1
|
Robby AI, Jiang S, Jin EJ, Park SY. Semiconducting polymer dot-based wireless electrochemical aptasensor for detection of aging-related TGF-β1 and IL-6. Anal Chim Acta 2025; 1360:344139. [PMID: 40409909 DOI: 10.1016/j.aca.2025.344139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/01/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND The senescence-associated secretory phenotype (SASP) is closely linked to aging by promoting inflammation and tissue degradation. Sensing SASP is crucial for early detection of and intervention in age-related diseases to enhance therapeutic outcomes. Herein, SASP-selective sensors (transforming growth factor [TGF]-β1 and interleukin [IL]-6 probes) were designed by utilizing TGF-β1/IL-6 aptamers-functionalized copper-immobilized polymer dots that promoted specific binding between TGF-β1/IL-6 aptamers on the probe surface with aging factors (TGF-β1 and IL-6). RESULTS The selective binding was reflected by changes in the conductivity of the probes. The TGF-β1 and IL-6 probes showed high sensitivity towards TGF-β1 and IL-6, with limits of detection of 193.09 pg/mL for the TGF-β1 (R2 = 0.9989) and 16.49 pg/mL (R2 = 0.9998) for IL-6 probes. In vitro study using senescent cells confirmed that the probes could selectively detect TGF-β1 and IL-6, indicated by increased resistance with longer incubation times (TGF-β172h = 2.775 MΩ, IL-672h = 2.401 MΩ). Furthermore, the TGF-β1 and IL-6 probes exhibited excellent detection performance in in vivo samples from aging mouse models when monitoring the levels of TGF-β1 and IL-6 at different times after lenti soup injection and at different mouse ages (6-20 months). Additionally, the electrical signals generated during sensing can be displayed on a smartphone via a wireless sensing system. SIGNIFICANCE TGF-β1 and IL-6 probes provide a sensitive, specific and accessible diagnostic platform for senescence aging factors monitoring, which are expected to be an essential tool that transforms the analysis of aging and age-related diseases.
Collapse
Affiliation(s)
- Akhmad Irhas Robby
- Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Songling Jiang
- Integrated Omics Institute, Wonkwang University, Iksan, Chungbuk, 54538, Republic of Korea
| | - Eun-Jung Jin
- Integrated Omics Institute, Wonkwang University, Iksan, Chungbuk, 54538, Republic of Korea; Department of Biomedical Materials Science, Graduate School of JABA, Wonkwang University, Iksan, Jeonbuk State, 54538, Republic of Korea.
| | - Sung Young Park
- Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
2
|
Ren H, Zhao C, Zhou L, Ke Q, Chen Y, Chen Z, He J, Chen D, He X, Quan M, Liu L, Li R, Pan H. Licochalcone B attenuates pulmonary fibrosis via inhibiting ZBP1-dependent PANoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119940. [PMID: 40350052 DOI: 10.1016/j.jep.2025.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a chronic, progressive, and frequently fatal interstitial lung disease. Glycyrrhiza uralensis Fisch, a traditional Chinese medicine (TCM) herb, has long been used for respiratory disorders due to its anti-inflammatory and expectorant properties. Licochalcone B (LCB), a chalcone derivative isolated from Glycyrrhiza uralensis Fisch, shows therapeutic potential in airway inflammation and alveolar injury, making it a promising candidate for fibrotic lung diseases. AIM OF THE STUDY This study evaluates the anti-fibrotic efficacy of LCB against PF progression and elucidates its potential molecular mechanisms. MATERIALS AND METHODS PF was induced in mice by intratracheal administration of bleomycin (BLM, 1.25 mg/kg). After disease model induction, the mice were treated with LCB (3.13 or 6.25 mg/kg per day) or pirfenidone (PFD, 300 mg/kg per day) for 14 days. Histopathological changes, collagen deposition, fibrosis-related factor levels, and PANoptotic marker protein in lung tissue were evaluated. Two TGF-β1-induced PF cell models (NIH-3T3 and BEAS-2B) were utilized to simulate fibroblast activation and epithelial-mesenchymal transition processes. The effects of LCB intervention on cell proliferation, migration, and the expression of vimentin, fibronectin (FN), and type I collagen (COL1A1) were assessed through wound healing assays, colony formation assays, Western blotting (WB), and immunocytochemistry. RESULTS LCB significantly alleviates BLM-induced pulmonary inflammation and fibrosis, reduces collagen deposition in lung tissues of fibrotic mice, and downregulates FN expression while upregulating E-cadherin (E-Cad) levels. Immunohistochemical analysis revealed that LCB downregulates the expression of ZBP1 and apoptotic marker proteins in the lung tissues of PF mice. Additionally, LCB inhibits TGF-β1-induced abnormal migration of BEAS-2B cells and aberrant proliferation of NIH/3T3 cells while suppressing the expression of fibrosis-related factors, including COL1A1, FN, and α-smooth muscle actin (α-SMA). Our findings demonstrate that ZBP1 overexpression in epithelial cells attenuates the anti-fibrotic efficacy of LCB through the activation of PANoptosis and identify the inhibition of IRF1 binding to the ZBP1 promoter as a pivotal mechanism underlying the therapeutic potential of LCB in PF. CONCLUSION This study found that LCB exerts pleiotropic antifibrotic effects by targeting ZBP1-mediated PANoptosis, thereby identifying ZBP1 as a critical therapeutic target for PF and highlighting LCB's potential in anti-fibrotic therapy.
Collapse
Affiliation(s)
- Hong Ren
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Caiping Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Lvzhou Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Qingming Ke
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Yulian Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Zhengmin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Jiayan He
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Danli Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Xizi He
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Minqi Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Chinese Medicine Guangdong Laboratory/ Hengqin Laboratory, Hengqin, 519031, Guangdong, China.
| | - Runze Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Chinese Medicine Guangdong Laboratory/ Hengqin Laboratory, Hengqin, 519031, Guangdong, China.
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Chinese Medicine Guangdong Laboratory/ Hengqin Laboratory, Hengqin, 519031, Guangdong, China.
| |
Collapse
|
3
|
Shang RY, Yang JC, Hu WG, Xiao R, Hu DS, Lin ZC, Li S, Wang NN, Zheng Y, Liu ZH, Chen YX, Wang MJ, Wang C, Jiang B, Lin GA, Li XL, Shang XZ, Yan TT, Luo GX, He WF. Artesunate attenuates skin hypertrophic scar formation by inhibiting fibroblast activation and EndMT of vascular endothelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156498. [PMID: 40055124 DOI: 10.1016/j.phymed.2025.156498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 03/25/2025]
Abstract
Background Hypertrophic scarring is an abnormal condition involving excessive fibroblast activation, aberrant extracellular matrix deposition, and persistent inflammation. Current treatments have limited efficacy and potential adverse effects, necessitating the development of new approaches. Purpose In this study, we investigated the effects of artesunate (ART) on hypertrophic scar (HS) formation and explored the underlying cellular and molecular mechanisms. Methods ART was local injected in rabbit ear HS model to study its effect on HS formation. Cell viability was assessed using the CCK8 assay. Cell proliferation and targeted protein expression were detected by flow cytometry, immunofluorescence and immunohistochemistry staining. Scratch assays were performed to evaluate cell migration, while western blotting analysis was used to detect changes in protein expression. Results Local injection of ART significantly reduced scar protrusion and thickness, improved the immune microenvironment, and attenuated collagen deposition. ART suppressed fibroblast activation, endothelial-mesenchymal transition (EndMT), and angiogenesis in HS tissues. In vitro, ART inhibited TGF-β1-triggered fibroblasts activation and EndMT of human umbilical vein endothelial cells. Mechanistically, ART attenuated the activation of PI3K/AKT/mTOR and TGF-β/Smad pathways in both fibroblasts and human umbilical vein endothelial cells. Notably, the mTOR activator 740 Y-P reversed the fibrosis-inhibiting effects of ART in vitro and in vivo, highlighting the critical and intriguing role of PI3K/AKT/mTOR signaling in mediating the effects of ART. Furthermore, we first uncovered a crosstalk between PI3K/AKT/mTOR and TGF-β/Smad pathways, wherein PI3K/AKT/mTOR inactivation by ART partially contributed to the inhibition of TGF-β/Smad signaling. Conclusion In addition to fibroblast activation, our findings first demonstrate that ART effectively mitigates HS formation by modulating the immune microenvironment and inhibiting EndMT and fibroblast activation. These results provide new perspectives into the development of HS and underscore the promising potential of ART as a therapeutic option for debilitating condition.
Collapse
Affiliation(s)
- Ruo-Yu Shang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Wound Repair and Tissue Regeneration, Chongqing 400038, China
| | - Jia-Cai Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Wound Repair and Tissue Regeneration, Chongqing 400038, China
| | - Wen-Gang Hu
- Department of Plastic and Burn Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400038, China
| | - Rong Xiao
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Dong-Sheng Hu
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Zhi-Chen Lin
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Song Li
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Nan-Nan Wang
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Yin Zheng
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Zhi-Hui Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Wound Repair and Tissue Regeneration, Chongqing 400038, China
| | - Yun-Xia Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Wound Repair and Tissue Regeneration, Chongqing 400038, China
| | - Min-Jie Wang
- Military Service Office, the 988th Hospital of the Joint Logistic Support Force, Zheng Zhou 450007, China
| | - Chao Wang
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Bo Jiang
- Department of pathology, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Guo-An Lin
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China
| | - Xiao-Liang Li
- Department of Burns, Zhengzhou First People's Hospital, Zhengzhou 450004, China
| | - Xin-Zhi Shang
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China.
| | - Tian-Tian Yan
- Military Burn Center, the 990th Hospital of the Joint Logistic Support Force, Zhu Madian 463000, China.
| | - Gao-Xing Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Wound Repair and Tissue Regeneration, Chongqing 400038, China.
| | - Wei-Feng He
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Wound Repair and Tissue Regeneration, Chongqing 400038, China.
| |
Collapse
|
4
|
Xu Y, Zheng H, Slabu I, Liehn EA, Rusu M. Vitamin C in Cardiovascular Disease: From Molecular Mechanisms to Clinical Evidence and Therapeutic Applications. Antioxidants (Basel) 2025; 14:506. [PMID: 40427388 PMCID: PMC12108419 DOI: 10.3390/antiox14050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Vitamin C, also known as ascorbic acid, is an essential nutrient that humans cannot synthesize, making its intake crucial for health. Discovered nearly a century ago, vitamin C is widely recognized for its ability to prevent scurvy and has become one of the most commonly used supplements. Beyond its antioxidant activity, vitamin C is pivotal in regulating lipid metabolism, promoting angiogenesis, enhancing collagen synthesis, modulating remodeling, and stabilizing the extracellular matrix. While preclinical studies have shown promising results, clinical trials have yielded inconsistent findings, due to suboptimal study design, results misinterpretation, and misleading conclusions. This review provides a holistic overview of existing evidence on the pleiotropic role of vitamin C in cardiovascular diseases, identifying both the strengths and limitations of current research and highlighting gaps in understandings in vitamin C's underlying mechanisms. By integrating molecular insights with clinical data and evaluating the pleiotropic role of vitamin C in cardiovascular disease management and prevention, this review aims to guide future research toward personalized, evidence-based therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Yichen Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China;
| | - Huabo Zheng
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg, Germany
| | - Elisa Anamaria Liehn
- Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg, Germany
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
- Center for Innovation and eHealth, University of Medicine and Pharmacy Carol Davila, Pitar Mos 20, 010451 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg, Germany
| |
Collapse
|
5
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Cheng S, Wang H. Aging and atrial fibrillation: Role of telomere dysfunction. Chin Med J (Engl) 2025:00029330-990000000-01507. [PMID: 40176558 DOI: 10.1097/cm9.0000000000003550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 04/04/2025] Open
Affiliation(s)
- Sijun Cheng
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, China Medical University, Shenyang, Liaoning 110000, China
| | | |
Collapse
|
7
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
8
|
Jiang Y, Wen X, Jian X, Chen Q, Li Y. Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways. Int J Mol Med 2025; 55:45. [PMID: 39791203 PMCID: PMC11758894 DOI: 10.3892/ijmm.2025.5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis. The aim of the present study was to explore the effects of klotho on subretinal fibrosis induced by laser photocoagulation in mice and EMT induced by TGF‑β1 in RPE cells and the underlying molecular mechanisms. In vitro, klotho overexpression or knockdown was performed in ARPE‑19 cells (adult retinal Pigment Epithelial‑19), then TGF‑β1 treatment was applied. Using western blotting, expression of epithelial markers (zonula occludens‑1), mesenchymal signs (α‑smooth muscle actin, α‑SMA, N‑cadherin, N‑cad and collagen I), and the ERK1/2 and Wnt/β‑catenin signaling pathways were assessed. The proliferative ability of ARPE‑19 cells was examined by CCK‑8 and EdU test, and the migratory ability was examined by wound healing and Transwell assays. Furthermore, to explore the underlying molecular pathway of klotho overexpression, RNA‑sequencing (seq) was performed. In vivo, photocoagulation was used to induce subretinal fibrosis in mice, which occurs as a result of choroidal neovascularization (CNV), then recombinant mouse klotho protein was administered intravitreally. Upregulation of epithelial and downregulation of mesenchymal markers demonstrated that klotho overexpression prevented TGF‑β1‑induced EMT; klotho knockdown resulted in the opposite effects. Additionally, klotho overexpression suppressed cell proliferation and migration and attenuated ERK1/2 and Wnt/β‑catenin signaling activated by TGF‑β1. RNA‑seq results demonstrated that several signaling pathways, including cellular senescence and the TNF signaling pathway, were associated with anti‑fibrotic effects of klotho overexpression. In vivo, subretinal fibrotic areas were attenuated following klotho treatment in laser‑induced CNV lesions, as illustrated by immunofluorescence and Masson staining of the mouse eyes. Western blotting results that the protein levels of mesenchymal markers were significantly downregulated and those of epithelial markers were upregulated. In summary, the present study suggested that klotho may have therapeutic value in management of fibrotic vitreoretinal disorders such as subretinal fibrosis.
Collapse
Affiliation(s)
| | | | - Xiaoyu Jian
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qianbo Chen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
9
|
Pei Z, Fan J, Tang M, Li Y. Ferroptosis: A New Strategy for the Treatment of Fibrotic Diseases. Adv Biol (Weinh) 2025; 9:e2400383. [PMID: 39377183 DOI: 10.1002/adbi.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.
Collapse
Affiliation(s)
- Zhuo Pei
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, 110044, China
| | - Maolin Tang
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
10
|
Lu A, Sikes KJ, Guo P, Huard M, Green S, Santangelo K, Singer J, Groesbeck A, Tashman S, Narkar VA, Huard J. Muscle-specific ERRγ activation mitigates muscle atrophy after ACL injury. FASEB J 2025; 39:e70409. [PMID: 39964243 DOI: 10.1096/fj.202402021r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 05/10/2025]
Abstract
Anterior cruciate ligament (ACL) injury adversely affects skeletal muscle, leading to muscle atrophy and weakness, significantly impacting clinical outcomes. This study aimed to determine if estrogen-related receptor gamma (ERRγ) overexpression in skeletal muscle could mitigate muscle atrophy after ACL injury. An animal model with selective overexpression of ERRγ in skeletal muscle (ERR-gamma transgenic mice, TG) and WT control mice were used for this study. All the mice received a mechanical ACL rupture and were euthanized at 4- and 8-week post-injury. Muscle histology, atrophy, and function were evaluated and compared between the TG and WT mice. Muscle-specific ERRγ activation in TG mice demonstrated a reduction in muscle fiber atrophy, which consequently ameliorated muscle function loss post-ACL rupture. Less fibrogenic cellular expansion and muscle fibrosis were observed after ACL injury in TG mice compared to WT mice. Both male and female TG mice can maintain their muscle function 4 weeks after ACL rupture with the muscle function of female TG mice declining 8 weeks post-injury. In vivo results revealed that ERRγ activation decreased fibrogenic factors, P65, and myostatin expression, prevented the functional loss of muscle progenitor cells (MPCs), and increased CD31 and VEGF expression. These results suggest that overexpression ERRγ in skeletal muscle has a beneficial effect in preventing muscle atrophy and fibrosis after ACL rupture. This study's results will help to develop a novel rehabilitation approach that can significantly improve outcomes after ACL injury.
Collapse
Affiliation(s)
- Aiping Lu
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ping Guo
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Matthieu Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Shelbi Green
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Kelly Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jacob Singer
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Ashley Groesbeck
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Scott Tashman
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Vihang A Narkar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
11
|
Yang Y, Li L, Fei J, Li Z. C2C12 myoblasts differentiate into myofibroblasts via the TGF-β1 signaling pathway mediated by Fibulin2. Gene 2025; 936:149048. [PMID: 39490650 DOI: 10.1016/j.gene.2024.149048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Myoblasts play a critical role in the regeneration of skeletal muscle following injury. It has been reported that local elevation of transforming growth factor-β1 (TGF-β1) after skeletal muscle injury induces differentiation of myoblasts into myofibroblasts. However, the mechanisms underlying this differentiation process remain incompletely understood. In this study, we found that Fibulin2 expression significantly increases in myoblasts in response to TGF-β1 stimulation. Elevated Fibulin2 levels enhance the expression of fibrotic markers. Conversely, downregulation of Fibulin2 in myoblasts inhibits the upregulation of fibrotic markers induced by TGF-β1 stimulation. Extracellular secretion of Fibulin2 activates the TGF-β1-Smad2 pathway, thereby promoting the upregulation of fibrotic markers. Hence, Fibulin2 and TGF-β1 form a positive feedback loop that facilitates differentiation of myoblasts into myofibroblasts.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Fei
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing , PR China.
| | - Zhong Li
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
12
|
Franca CM, Lima Verde ME, Silva-Sousa AC, Mansoorifar A, Athirasala A, Subbiah R, Tahayeri A, Sousa M, Fraga MA, Visalakshan RM, Doe A, Beadle K, Finley M, Dimitriadis E, Bays J, Uroz M, Yamada KM, Chen C, Bertassoni LE. Perivascular cells function as key mediators of mechanical and structural changes in vascular capillaries. SCIENCE ADVANCES 2025; 11:eadp3789. [PMID: 39792671 PMCID: PMC11721577 DOI: 10.1126/sciadv.adp3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM. Capillaries engineered in altered fibrotic collagen had abnormal migration of perivascular cells, reduced pericyte differentiation, increased leakage, and higher regulation of inflammatory/remodeling genes, all regulated via NOTCH3, a known mediator of endothelial-perivascular cell communication. Capillaries engineered either with endothelial cells alone or with perivascular cells silenced for NOTCH3 expression showed a minimal response to ECM alterations. These findings reveal a previously unknown mechanism of vascular response to changes in the ECM in health and disease.
Collapse
Affiliation(s)
- Cristiane M. Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Maria Elisa Lima Verde
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Alice Correa Silva-Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Amin Mansoorifar
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Avathamsa Athirasala
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Ramesh Subbiah
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Anthony Tahayeri
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Mauricio Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - May Anny Fraga
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
- Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, SP 13414-230, Brazil
| | - Rahul M. Visalakshan
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
| | - Aaron Doe
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Keith Beadle
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - McKenna Finley
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Emilios Dimitriadis
- Trans-NIH Shared Resource for Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD 20892, USA
| | - Jennifer Bays
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Marina Uroz
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | | | - Christopher Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Luiz E. Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, OHSU, Portland, OR 97201, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97201, USA
| |
Collapse
|
13
|
Feng Y, Zhang X, Li J, Fu S, Xu W, Liu J, Yang Y, Chen T, Zhao Y, Li D, Zhang M, He Y. Ultra-small quercetin-based nanotherapeutics ameliorate acute liver failure by combatting inflammation/cellular senescence cycle. Theranostics 2025; 15:1035-1056. [PMID: 39776808 PMCID: PMC11700872 DOI: 10.7150/thno.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Acute liver failure (ALF) is marked by a substantial generation of reactive oxygen species (ROS), which can induce both cellular senescence and a pronounced inflammatory response. Senescent cells secrete factors collectively termed the senescence-associated secretory phenotype (SASP), which exacerbate inflammation, while inflammation can reciprocally promote cellular senescence. Quercetin (Que), recognized for its ROS-scavenging capabilities, holds the potential for anti-inflammatory and anti-senescent effects. However, its extremely low aqueous solubility constrains its clinical efficacy in treating inflammation. Methods: We employed a simple and stable coordination method to synthesize ultra-small quercetin-Fe nanoparticles (QFN) by complexing quercetin with iron ions. The ROS-scavenging, anti-inflammatory, and anti-senescent effects of QFN were evaluated in vitro. A lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALF mice model was used to investigate the therapeutic effects of QFN in vivo, and transcriptomic analysis was conducted to elucidate the mechanisms underlying QFN-mediated hepatoprotection. Results: Our findings demonstrate that QFN possesses remarkable water solubility and highly efficient ROS-scavenging properties. In vitro, QFN effectively inhibits macrophage-mediated inflammation and mitigates hepatocyte senescence. In vivo, QFN significantly attenuates LPS/D-GalN-induced ALF by protecting against macrophage inflammation and cellular senescence, thereby disrupting the self-perpetuating cycle of inflammation and aging. Moreover, its potent ROS scavenging capacity not only suppresses cellular apoptosis but also facilitates liver regeneration. Transcriptomic analyses further reveal that QFN exerts its protective effects through the modulation of key pathways involved in cellular senescence and inflammation. Conclusions: In summary, our study characterizes QFN as a potent ROS-scavenging modulator that exhibits both anti-inflammatory and anti-senescent properties, effectively disrupting the detrimental feedback loop between inflammation and cellular senescence. QFN holds considerable potential as a therapeutic agent for the treatment of ALF and other pathologies associated with inflammation and aging.
Collapse
Affiliation(s)
- Yali Feng
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Xiaoli Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Juan Li
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Shan Fu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Weicheng Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Jinfeng Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Yuan Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Tianyan Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Yingren Zhao
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Dongmin Li
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| |
Collapse
|
14
|
Yin Y, Tang Q, Yang J, Gui S, Zhang Y, Shen Y, Zhou X, Yu S, Chen G, Sun J, Han Z, Zhang L, Chen L. Endothelial BMAL1 decline during aging leads to bone loss by destabilizing extracellular fibrillin-1. J Clin Invest 2024; 134:e176660. [PMID: 39680455 DOI: 10.1172/jci176660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2024] [Indexed: 12/18/2024] Open
Abstract
The occurrence of aging is intricately associated with alterations in circadian rhythms that coincide with stem cell exhaustion. Nonetheless, the extent to which the circadian system governs skeletal aging remains inadequately understood. Here, we noticed that skeletal aging in male mice was accompanied by a decline in a core circadian protein, BMAL1, especially in bone marrow endothelial cells (ECs). Using male mice with endothelial KO of aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), we ascertained that endothelial BMAL1 in bone played a crucial role in ensuring the stability of an extracellular structural component, fibrillin-1 (FBN1), through regulation of the equilibrium between the extracellular matrix (ECM) proteases thrombospondin type 1 domain-containing protein 4 (THSD4) and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which promote FBN1 assembly and breakdown, respectively. The decline of endothelial BMAL1 during aging prompted excessive breakdown of FBN1, leading to persistent activation of TGF-β/SMAD3 signaling and exhaustion of bone marrow mesenchymal stem cells. Meanwhile, the free TGF-β could promote osteoclast formation. Further analysis revealed that activation of ADAMTS4 in ECs lacking BMAL1 was stimulated by TGF-β/SMAD3 signaling through an ECM-positive feedback mechanism, whereas THSD4 was under direct transcriptional control by endothelial BMAL1. Our investigation has elucidated the etiology of bone aging in male mice by defining the role of ECs in upholding the equilibrium within the ECM, consequently coordinating osteogenic and osteoclastic activities and retarding skeletal aging.
Collapse
Affiliation(s)
- Ying Yin
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jingxi Yang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shiqi Gui
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yufeng Shen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhenshuo Han
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
15
|
Salminen A. GDF15/MIC-1: a stress-induced immunosuppressive factor which promotes the aging process. Biogerontology 2024; 26:19. [PMID: 39643709 PMCID: PMC11624233 DOI: 10.1007/s10522-024-10164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The GDF15 protein, a member of the TGF-β superfamily, is a stress-induced multifunctional protein with many of its functions associated with the regulation of the immune system. GDF15 signaling provides a defence against the excessive inflammation induced by diverse stresses and tissue injuries. Given that the aging process is associated with a low-grade inflammatory state, called inflammaging, it is not surprising that the expression of GDF15 gradually increases with aging. In fact, the GDF15 protein is a core factor secreted by senescent cells, a state called senescence-associated secretory phenotype (SASP). Many age-related stresses, e.g., mitochondrial and endoplasmic reticulum stresses as well as inflammatory, metabolic, and oxidative stresses, induce the expression of GDF15. Although GDF15 signaling is an effective anti-inflammatory modulator, there is robust evidence that it is a pro-aging factor promoting the aging process. GDF15 signaling is not only an anti-inflammatory modulator but it is also a potent immunosuppressive enhancer in chronic inflammatory states. The GDF15 protein can stimulate immune responses either non-specifically via receptors of the TGF-β superfamily or specifically through the GFRAL/HPA/glucocorticoid pathway. GDF15 signaling stimulates the immunosuppressive network activating the functions of MDSCs, Tregs, and M2 macrophages and triggering inhibitory immune checkpoint signaling in senescent cells. Immunosuppressive responses not only suppress chronic inflammatory processes but they evoke many detrimental effects in aged tissues, such as cellular senescence, fibrosis, and tissue atrophy/sarcopenia. It seems that the survival functions of GDF15 go awry in persistent inflammation thus promoting the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
16
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 2024; 21:76. [PMID: 39511615 PMCID: PMC11542427 DOI: 10.1186/s12979-024-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In the last forty years, the number of people over 60 years of age has increased significantly owing to better nutrition and lower rates of infectious diseases in developing countries. Aging significantly impacts adipose tissue, which plays crucial role in hormone regulation and energy storage. This can lead to imbalances in glucose, and overall energy homeostasis within the body. Aging is irreversible phenomena and potentially causing lipid infiltration in other organs, leading to systemic inflammation, metabolic disorders. This review investigates various pathways contributing to aging-related defects in adipogenesis, such as changes in adipose tissue function and distribution. Polyphenols, a diverse group of natural compounds, can mitigate aging effects via free radicals, oxidative stress, inflammation, senescence, and age-related diseases. Polyphenols like resveratrol, quercetin and EGCG exhibit distinct mechanisms and regulate crucial pathways, such as the TGF-β, AMPK, Wnt, PPAR-γ, and C/EBP transcription factors, and influence epigenetic modifications, such as DNA methylation and histone modification. This review highlights the critical importance of understanding the intricate relationship between aging and adipogenesis for optimizing well-being with increasing age. These findings highlight the therapeutic potential of polyphenols like quercetin and resveratrol in enhancing adipose tissue function and promoting healthy aging.
Collapse
Affiliation(s)
- Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
18
|
Yang H, Zhang X, Xue B. New insights into the role of cellular senescence and chronic wounds. Front Endocrinol (Lausanne) 2024; 15:1400462. [PMID: 39558972 PMCID: PMC11570929 DOI: 10.3389/fendo.2024.1400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Chronic or non-healing wounds, such as diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), pressure ulcers (PUs) and wounds in the elderly etc., impose significant biological, social, and financial burdens on patients and their families. Despite ongoing efforts, effective treatments for these wounds remain elusive, costing the United States over US$25 billion annually. The wound healing process is notably slower in the elderly, partly due to cellular senescence, which plays a complex role in wound repair. High glucose levels, reactive oxygen species, and persistent inflammation are key factors that induce cellular senescence, contributing to chronic wound failure. This suggests that cellular senescence may not only drive age-related phenotypes and pathology but also be a key mediator of the decreased capacity for trauma repair. This review analyzes four aspects: characteristics of cellular senescence; cytotoxic stressors and related signaling pathways; the relationship between cellular senescence and typical chronic non-healing wounds; and current and future treatment strategies. In theory, anti-aging therapy may influence the process of chronic wound healing. However, the underlying molecular mechanism is not well understood. This review summarizes the relationship between cellular senescence and chronic wound healing to contribute to a better understanding of the mechanisms of chronic wound healing.
Collapse
Affiliation(s)
- Huiqing Yang
- Institute of Evolution and Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Wei S, Huang X, Zhu Q, Chen T, Zhang Y, Tian J, Pan T, Zhang L, Xie T, Zhang Q, Kuang X, Lei E, Li Y. TRIM65 deficiency alleviates renal fibrosis through NUDT21-mediated alternative polyadenylation. Cell Death Differ 2024; 31:1422-1438. [PMID: 38951701 PMCID: PMC11519343 DOI: 10.1038/s41418-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern and the third leading cause of premature death. Renal fibrosis is the primary process driving the progression of CKD, but the mechanisms behind it are not fully understood, making treatment options limited. Here, we find that the E3 ligase TRIM65 is a positive regulator of renal fibrosis. Deletion of TRIM65 results in a reduction of pathological lesions and renal fibrosis in mouse models of kidney fibrosis induced by unilateral ureteral obstruction (UUO)- and folic acid. Through screening with a yeast-hybrid system, we identify a new interactor of TRIM65, the mammalian cleavage factor I subunit CFIm25 (NUDT21), which plays a crucial role in fibrosis through alternative polyadenylation (APA). TRIM65 interacts with NUDT21 to induce K48-linked polyubiquitination of lysine 56 and proteasomal degradation, leading to the inhibition of TGF-β1-mediated SMAD and ERK1/2 signaling pathways. The degradation of NUDT21 subsequently altered the length and sequence content of the 3'UTR (3'UTR-APA) of several pro-fibrotic genes including Col1a1, Fn-1, Tgfbr1, Wnt5a, and Fzd2. Furthermore, reducing NUDT21 expression via hydrodynamic renal pelvis injection of adeno-associated virus 9 (AAV9) exacerbated UUO-induced renal fibrosis in the normal mouse kidneys and blocked the protective effect of TRIM65 deletion. These findings suggest that TRIM65 promotes renal fibrosis by regulating NUDT21-mediated APA and highlight TRIM65 as a potential target for reducing renal fibrosis in CKD patients.
Collapse
Affiliation(s)
- Sisi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan Zhang
- Department of Biological Sciences, College of Sciences and Arts, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Juan Tian
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tingyu Pan
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lv Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xian Kuang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Enjun Lei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
20
|
Peng X, Liu N, Zeng B, Bai Y, Xu Y, Chen Y, Chen L, Xia L. High salt diet accelerates skin aging in wistar rats: an 8-week investigation of cell cycle inhibitors, SASP markers, and oxidative stress. Front Bioeng Biotechnol 2024; 12:1450626. [PMID: 39465002 PMCID: PMC11502324 DOI: 10.3389/fbioe.2024.1450626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Background Recent studies have shown that the high salt diet (HSD) is linked to increased dermal pro-inflammatory status and reduced extracellular matrix (ECM) expression in inflamed skin of mice. Decreased ECM content is a known aging phenotype of the skin, and alterations in ECM composition and organization significantly contribute to skin aging. This study aimed to determine whether a high salt diet accelerates skin aging and to identify the time point at which this effect becomes apparent. Methods Wistar rats were randomly divided into normal diet and high salt diet groups and fed continuously for 8 weeks. Skin samples were collected at weeks 7 and week 8. Skin pathological sections were evaluated and levels of cell cycle inhibitors, senescence-associated secretory phenotype (SASP), oxidative stress and vascular regulatory factors (VRFs) were examined. Correlation analyses were performed to reveal the effect of a high salt diet as an extrinsic factor on skin aging and to analyse the correlation between a high salt diet and intrinsic aging and blood flow status. Results At week 8, HSD rats exhibited thickened epidermis, thinned dermis, and atrophied hair follicles. The expression of cell cycle inhibitors and oxidative stress levels were significantly elevated in the skin of HSD rats at both week 7 and week 8. At week 7, some SASPs, including TGF-β and PAI-1, were elevated, but others (IL-1, IL-6, IL-8, NO) were not significantly changed. By week 8, inflammatory molecules (IL-1, IL-6, TGF-β), chemokines (IL-8), proteases (PAI-1), and non-protein molecules (NO) were significantly increased. Notably, despite elevated PAI-1 levels suggesting possible blood hypercoagulation, the ET-1/NO ratio was reduced in the HSD group at week 8. Conclusion The data suggest that a high salt diet causes skin aging by week 8. The effect of a high salt diet on skin aging is related to the level of oxidative stress and the expression of cell cycle inhibitors. Additionally, a potential protective mechanism may be at play, as evidenced by the reduced ET-1/NO ratio, which could help counteract the hypercoagulable state and support nutrient delivery to aging skin.
Collapse
Affiliation(s)
- Xile Peng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Nannan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Baihan Zeng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yilin Bai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yang Xu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yixiao Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Li Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| |
Collapse
|
21
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
22
|
Sahu Y, Jamadade P, Ch Maharana K, Singh S. Role of mitochondrial homeostasis in D-galactose-induced cardiovascular ageing from bench to bedside. Mitochondrion 2024; 78:101923. [PMID: 38925493 DOI: 10.1016/j.mito.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India.
| |
Collapse
|
23
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
24
|
Ma X, Li J, Li M, Qi G, Wei L, Zhang D. Nets in fibrosis: Bridging innate immunity and tissue remodeling. Int Immunopharmacol 2024; 137:112516. [PMID: 38906006 DOI: 10.1016/j.intimp.2024.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Fibrosis, a complex pathological process characterized by excessive deposition of extracellular matrix components, leads to tissue scarring and dysfunction. Emerging evidence suggests that neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, significantly contribute to fibrotic diseases pathogenesis. This review summarizes the process of NETs production, molecular mechanisms, and related diseases, and outlines the cellular and molecular mechanisms associated with fibrosis. Subsequently, this review comprehensively summarizes the current understanding of the intricate interplay between NETs and fibrosis across various organs, including the lung, liver, kidney, skin, and heart. The mechanisms by which NETs contribute to fibrogenesis, including their ability to promote inflammation, induce epithelial-mesenchymal transition (EMT), activate fibroblasts, deposit extracellular matrix (ECM) components, and trigger TLR4 signaling were explored. This review aimed to provide insights into the complex relationship between NETs and fibrosis via a comprehensive analysis of existing reports, offering novel perspectives for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jipin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
25
|
Ahmad N, Anker A, Klein S, Dean J, Knoedler L, Remy K, Pagani A, Kempa S, Terhaag A, Prantl L. Autologous Fat Grafting-A Panacea for Scar Tissue Therapy? Cells 2024; 13:1384. [PMID: 39195271 PMCID: PMC11352477 DOI: 10.3390/cells13161384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Collapse
Affiliation(s)
- Nura Ahmad
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Alexandra Anker
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Katya Remy
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Amraj Terhaag
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| |
Collapse
|
26
|
Opris CE, Suciu H, Opris CI, Gurzu S. An Update on Mitral Valve Aging. Life (Basel) 2024; 14:950. [PMID: 39202692 PMCID: PMC11355775 DOI: 10.3390/life14080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The aging process can have notable effects on the mitral valve. During life, the mitral valve undergoes various changes that can impact its structure and function. The purpose of this review is to present a comprehensive overview of the literature published up to February 2024 in the Medline database regarding the impact of aging on the mitral valve. The studies were combined with the personal experience of the authors. Until 2024, out of the 12,189 publications that deal with the mitral valve in elderly individuals, 308 refer to mitral valve aging. After reviewing these data, we selected and analyzed the 73 most informative works regarding the age-related transformation of the mitral valve. Understanding the mechanisms driving the aging of the mitral valve is crucial for enhancing diagnostic and therapeutic strategies for reducing age-related valve dysfunction and the subsequent cardiovascular complications.
Collapse
Affiliation(s)
- Carmen Elena Opris
- Department of Adult and Children Cardiovascular Recovery, Emergency Institute for Cardio-Vascular Diseases and Transplantation, 540139 Targu Mures, Romania;
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Targu Mures, Romania
| | - Horatiu Suciu
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Targu Mures, Romania; (H.S.); (C.I.O.)
- Romanian Academy of Medical Sciences, 030173 Bucharest, Romania
- Department of Cardiovascular Surgery, Emergency University Hospital, 050098 Bucharest, Romania
| | - Cosmin Ioan Opris
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Targu Mures, Romania; (H.S.); (C.I.O.)
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Targu Mures, Romania
- Romanian Academy of Medical Sciences, 030173 Bucharest, Romania
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Targu Mures, Romania
| |
Collapse
|
27
|
Chi J, Bi W, Lou K, Ma J, Wu J, Cui Y. Research advances in Peyronie's disease: a comprehensive review on genomics, pathways, phenotypic manifestation, and therapeutic targets. Sex Med Rev 2024; 12:477-490. [PMID: 38456235 DOI: 10.1093/sxmrev/qeae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Penile induration disease, commonly known as Peyronie's disease (PD), is a connective tissue disorder that affects the penis, leading to the development of fibrous plaques, penile curvature, and erectile dysfunction. PD is a common male reproductive system disease with a complex etiology involving multiple genes, signaling pathways, and different phenotypes. OBJECTIVES The etiology and pathogenesis of PD remain poorly understood, hindering the development of effective treatment strategies. By understanding the underlying mechanisms of PD, we can pave the way for targeted therapies and improved patient outcomes. METHODS We reviewed the epidemiology and pathophysiology of PD. We performed database searches on Google Scholar, PubMed, Medline, and Web of Science from inception to September 2023. The literature reviewed included priapism guidelines, review articles, current trial studies, and various literature related to PD. RESULTS This article provides a comprehensive overview of the current research progress on the disease, focusing on its genetic factors, signaling pathways, cellular mechanisms, phenotypic manifestations, and therapeutic targets. It can help identify individuals at higher risk, aid in early detection and intervention, and provide insights into fibrosis and tissue remodeling. It can also reveal potential therapeutic targets, guide accurate diagnoses and treatment strategies, and address the impact of the disease on patients' quality of life. CONCLUSION By integrating insights from genomics, molecular pathways, clinical phenotypes, and therapeutic potentials, our research aims to achieve a deeper and more comprehensive understanding of PD, propelling the field toward innovative strategies that enhance the lives of those affected by PD. The complex manifestations and pathogenesis of PD necessitate the use of multiple treatment methods for personalized care.
Collapse
Affiliation(s)
- Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Wenhua Bi
- Department of Urology, Weifang Hospital of Traditional Chinese Medicine, Weifang, 265400, China
| | - Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| |
Collapse
|
28
|
Zhang F, Yue H, Dong R, He J, Zhou L, Dou X, Wang L, Zheng P, Mao Z, Zhu X, Wang Y, Liu H, Zhang H. Trigonelline hydrochloride attenuates silica-induced pulmonary fibrosis by orchestrating fibroblast to myofibroblast differentiation. Respir Res 2024; 25:242. [PMID: 38877465 PMCID: PMC11179236 DOI: 10.1186/s12931-024-02876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Silicosis represents a paramount occupational health hazard globally, with its incidence, morbidity, and mortality on an upward trajectory, posing substantial clinical dilemmas due to limited effective treatment options available. Trigonelline (Trig), a plant alkaloid extracted mainly from coffee and fenugreek, have diverse biological properties such as protecting dermal fibroblasts against ultraviolet radiation and has the potential to inhibit collagen synthesis. However, it's unclear whether Trig inhibits fibroblast activation to attenuate silicosis-induced pulmonary fibrosis is unclear. METHODS To evaluate the therapeutic efficacy of Trig in the context of silicosis-related pulmonary fibrosis, a mouse model of silicosis was utilized. The investigation seeks to elucidated Trig's impact on the progression of silica-induced pulmonary fibrosis by evaluating protein expression, mRNA levels and employing Hematoxylin and Eosin (H&E), Masson's trichrome, and Sirius Red staining. Subsequently, we explored the mechanism underlying of its functions. RESULTS In vivo experiment, Trig has been demonstrated the significant efficacy in mitigating SiO2-induced silicosis and BLM-induced pulmonary fibrosis, as evidenced by improved histochemical staining and reduced fibrotic marker expressions. Additionally, we showed that the differentiation of fibroblast to myofibroblast was imped in Trig + SiO2 group. In terms of mechanism, we obtained in vitro evidence that Trig inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-β/Smad signaling according to the in vitro evidence. Notably, our finding indicated that Trig seemed to be safe in mice and fibroblasts. CONCLUSION In summary, Trig attenuated the severity of silicosis-related pulmonary fibrosis by alleviating the differentiation of myofibroblasts, indicating the development of novel therapeutic approaches for silicosis fibrosis.
Collapse
Affiliation(s)
- Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ruihan Dong
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jianhan He
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xinran Dou
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Huilan Zhang
- Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
29
|
Maimaitiaili R, Zhao S, Teliewubai J, Yu S, Meng W, Zhao Y, Xu Y, Zhang Y. Vasculopathy Augments Cardiovascular Risk in Community-Dwelling Elderly with Left Ventricular Hypertrophy. J Pers Med 2024; 14:558. [PMID: 38929779 PMCID: PMC11204535 DOI: 10.3390/jpm14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to investigate the impact of various vasculopathies alongside left ventricular hypertrophy (LVH) on cardiovascular risk in the elderly. This prospective cohort study included 3339 older adults from the Northern Shanghai Study, classified into four mutually exclusive left ventricular (LV) geometry groups based on echocardiographic data: normal geometry, concentric remodeling, eccentric hypertrophy, and concentric hypertrophy. Vasculopathy was categorized into three primary types: arteriosclerosis, atherosclerosis, and renal senescence. Major adverse cardiovascular events (MACEs) were defined as non-fatal acute myocardial infarction, non-fatal stroke, and cardiovascular deaths according to ICD-10 codes. Over a median follow-up period of 5.7 years, 221 incident cases of MACEs were identified. Concentric hypertrophy exhibited the highest prevalence of hypertension, the most significant increase in vascular stiffness, and the highest rate of MACEs. The adjusted Cox regression analysis showed that eccentric hypertrophy is associated with an increased risk of MACEs (HR: 1.638 [95% CI: 1.151-2.331], p = 0.006), while concentric hypertrophy shows an even higher risk (HR: 1.751 [95% CI: 1.127-2.721], p = 0.013). Conversely, concentric remodeling was not significantly associated with an increased risk of MACEs. Renal senescence presents a moderate but significant risk for MACEs, with an HR of 1.361 (95% CI: 1.019-1.819; p = 0.037) when adjusted for LVH. The Kaplan-Meier analysis showed that patients with LVH and multiple vasculopathies experience the most significant decrease in survival probability (log-rank p < 0.001). The subgroup analysis revealed that LVH significantly raises the risk of MACEs, especially in older males with hypertension, diabetes, or vasculopathy. This study reinforces the importance of LVH as a predictor of adverse cardiovascular outcomes and underscores the compounded risk associated with the presence of multiple vasculopathies. Additionally, it highlights renal senescence as a distinct and independent risk factor for MACEs, separate from LVH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| |
Collapse
|
30
|
Wang Z, Yin G, Liao X, Zhou Z, Cao Y, Li X, Wu W, Zhang S, Lou Q. Cornus officinalis var. koreana Kitam extracts alleviate cadmium-induced renal fibrosis by targeting matrix metallopeptidase 9. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117824. [PMID: 38278375 DOI: 10.1016/j.jep.2024.117824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis var. koreana Kitam (Cornus officinalis) is a commonly used Chinese herbal medicine and has a good clinical efficacy in kidney and liver diseases. Recent years, a number of studies reported the significant effects of Cornus officinalis on renal fibrosis. However, it is still unclear about the underlying specific mechanism, the bioactive ingredients, and the target gene regulatory network. AIM OF THE STUDY We investigated the impact of Cornus officinalis extract on cadmium-induced renal fibrosis, screened the bioactive ingredients of Cornus officinalis using a pharmacological sub-network analysis, and explored the regulatory effects of Cornus officinalis extracts on target gene matrix metallopeptidase 9 (MMP9). METHODS Male C57BL/6N mice were treated with single or combinatorial agents such as saline, cadmium chloride, Cornus officinalis, Isoginkgetin and FSL-1. Isoginkgetin is a compound with anti-MMP9 activity. FSL-1 can induce MMP9 expression. Masson staining and Western blot and immunohistochemistry analyses were used for assessing renal fibrosis. In addition, wound healing model was established using BUMPT (Boston university mouse proximal tubular) cells to investigate how Cornus officinalis affected cadmium-induced cell migration. The main Cornus officinalis bioactive compounds were identified by UHPLC-MS (Ultra-high-performance liquid chromatography - mass spectrometry). The MMP9 target for Cornus officinalis active ingredients were confirmed through a pharmacological sub-network analysis. RESULTS Aqueous extracts of Cornus officinalis protected from renal dysfunction and kidney fibrosis induced by cadmium chloride in mice. In vitro experiments validated that Cornus officinalis extracts inhibited cell migration ability especially in cadmium chloride condition. The sub-network analysis and chemical components profiling technique revealed the active compounds of Cornus officinalis. Cellular thermal shift assay verified the binding abilities of three active components Daidzein, N-Acetyl-L-tyrosine or Swertisin with matrix metalloproteinase-9. Gelatin zymography assay revealed that the activity of MMP9 was inhibited by the three active components. We further confirmed that MMP9 was involved in the process of Cornus officinalis extracts reducing renal fibrosis. Cornus officinalis attenuated the cadmium-induced renal fibrosis was correlated with decreased expression of MMP9, collagen I, α-SMA (alpha-smooth muscle actin) and vimentin. CONCLUSIONS This study demonstrated that Cornus officinalis extracts could alleviate the cadmium chloride-induced renal fibrosis by targeting MMP9, and might provide new insights into the mechanism of treating renal fibrosis by Cornus officinalis.
Collapse
Affiliation(s)
- Zhonghang Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Guanyi Yin
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Ziou Zhou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Yaping Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Xuemiao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Wenbin Wu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Shuanglin Zhang
- The First Affiliated Hospital of Henan University, Kaifeng, 475004, PR China
| | - Qiang Lou
- Huaihe Hospital of Henan University, Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475000, PR China; Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
31
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
32
|
Racine JJ, Bachman JF, Zhang JG, Misherghi A, Khadour R, Kaisar S, Bedard O, Jenkins C, Abbott A, Forte E, Rainer P, Rosenthal N, Sattler S, Serreze DV. Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1287-1306. [PMID: 38426910 PMCID: PMC10984778 DOI: 10.4049/jimmunol.2300841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Myocarditis has emerged as an immune-related adverse event of immune checkpoint inhibitor (ICI) cancer therapy associated with significant mortality. To ensure patients continue to safely benefit from life-saving cancer therapy, an understanding of fundamental immunological phenomena underlying ICI myocarditis is essential. We recently developed the NOD-cMHCI/II-/-.DQ8 mouse model that spontaneously develops myocarditis with lower mortality than observed in previous HLA-DQ8 NOD mouse strains. Our strain was rendered murine MHC class I and II deficient using CRISPR/Cas9 technology, making it a genetically clean platform for dissecting CD4+ T cell-mediated myocarditis in the absence of classically selected CD8+ T cells. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, anti-PD-1 administration accelerates skeletal muscle myositis. Using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses, we performed a thorough characterization of cardiac and skeletal muscle T cells, identifying shared and unique characteristics of both populations. Taken together, this report details a mouse model with features of a rare, but highly lethal clinical presentation of overlapping myocarditis and myositis following ICI therapy. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Adel Misherghi
- The Jackson Laboratory, Bar Harbor, Maine, USA
- College of the Atlantic, Bar Harbor, Maine, USA
| | - Raheem Khadour
- The Jackson Laboratory, Bar Harbor, Maine, USA
- College of the Atlantic, Bar Harbor, Maine, USA
| | | | | | | | | | | | - Peter Rainer
- Medical University of Graz, Graz, 8053 Austria
- BioTechMed Graz, Graz, Austria
- BKH St. Johann in Tirol, 6380 St. Johann in Tirol, Austria
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine, USA
- Imperial College London, London SW7 2AZ, UK
| | - Susanne Sattler
- Imperial College London, London SW7 2AZ, UK
- Medical University of Graz, Graz, 8053 Austria
| | | |
Collapse
|
33
|
Xu J, Yu W, Li N, Li S, Wang X, Gao C, Liu FY, Ji X, Ren C. The impact of high-altitude and cold environment on brain and heart damage in rats with hemorrhagic shock. Brain Circ 2024; 10:174-183. [PMID: 39036291 PMCID: PMC11259326 DOI: 10.4103/bc.bc_24_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Hemorrhagic shock (HS) causes severe organ damage, worsened by high-altitude conditions with lower oxygen and temperatures. Existing research lacks specific insights on brain and heart damage under these conditions. This study hypothesizes that high-altitude and cold (HAC) environments exacerbate HS-induced damage in the brain and heart, aiming to improve treatment strategies. MATERIALS AND METHODS Twenty-four male Sprague-Dawley (SD) rats (200-250 g of weight) were randomly assigned into sham, HS + normal, HS + HAC (4,000 m), and HS + HAC (6,000 m). The HS model was established in SD rats (35% loss of total blood volume), and histopathological injuries of the brain and heart were detected using hematoxylin and eosin staining, Sirius red staining, and immunohistochemistry. Apoptosis of the brain and heart tissues was detected by terminal transferase-mediated dUTP nick end labeling (TUNEL) immunofluorescence staining. To determine the levels of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein-1 (Mcp-1), BCL2-associated X (BAX), and myeloid cell leukemia-1 (Mcl-1) protein, western blotting assay was used. RESULTS The HAC environment induced pathological damage to the brain and heart and aggravated the degree of cardiac fibrosis in HS rats. However, it did not cause apoptosis of the brain and heart. In addition, it upregulated TNF-α, IFN-γ, Mcp-1, and BAX protein levels, but downregulated Mcl-1 protein levels (P < 0.05). CONCLUSIONS The HAC environment aggravated the degree of brain and heart damage in HS rats, which may be related to neuron nucleus pyknosis, myocardial fibrosis, and inflammatory and apoptosis activation.
Collapse
Affiliation(s)
- Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Salminen A. AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology 2024; 25:83-106. [PMID: 37917219 PMCID: PMC10794430 DOI: 10.1007/s10522-023-10072-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Disruption of the extracellular matrix (ECM) and an accumulation of fibrotic lesions within tissues are two of the distinctive hallmarks of the aging process. Tissue fibroblasts are mesenchymal cells which display an impressive plasticity in the regulation of ECM integrity and thus on tissue homeostasis. Single-cell transcriptome studies have revealed that tissue fibroblasts exhibit a remarkable heterogeneity with aging and in age-related diseases. Excessive stress and inflammatory insults induce the differentiation of fibroblasts into myofibroblasts which are fusiform contractile cells and abundantly secrete the components of the ECM and proteolytic enzymes as well as many inflammatory mediators. Detrimental stresses can also induce the transdifferentiation of certain mesenchymal and myeloid cells into myofibroblasts. Interestingly, many age-related stresses, such as oxidative and endoplasmic reticulum stresses, ECM stiffness, inflammatory mediators, telomere shortening, and several alarmins from damaged cells are potent inducers of myofibroblast differentiation. Intriguingly, there is convincing evidence that the signaling pathways stimulated by the AMP-activated protein kinase (AMPK) are potent inhibitors of myofibroblast differentiation and accordingly AMPK signaling reduces fibrotic lesions within tissues, e.g., in age-related cardiac and pulmonary fibrosis. AMPK signaling is not only an important regulator of energy metabolism but it is also able to control cell fate determination and many functions of the immune system. It is known that AMPK signaling can delay the aging process via an integrated signaling network. AMPK signaling inhibits myofibroblast differentiation, e.g., by suppressing signaling through the TGF-β, NF-κB, STAT3, and YAP/TAZ pathways. It seems that AMPK signaling can alleviate age-related tissue fibrosis and degeneration by inhibiting the differentiation of myofibroblasts.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
35
|
Ren N, Wang WF, Zou L, Zhao YL, Miao H, Zhao YY. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis. Front Pharmacol 2024; 14:1335094. [PMID: 38293668 PMCID: PMC10824958 DOI: 10.3389/fphar.2023.1335094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Renal fibrosis is increasingly recognized as a global public health problem. Acute kidney injury (AKI) and chronic kidney disease (CKD) both result in renal fibrosis. Oxidative stress and inflammation play central roles in progressive renal fibrosis. Oxidative stress and inflammation are closely linked and form a vicious cycle in which oxidative stress induces inflammation through various molecular mechanisms. Ample evidence has indicated that a hyperactive nuclear factor kappa B (NF-ƙB) signaling pathway plays a pivotal role in renal fibrosis. Hyperactive NF-ƙB causes the activation and recruitment of immune cells. Inflammation, in turn, triggers oxidative stress through the production of reactive oxygen species and nitrogen species by activating leukocytes and resident cells. These events mediate organ injury through apoptosis, necrosis, and fibrosis. Therefore, developing a strategy to target the NF-ƙB signaling pathway is important for the effective treatment of renal fibrosis. This Review summarizes the effect of the NF-ƙB signaling pathway on renal fibrosis in the context of AKI and CKD (immunoglobulin A nephropathy, membranous nephropathy, diabetic nephropathy, hypertensive nephropathy, and kidney transplantation). Therapies targeting the NF-ƙB signaling pathway, including natural products, are also discussed. In addition, NF-ƙB-dependent non-coding RNAs are involved in renal inflammation and fibrosis and are crucial targets in the development of effective treatments for kidney disease. This Review provides a clear pathophysiological rationale and specific concept-driven therapeutic strategy for the treatment of renal fibrosis by targeting the NF-ƙB signaling pathway.
Collapse
Affiliation(s)
- Na Ren
- The First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Yan-Long Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Yuan M, Yao L, Chen P, Wang Z, Liu P, Xiong Z, Hu X, Li L, Jiang Y. Human umbilical cord mesenchymal stem cells inhibit liver fibrosis via the microRNA-148a-5p/SLIT3 axis. Int Immunopharmacol 2023; 125:111134. [PMID: 37918086 DOI: 10.1016/j.intimp.2023.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have garnered considerable attention as prospective modalities of treatment for liver fibrosis (LF). The inhibition of hepatic stellate cell (HSC) activation underlies the anti-fibrotic effects of hUC-MSCs. However, the precise mechanism by which hUC-MSCs impede HSC activation remains unclarified. We aimed to elucidate the intrinsic mechanisms underlying the therapeutic effects of hUC-MSCs in LF patients. METHODS Mice with liver cirrhosis induced by carbon tetrachloride (CCl4) were used as experimental models and administered hUC-MSCs via tail-vein injection. The alterations in inflammation and fibrosis were evaluated through histopathological examinations. RNA sequencing (RNA-seq) and bioinformatics analysis were then conducted to investigate the therapeutic mechanism of hUC-MSCs. Finally, an in-vitro experiment involving the co-cultivation of hUC-MSCs or hUC-MSC-derived exosomes (MSC-Exos) with LX2 cells was performed to validate the potential mechanism underlying the hepatoprotective effects of hUC-MSCs in LF patients. RESULTS hUC-MSC therapy significantly improved liver function and alleviated LF in CCl4-induced mice. High-throughput RNA-Seq analysis identified 1142 differentially expressed genes that were potentially involved in mediating the therapeutic effects of hUC-MSCs. These genes play an important role in regulating the extracellular matrix. miRNA expression data (GSE151098) indicated that the miR-148a-5p level was downregulated in LF samples, but restored following hUC-MSC treatment. miR-148a-5p was delivered to LX2 cells by hUC-MSCs via the exosome pathway, and the upregulated expression of miR-148a-5p significantly suppressed the expression of the activated phenotype of LX2 cells. SLIT3 was identified within the pool of potential target genes regulated by miR-148a-5p. Furthermore, hUC-MSC administration upregulated the expression of miR-148a-5p, which played a crucial role in suppressing the expression of SLIT3, thereby palliating fibrosis. CONCLUSIONS hUC-MSCs inhibit the activation of HSCs through the miR-148a-5p/SLIT3 pathway and are thus capable of alleviating LF.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310053, China.
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
37
|
Zhao ZJ, Wu DJ, Lv DL, Zhang BD, Chen L, Sun YQ. Ellagic acid inhibits the formation of hypertrophic scars by suppressing TGF-β/Smad signaling pathway activity. Chem Biol Drug Des 2023; 102:773-781. [PMID: 37386691 DOI: 10.1111/cbdd.14287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Hypertrophic scar (HS) is a benign fibroproliferative skin disease, which lacks the ideal treatment and drugs. Ellagic acid (EA) is a natural polyphenol that prevents fibroblasts from proliferating and migrating. This study aimed to determine the role of EA in HS formation and its possible mechanism by in vitro experiments. HS fibroblasts (HSFs) and normal fibroblasts (NFs) were separated from HS tissue and normal skin tissue, respectively. HSFs were treated with 10 and 50 μM EA to assess their effect on HS formation. In particular, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and scratch assay were used to detect the viability and migration ability of HSFs. Quantitative reverse transcriptase real-time polymerase chain reaction was used to measure the mRNA expression level of basic fibroblast growth factor (bFGF), extracellular matrix (ECM)-related gene collagen-I (COL-I), and fibronectin 1 (FN1) in HSFs. Finally, Western blot was utilized to measure the expression level of TGF-β/Smad signaling pathway-related proteins in HSFs. The viability of HSFs was significantly increased compared with NFs. 10 and 50 μM EA treatment markedly inhibition the cell viability and migration of HSFs. EA treatment upregulated the bFGF expression level and downregulated the COL-I and FN1 expression level in HSFs. In addition, p-Smad2, p-Smad3, and transforming growth factor (TGF)-β1 expression levels as well as p-Smad2/Smad2 and p-Smad3/Smad3 ratios remarkably decreased in HSFs after EA treatment. EA inhibited the formation of HSs by suppressing the viability and migration of HSFs and ECM deposition as well as by preventing the activation of TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Zun-Jiang Zhao
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - De-Jin Wu
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an, China
| | - Da-Lun Lv
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Bao-de Zhang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an, China
| | - Lei Chen
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yin-Qiao Sun
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
38
|
Zhao H, Zhang HL, Jia L. High glucose dialysate-induced peritoneal fibrosis: Pathophysiology, underlying mechanisms and potential therapeutic strategies. Biomed Pharmacother 2023; 165:115246. [PMID: 37523983 DOI: 10.1016/j.biopha.2023.115246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Peritoneal dialysis is an efficient renal replacement therapy for patients with end-stage kidney disease. However, continuous exposure of the peritoneal membrane to dialysate frequently leads to peritoneal fibrosis, which alters the function of the peritoneal membrane and results in withdrawal from peritoneal dialysis in patients. Among others, high glucose dialysate is considered as a predisposing factor for peritoneal fibrosis in patients on peritoneal dialysis. Glucose-induced inflammation, metabolism disturbance, activation of the renin-angiotensin-aldosterone system, angiogenesis and noninflammation-induced reactive oxygen species are implicated in the pathogenesis of high glucose dialysate-induced peritoneal fibrosis. Specifically, high glucose causes chronic inflammation and recurrent peritonitis, which could cause migration and polarization of inflammatory cells, as well as release of cytokines and fibrosis. High glucose also interferes with lipid metabolism and glycolysis by activating the sterol-regulatory element-binding protein-2/cleavage-activating protein pathway and increasing hypoxia inducible factor-1α expression, leading to angiogenesis and peritoneal fibrosis. Activation of the renin-angiotensin-aldosterone system and Ras-mitogen activated protein kinase signaling pathway is another contributing factor in high glucose dialysate-induced fibrosis. Ultimately, activation of the transforming growth factor-β1/Smad pathway is involved in mesothelial-mesenchymal transition or epithelial-mesenchymal transition, which leads to the development of fibrosis. Although possible intervention strategies for peritoneal dialysate-induced fibrosis by targeting the transforming growth factor-β1/Smad pathway have occasionally been proposed, lack of laboratory evidence renders clinical decision-making difficult. We therefore aim to revisit the upstream pathways of transforming growth factor-beta1/Smad and propose potential therapeutic targets for high glucose-induced peritoneal fibrosis.
Collapse
Affiliation(s)
- Hanxue Zhao
- First Clinical Medical College, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, No. 83 Shuangqing Road, Beijing 100085, China.
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China.
| |
Collapse
|
39
|
Qiu Z, Li Y, Fu Y, Yang Y. Research progress of AMP-activated protein kinase and cardiac aging. Open Life Sci 2023; 18:20220710. [PMID: 37671091 PMCID: PMC10476487 DOI: 10.1515/biol-2022-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/07/2023] Open
Abstract
The process of aging is marked by a gradual deterioration in the physiological functions and functional reserves of various tissues and organs, leading to an increased susceptibility to diseases and even death. Aging manifests in a tissue- and organ-specific manner, and is characterized by varying rates and direct and indirect interactions among different tissues and organs. Cardiovascular disease (CVD) is the leading cause of death globally, with older adults (aged >70 years) accounting for approximately two-thirds of CVD-related deaths. The prevalence of CVD increases exponentially with an individual's age. Aging is a critical independent risk factor for the development of CVD. AMP-activated protein kinase (AMPK) activation exerts cardioprotective effects in the heart and restores cellular metabolic functions by modulating gene expression and regulating protein levels through its interaction with multiple target proteins. Additionally, AMPK enhances mitochondrial function and cellular energy status by facilitating the utilization of energy substrates. This review focuses on the role of AMPK in the process of cardiac aging and maintaining normal metabolic levels and redox homeostasis in the heart, particularly in the presence of oxidative stress and the invasion of inflammatory factors.
Collapse
Affiliation(s)
- Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yufei Li
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yancheng Fu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Yanru Yang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
40
|
Genkel V, Dolgushin I, Savochkina A, Nikushkina K, Baturina I, Minasova A, Sumerkina V, Pykhova L, Kupriyanov S, Kuznetsova A, Shaposhnik I. Innate and Adaptive Immunity-Related Markers as Predictors of the Short-Term Progression of Subclinical Atherosclerosis in Middle-Aged Patients. Int J Mol Sci 2023; 24:12205. [PMID: 37569579 PMCID: PMC10419170 DOI: 10.3390/ijms241512205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Assessment of inflammation is a promising approach to monitoring the progression of asymptomatic atherosclerosis. The aim of the present study was to investigate the predictive value of innate and adaptive immunity-related markers, in relation to the short-term progression of subclinical atherosclerosis. The study included 183 patients aged 40-64 years who underwent duplex scanning of the carotid and lower limb arteries at two visits with an interval of 12-24 months between examinations. Phenotyping of circulating lymphocytes and monocytes subpopulations were performed through flow cytometry. An increase in the number of circulating TLR4-positive intermediate monocytes (>447.0-467.0 cells/μL) was an independent predictor of the short-term progression of lower limb artery atherosclerosis (p < 0.0001) and polyvascular atherosclerosis (p = 0.003). The assessment of TLR4-positive monocytes significantly improved the prognostic model for the progression of lower limb arterial atherosclerosis (C-index 0.728 (0.642-0.815) versus 0.637 (0.539-0.735); p = 0.038). An increase in the number of circulating TLR4-positive intermediate monocytes was an independent predictor of the short-term progression of lower limb artery and polyvascular atherosclerosis. Their inclusion into models containing conventional risk factors significantly improved their prognostic effectiveness regarding lower limb artery atherosclerosis progression.
Collapse
Affiliation(s)
- Vadim Genkel
- Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, 454092 Chelyabinsk, Russia; (I.D.); (A.S.); (K.N.); (I.B.); (A.M.); (V.S.); (L.P.); (S.K.); (A.K.); (I.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|