = 0.017). CONCLUSION Elevated WMR at admission was independently associated with futile recanalization among AIS patients who received EVT and might be useful in identifying futile recanalization.
Collapse
Affiliation(s)
- Wantong Yu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Milan Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Wenting Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jiali Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Song J, Zaidi SAA, He L, Zhang S, Zhou G. Integrative Analysis of Machine Learning and Molecule Docking Simulations for Ischemic Stroke Diagnosis and Therapy. Molecules 2023; 28:7704. [PMID: 38067435 PMCID: PMC10707570 DOI: 10.3390/molecules28237704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Due to the narrow therapeutic window and high mortality of ischemic stroke, it is of great significance to investigate its diagnosis and therapy. We employed weighted gene coexpression network analysis (WGCNA) to ascertain gene modules related to stroke and used the maSigPro R package to seek the time-dependent genes in the progression of stroke. Three machine learning algorithms were further employed to identify the feature genes of stroke. A nomogram model was built and applied to evaluate the stroke patients. We analyzed single-cell RNA sequencing (scRNA-seq) data to discern microglia subclusters in ischemic stroke. The RNA velocity, pseudo time, and gene set enrichment analysis (GSEA) were performed to investigate the relationship of microglia subclusters. Connectivity map (CMap) analysis and molecule docking were used to screen a therapeutic agent for stroke. A nomogram model based on the feature genes showed a clinical net benefit and enabled an accurate evaluation of stroke patients. The RNA velocity and pseudo time analysis showed that microglia subcluster 0 would develop toward subcluster 2 within 24 h from stroke onset. The GSEA showed that the function of microglia subcluster 0 was opposite to that of subcluster 2. AZ_628, which screened from CMap analysis, was found to have lower binding energy with Mmp12, Lgals3, Fam20c, Capg, Pkm2, Sdc4, and Itga5 in microglia subcluster 2 and maybe a therapeutic agent for the poor development of microglia subcluster 2 after stroke. Our study presents a nomogram model for stroke diagnosis and provides a potential molecule agent for stroke therapy.
Collapse
Affiliation(s)
- Jingwei Song
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.A.A.Z.); (L.H.)
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.A.A.Z.); (L.H.)
| | - Liangge He
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.A.A.Z.); (L.H.)
| | - Shuai Zhang
- Brain Research Centre, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.A.A.Z.); (L.H.)
- Lungene Biotech Ltd., Shenzhen 518060, China
- Senotherapeutics Ltd., Hangzhou 311100, China
| |
Collapse
|
12
|
Wang Y, Jun Yun H, Ding Y, Du H, Geng X. Montelukast sodium protects against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization. Brain Res 2023; 1817:148498. [PMID: 37499731 DOI: 10.1016/j.brainres.2023.148498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Neuroinflammation plays an important role in brain injury and repair. Regulation of post-stroke inflammation may be a reasonable strategy to treat ischemic stroke. The present study demonstrates that montelukast sodium protected brain tissue by regulating the post-stroke inflammatory reaction. METHODS Adult male mice underwent distal occlusion of the middle cerebral artery (d-MCAO) surgery, followed by intraperitoneal injection of montelukast sodium or equivalent saline, from day 0-7 after the operation. On the 7th day, Rotarod and adhesive-removal test were performed. M AP2 staining, and Iba1, CD206, and CD16/32 co staining were performed. BV2 microglial cell lines were co-cultured with different concentrations of montelukast sodium with or without lipopolysaccharide (LPS). Real-time polymerase chain reaction (rt-PCR) and enzyme linked immunosorbent assay (ELISA) were used to detect the mRNA expression of M1 and M2 phenotypic microglia markers and the release of cytokines representing from different phenotypes of microglia cells. RESULTS Montelukast sodium prolonged the time that d-MCAO mice remained on the rotating bar, shortened the time to remove the sticker on the opposite claw, and reduced the infarct volume, promoting the transformation of microglial cells/macrophages around the infarct to the M2 phenotype. Montelukast sodium increased the mRNA expression of Arg-1, CD206, TGF-β, and IL-10 in BV2 microglial cell lines stimulated by LPS, while decreased the expression of iNOS, TNF-α, and CD16/32. CONCLUSION Montelukast sodium can protect against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yuchuan Ding
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Huishan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Chen X, He X, Xu F, Xu N, Sharifi NH, Zhang P, Flores JJ, Wu L, He Q, Kanamaru H, Zhu S, Dong S, Han M, Yuan Y, Huang L, Miao L, Zhang JH, Zhou Y, Tang J. Fractalkine Enhances Hematoma Resolution and Improves Neurological Function via CX3CR1/AMPK/PPARγ Pathway After GMH. Stroke 2023; 54:2420-2433. [PMID: 37465997 PMCID: PMC10453335 DOI: 10.1161/strokeaha.123.043005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Hematoma clearance has been a proposed therapeutic strategy for hemorrhagic stroke. This study investigated the impact of CX3CR1 (CX3C chemokine receptor 1) activation mediated by r-FKN (recombinant fractalkine) on hematoma resolution, neuroinflammation, and the underlying mechanisms involving AMPK (AMP-activated protein kinase)/PPARγ (peroxisome proliferator-activated receptor gamma) pathway after experimental germinal matrix hemorrhage (GMH). METHODS A total of 313 postnatal day 7 Sprague Dawley rat pups were used. GMH was induced using bacterial collagenase by a stereotactically guided infusion. r-FKN was administered intranasally at 1, 25, and 49 hours after GMH for short-term neurological evaluation. Long-term neurobehavioral tests (water maze, rotarod, and foot-fault test) were performed 24 to 28 days after GMH with the treatment of r-FKN once daily for 7 days. To elucidate the underlying mechanism, CX3CR1 CRISPR, or selective CX3CR1 inhibitor AZD8797, was administered intracerebroventricularly 24 hours preinduction of GMH. Selective inhibition of AMPK/PPARγ signaling in microglia via intracerebroventricularly delivery of liposome-encapsulated specific AMPK (Lipo-Dorsomorphin), PPARγ (Lipo-GW9662) inhibitor. Western blot, Immunofluorescence staining, Nissl staining, Hemoglobin assay, and ELISA assay were performed. RESULTS The brain expression of FKN and CX3CR1 were elevated after GMH. FKN was expressed on both neurons and microglia, whereas CX3CR1 was mainly expressed on microglia after GMH. Intranasal administration of r-FKN improved the short- and long-term neurobehavioral deficits and promoted M2 microglia polarization, thereby attenuating neuroinflammation and enhancing hematoma clearance, which was accompanied by an increased ratio of p-AMPK (phosphorylation of AMPK)/AMPK, Nrf2 (nuclear factor erythroid 2-related factor 2), PPARγ, CD36 (cluster of differentiation 36), CD163 (hemoglobin scavenger receptor), CD206 (the mannose receptor), and IL (interleukin)-10 expression, and decreased CD68 (cluster of differentiation 68), IL-1β, and TNF (tumor necrosis factor) α expression. The administration of CX3CR1 CRISPR or CX3CR1 inhibitor (AZD8797) abolished the protective effect of FKN. Furthermore, selective inhibition of microglial AMPK/PPARγ signaling abrogated the anti-inflammation effects of r-FKN after GMH. CONCLUSIONS CX3CR1 activation by r-FKN promoted hematoma resolution, attenuated neuroinflammation, and neurological deficits partially through the AMPK/PPARγ signaling pathway, which promoted M1/M2 microglial polarization. Activating CX3CR1 by r-FKN may provide a promising therapeutic approach for treating patients with GMH.
Collapse
Affiliation(s)
- Xionghui Chen
- Department of Emergency Surgery (X.C., F.X.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Xuying He
- Department of Interventional Therapy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China (X.H., N.X.)
| | - Feng Xu
- Department of Emergency Surgery (X.C., F.X.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Ningbo Xu
- Department of Interventional Therapy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China (X.H., N.X.)
| | - Nona Hashem Sharifi
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Pengjie Zhang
- Institute for Fetology (P.Z.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jerry J. Flores
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Lei Wu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Qiuguang He
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Mingyang Han
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Ye Yuan
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Lei Huang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Liyan Miao
- Department of Pharmacy (L.M), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
- Department of Neurosurgery, Loma Linda University School of Medicine, CA (J.H.Z.)
| | - Youxin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratory (Y.Z.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| |
Collapse
|
14
|
Timmerman R, Zuiderwijk-Sick EA, Baron W, Bajramovic JJ. In silico-in vitro modeling to uncover cues involved in establishing microglia identity: TGF-β3 and laminin can drive microglia signature gene expression. Front Cell Neurosci 2023; 17:1178504. [PMID: 37435046 PMCID: PMC10330817 DOI: 10.3389/fncel.2023.1178504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) and play a key role in CNS development, homeostasis, and disease. Good in vitro models are indispensable to study their cellular biology, and although much progress has been made, in vitro cultures of primary microglia still only partially recapitulate the transcriptome of in vivo microglia. In this study, we explored a combination of in silico and in vitro methodologies to gain insight into cues that are involved in the induction or maintenance of the ex vivo microglia reference transcriptome. First, we used the in silico tool NicheNet to investigate which (CNS-derived) cues could underlie the differences between the transcriptomes of ex vivo and in vitro microglia. Modeling on basis of gene products that were found to be upregulated in vitro, predicted that high mobility group box 2 (HMGB2)- and interleukin (IL)-1β-associated signaling pathways were driving their expression. Modeling on basis of gene products that were found to be downregulated in vitro, did not lead to predictions on the involvement of specific signaling pathways. This is consistent with the idea that in vivo microenvironmental cues that determine microglial identity are for most part of inhibitory nature. In a second approach, primary microglia were exposed to conditioned medium from different CNS cell types. Conditioned medium from spheres composed of microglia, oligodendrocytes, and radial glia, increased the mRNA expression levels of the microglia signature gene P2RY12. NicheNet analyses of ligands expressed by oligodendrocytes and radial glia predicted transforming growth factor beta 3 (TGF-β3) and LAMA2 as drivers of microglia signature gene expression. In a third approach, we exposed microglia to TGF-β3 and laminin. In vitro exposure to TGF-β3 increased the mRNA expression levels of the microglia signature gene TREM2. Microglia cultured on laminin-coated substrates were characterized by reduced mRNA expression levels of extracellular matrix-associated genes MMP3 and MMP7, and by increased mRNA expression levels of the microglia signature genes GPR34 and P2RY13. Together, our results suggest to explore inhibition of HMGB2- and IL-1β-associated pathways in in vitro microglia. In addition, exposure to TGF-β3 and cultivation on laminin-coated substrates are suggested as potential improvements to current in vitro microglia culture protocols.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jeffrey John Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
- 3Rs Centre Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Duan H, Geng X, Ding Y. Hepatic responses following acute ischemic stroke: A clinical research update. Brain Circ 2023; 9:57-60. [PMID: 37576577 PMCID: PMC10419733 DOI: 10.4103/bc.bc_31_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 08/15/2023] Open
Abstract
Acute ischemic stroke (AIS) not only affects the brain but also has significant implications for peripheral organs through neuroendocrine regulation. This reciprocal relationship influences overall brain function and stroke prognosis. Recent research has highlighted the importance of poststroke liver changes in determining patient outcomes. In our previous study, we investigated the relationship between stroke and liver function. Our findings revealed that the prognostic impact of stress-induced hyperglycemia in patients undergoing acute endovascular treatment for acute large vessel occlusion is closely related to their preexisting diabetes status. We found that the liver contributes to stress hyperglycemia after AIS by increasing hepatic gluconeogenesis and decreasing hepatic insulin sensitivity. These changes are detrimental to the brain, particularly in patients without diabetes. Furthermore, we examined the role of bilirubin, a byproduct of hepatic hemoglobin metabolism, in stroke pathophysiology. Our results demonstrated that blood bilirubin levels can serve as predictors of stroke severity and may hold therapeutic potential for reducing oxidative stress-induced stroke injury in patients with mild stroke. These results underscore the potential role of the liver in the oxidative stress response following AIS, paving the way for further investigation into liver-targeted therapeutic strategies to improve stroke prognosis and patient outcomes.
Collapse
Affiliation(s)
- Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Ke X, Deng M, Wu Z, Yu H, Yu D, Li H, Lu Y, Shu K, Pei L. miR-34b-3p Inhibition of eIF4E Causes Post-stroke Depression in Adult Mice. Neurosci Bull 2023; 39:194-212. [PMID: 35802246 PMCID: PMC9905405 DOI: 10.1007/s12264-022-00898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Post-stroke depression (PSD) is a serious and common complication of stroke, which seriously affects the rehabilitation of stroke patients. To date, the pathogenesis of PSD is unclear and effective treatments remain unavailable. Here, we established a mouse model of PSD through photothrombosis-induced focal ischemia. By using a combination of brain imaging, transcriptome sequencing, and bioinformatics analysis, we found that the hippocampus of PSD mice had a significantly lower metabolic level than other brain regions. RNA sequencing revealed a significant reduction of miR34b-3p, which was expressed in hippocampal neurons and inhibited the translation of eukaryotic translation initiation factor 4E (eIF4E). Furthermore, silencing eIF4E inactivated microglia, inhibited neuroinflammation, and abolished the depression-like behaviors in PSD mice. Together, our data demonstrated that insufficient miR34b-3p after stroke cannot inhibit eIF4E translation, which causes PSD by the activation of microglia in the hippocampus. Therefore, miR34b-3p and eIF4E may serve as potential therapeutic targets for the treatment of PSD.
Collapse
Affiliation(s)
- Xiao Ke
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Manfei Deng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuoze Wu
- Department of Pathophysiology, Basic Medical School, North Sichuan Medical College, Nanchong, 637100, China
| | - Hongyan Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dian Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Duan H, Yun HJ, Rajah GB, Che F, Wang Y, Liu J, Tong Y, Cheng Z, Cai L, Geng X, Ding Y. Large vessel occlusion stroke outcomes in diabetic vs. non-diabetic patients with acute stress hyperglycemia. Front Neurosci 2023; 17:1073924. [PMID: 36777640 PMCID: PMC9911880 DOI: 10.3389/fnins.2023.1073924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study assesses whether stress-induced hyperglycemia is a predictor of poor outcome at 3 months for patients with acute ischemic stroke (AIS) treated by endovascular treatment (EVT) and impacted by their previous blood glucose status. METHODS This retrospective study collected data from 576 patients with AIS due to large vessel occlusion (LVO) treated by EVT from March 2019 to June 2022. The sample was composed of 230 and 346 patients with and without diabetes mellitus (DM), respectively, based on their premorbid diabetic status. Prognosis was assessed with modified Rankin Scale (mRS) at 3-month after AIS. Poor prognosis was defined as mRS>2. Stress-induced hyperglycemia was assessed by fasting glucose-to-glycated hemoglobin ratio (GAR). Each group was stratified into four groups by quartiles of GAR (Q1-Q4). Binary logistic regression analysis was used to identify relationship between different GAR quartiles and clinical outcome after EVT. RESULTS In DM group, a poor prognosis was seen in 122 (53%) patients and GAR level was 1.27 ± 0.44. These variables were higher than non-DM group and the differences were statistically significant (p < 0.05, respectively). Patients with severe stress-induced hyperglycemia demonstrated greater incidence of 3-month poor prognosis (DM: Q1, 39.7%; Q2, 45.6%; Q3, 58.6%; Q4, 68.4%; p = 0.009. Non-DM: Q1, 31%; Q2, 32.6%; Q3, 42.5%; Q4, 64%; p < 0.001). However, the highest quartile of GAR was independently associated with poor prognosis at 3 months (OR 3.39, 95% CI 1.66-6.96, p = 0.001), compared to the lowest quartile in non-DM patients after logistic regression. This association was not observed from DM patients. CONCLUSION The outcome of patients with acute LVO stroke treated with EVT appears to be influenced by premorbid diabetes status. However, the poor prognosis at 3-month in patients with DM is not independently correlated with stress-induced hyperglycemia. This could be due to the long-term damage of persistent hyperglycemia and diabetic patients' adaptive response to stress following acute ischemic damage to the brain.
Collapse
Affiliation(s)
- Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ho Jun Yun
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Gary Benjamin Rajah
- Department of Neurosurgery, Munson Healthcare, Munson Medical Center, Traverse City, MI, United States
| | - Fengli Che
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanling Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jing Liu
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhe Cheng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
18
|
Vigil TM, Frieler RA, Kilpatrick KL, Wang MM, Mortensen RM. Aconitate decarboxylase 1 suppresses cerebral ischemia-reperfusion injury in mice. Exp Neurol 2022; 347:113902. [PMID: 34699789 PMCID: PMC8642300 DOI: 10.1016/j.expneurol.2021.113902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Immunometabolic changes have been shown to be a key factor in determining the immune cell response in disease models. The immunometabolite, itaconate, is produced by aconitate decarboxylase 1 (Acod1) and has been shown to inhibit inflammatory signaling in macrophages. In this study, we explore the role of Acod1 and itaconate in cerebral ischemia/reperfusion injury. We assessed the effect of global Acod1 knockout (Acod1KO, loss of endogenous itaconate) in a transient ischemia/reperfusion occlusion stroke model. Mice received a transient 90-min middle cerebral artery occlusion followed with 24-h of reperfusion. Stroke lesion volume was measured by MRI analysis and brain tissues were collected for mRNA gene expression analysis. Acod1KO mice showed significant increases in lesion volume compared to control mice, however no differences in pro-inflammatory mRNA levels were observed. Cell specific knockout of Acod1 in myeloid cells (LysM-Cre), microglia cells (CX3CR1, Cre-ERT2) and Endothelial cells (Cdh5(PAC), Cre-ERT2) did not reproduce lesion volume changes seen in global Acod1KO, indicating that circulating myeloid cells, resident microglia and endothelial cell populations are not the primary contributors to the observed phenotype. These effects however do not appear to be driven by changes in inflammatory gene regulation. These data suggests that endogenous Acod1 is protective in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Thomas M Vigil
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Ryan A Frieler
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - KiAundra L Kilpatrick
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Michael M Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| |
Collapse
|
19
|
Geng X, Ding Y, DeGracia D, Ding Y. Perspectives on effect of spleen in ischemic stroke. Brain Circ 2022; 8:117-120. [PMID: 36267438 PMCID: PMC9578309 DOI: 10.4103/bc.bc_53_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Despite decades of research, stroke therapies are limited to recanalization therapies that can only be used on <10% of stroke patients; the vast majority of stroke patients cannot be treated by these methods. Even if recanalization is successful, the outcome is often poor due to subsequent reperfusion injury. A major damage mechanism operating in stroke is inflammatory injury due to excessive pro-inflammatory cascades. Many studies have shown that, after stroke, splenic inflammatory cells, including neutrophils, monocytes/macrophages, and lymphocytes, are released and infiltrate the brain, heightening brain inflammation, and exacerbating ischemia/reperfusion injury. Clinical studies have observed spleen contraction in acute stroke patients where functional outcome improved with the gradual recovery of spleen volume. These observations are supported by stroke animal studies that have used splenectomy- or radiation-induced inhibition of spleen function to show spleen volume decrease during the acute phase of middle cerebral artery occlusion, and transfer of splenocytes to stroke-injured brain areas. Thus, activation and release of splenic cells are upstream of excessive brain inflammation in stroke. The development of reversible means of regulating splenic activity offers a therapeutic target and potential clinical treatment for decreasing brain inflammation and improving stroke outcomes.
Collapse
|
20
|
Geng X, Duan H, Kohls W, Ilagan R, Ding Y. Mini review: Hyperglycemia in ischemic stroke. ENVIRONMENTAL DISEASE 2022. [DOI: 10.4103/ed.ed_26_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
21
|
Integrated Multiomics Analysis Identifies a Novel Biomarker Associated with Prognosis in Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2510847. [PMID: 36226158 PMCID: PMC8691985 DOI: 10.1155/2021/2510847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
Existing treatments for intracerebral hemorrhage (ICH) are unable to satisfactorily prevent development of secondary brain injury after ICH and multiple pathological mechanisms are involved in the development of the injury. In this study, we aimed to identify novel genes and proteins and integrated their molecular alternations to reveal key network modules involved in ICH pathology. A total of 30 C57BL/6 male mice were used for this study. The collagenase model of ICH was employed, 3 days after ICH animals were tested neurological. After it, animals were euthanized and perihematomal brain tissues were collected for transcriptome and TMT labeling-based quantitative proteome analyses. Protein-protein interaction (PPI) network, Gene Set Enrichment Analysis (GSEA), and regularized Canonical Correlation Analysis (rCCA) were performed to integrated multiomics data. For validation of hub genes and proteins, qRT-PCR and Western blot were carried out. The candidate biomarkers were further measured by ELISA in the plasma of ICH patients and the controls. A total of 2218 differentially expressed genes (DEGs) and 353 differentially expressed proteins (DEPs) between the ICH model group and control group were identified. GSEA revealed that immune-related gene sets were prominently upregulated and significantly enriched in pathways of inflammasome complex, negative regulation of interleukin-12 production, and pyroptosis during the ICH process. The rCCA network presented two highly connective clusters which were involved in the sphingolipid catabolic process and inflammatory response. Among ten hub genes screened out by integrative analysis, significantly upregulated Itgb2, Serpina3n, and Ctss were validated in the ICH group by qRT-PCR and Western blot. Plasma levels of human SERPINA3 (homologue of murine Serpina3n) were elevated in ICH patients compared with the healthy controls (SERPINA3: 13.3 ng/mL vs. 11.2 ng/mL, p = 0.015). Within the ICH group, higher plasma SERPINA3 levels with a predictive threshold of 14.31 ng/mL (sensitivity = 64.3%; specificity = 80.8%; AUC = 0.742, 95% CI: 0.567-0.916) were highly associated with poor outcome (mRS scores 4-6). Taken together, the results of our study exhibited molecular changes related to ICH-induced brain injury by multidimensional analysis and effectively identified three biomarker candidates in a mouse ICH model, as well as pointed out that Serpina3n/SERPINA3 was a potential biomarker associated with poor functional outcome in ICH patients.
Collapse
|