1
|
Wang J, Luo Y, Wu Y, Du F, Shi S, Duan Y, Chen A, Zhang J, Yu S. Single-cell Raman spectroscopy as a novel platform for unveiling the heterogeneity of mesenchymal stem cells. Talanta 2025; 292:127933. [PMID: 40081243 DOI: 10.1016/j.talanta.2025.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/15/2025]
Abstract
Despite the significant potential of mesenchymal stem cells (MSC) therapy in clinical settings, challenges persist regarding the efficient detection of consistency and uniformity of MSC populations. Raman spectroscopy is a fast, convenient, and nondestructive technique to acquire molecular properties of biomolecules across laboratory and mass-production settings. Here we utilized Raman spectroscopy to evaluate the heterogeneity of primary MSC from varying donors, passages, and distinct culture conditions, and compared its effectiveness with conventional techniques such as flow cytometry. Although these MSC exhibited insignificant differences in morphology and surface markers in flow cytometry analysis, they could be distinctly clustered into different populations by Raman spectroscopy and the subsequent machine learning using linear discriminant analysis. Principal component analysis demonstrated limited efficiency in clustering Raman data from diverse sources, which could be enhanced through combination with support vector machine or deterministic finite automation. These findings highlight the sensitivity of Raman spectroscopy in detecting subtle differences. Moreover, the analysis of characteristic Raman peaks attributed to cellular biomolecules in MSC from passages 2 (P2) to P10 revealed a gradual decrease in the levels of nucleic acids, lipids, and proteins with increasing passages, and a significant increase in carotenoids from P8. These results suggest the potential use of Raman spectroscopy to assess cellular biochemical characteristics such as aging, with carotenoids emerging as a potential marker of cell aging. In conclusion, Raman spectroscopy demonstrates the ability to rapidly and non-invasively detect cellular heterogeneity and biochemical status, offering significant potential for quality control in stem cell therapy.
Collapse
Affiliation(s)
- Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yanjun Luo
- Shanghai D-Band Medical Technology Co., LTD, Shanghai, 201802, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Shuaiguang Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aoying Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Chlebek C, McNeill TJ, Huang M, Raynor MS, van der Meulen MCH. Bioenergetic programs of cancellous and cortical bone are distinct and differ with age and mechanical loading. Sci Rep 2025; 15:19134. [PMID: 40450018 DOI: 10.1038/s41598-025-02141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/12/2025] [Indexed: 06/03/2025] Open
Abstract
Mechanical loading induces bone formation in young rodents, but mechanoresponsiveness is reduced with age. Glycolytic activity and mitochondrial dysfunction increase with age and may change bone mechanotransduction. To evaluate load-induced changes to bioenergetic activity in young and adult animals, we loaded the tibia of 10-wk and 26-wk female C57BL/6J mice and examined transcriptomic responses at the mid-diaphysis, and metaphyseal cortical shell and cancellous core. Across all biological processes, oxidative phosphorylation and mitochondrial pathways were most often enriched with loading and had contrasting enrichment in young and adult animals. Following loading, young animals had temporally-coordinated differential expression of mitochondrial-associated genes, with greatest expression at the mid-diaphysis. In adults, bioenergetic gene expression was lower compared to young animals. To assess individual contributions of glycolysis and pyruvate-mediated oxidative phosphorylation to load-induced bone formation in vivo, we inhibited each pathway therapeutically and loaded the tibia of young and adult female mice for 2 weeks. In both young and adult mice, loading increased cortical bone mass, but inhibition of oxidative phosphorylation reduced cortical area and moment of inertia in both loaded and control limbs. Conversely, load-induced improvements of adult cancellous bone depended on glycolysis. In summary, mechanical loading transcriptionally activated mitochondrial pathways in an age-specific manner and bioenergetic inhibition revealed unique metabolic programs for cortical and cancellous bone.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Tyler J McNeill
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Muyin Huang
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Maia S Raynor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA.
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
3
|
Vicenzi S, Gao F, Côté P, Hartman JD, Avsharian LC, Vora AA, Rowe RG, Li H, Skowronska-Krawczyk D, Crews LA. Systemic deficits in lipid homeostasis promote aging-associated impairments in B cell progenitor development. GeroScience 2025:10.1007/s11357-025-01594-w. [PMID: 40232347 DOI: 10.1007/s11357-025-01594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025] Open
Abstract
Organismal aging has been associated with diverse metabolic and functional changes across tissues. Within the immune system, key features of physiological hematopoietic cell aging include increased fat deposition in the bone marrow, impaired hematopoietic stem and progenitor cell (HSPC) function, and a propensity towards myeloid differentiation. This shift in lineage bias can lead to pre-malignant bone marrow conditions such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenias of undetermined significance (CCUS), frequently setting the stage for subsequent development of age-related cancers in myeloid or lymphoid lineages. Human aging has also been associated with diverse lipid alterations across tissues, such as decreased phospholipid membrane fluidity that arises as a result of increased saturated fatty acid (FA) accumulation and a decay in n-3 polyunsaturated fatty acid (PUFA) species by the age of 80 years, however the extent to which impaired FA metabolism contributes to hematopoietic aging is less clear. Here, comprehensive multi-omics analyses uncovered a role for a key PUFA biosynthesis gene, ELOVL2, in mouse and human immune cell aging. Whole transcriptome RNA-sequencing studies and complementary flow cytometric analyses of bone marrow from aged Elovl2 mutant (enzyme-deficient) mice compared with age-matched controls revealed global downregulation in lymphoid cell markers and expression of genes involved specifically in B cell development. These studies unveiled CD79B, a vital molecular regulator of lymphoid progenitor development from the pro-B to pre-B cell stage, as a putative surface biomarker whose loss is associated with accelerated immune aging. The lipidome of mutant versus wild-type mice also displayed significant changes in the biophysical properties of cellular membranes. To investigate the relevance of these finding to human bone marrow aging, analyses of a single cell RNA-seq dataset of human HSPCs across the spectrum of human development and aging uncovered a rare subpopulation (< 7%) of CD34+ HSPCs that expresses ELOVL2 in healthy adult bone marrow. This HSPC subset, along with CD79B-expressing lymphoid-committed cells, were almost completely absent in CD34+ cells isolated from elderly bone marrow samples. Together, these findings uncover new roles for lipid metabolism enzymes in the molecular regulation of cellular aging and immune cell function in mouse and human hematopoiesis. In addition, because systemic loss of ELOVL2 enzymatic activity resulted in downregulation of B cell genes that are also associated with lymphoproliferative neoplasms, this study sheds light on an intriguing metabolic pathway that could be leveraged in future studies as a novel therapeutic modality to target blood cancers or other age-related conditions involving the B cell lineage.
Collapse
Affiliation(s)
- Silvia Vicenzi
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Fangyuan Gao
- Center for Translational Vision Research, Departments of Physiology and Biophysics and Department of Ophthalmology, University of California, Irvine, CA, 92617, USA
| | - Parker Côté
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Joshua D Hartman
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Lara C Avsharian
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Ashni A Vora
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - R Grant Rowe
- Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, and Harvard Medical School, Boston, MA, 02115, USA
| | - Hojun Li
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
- Division of Hematology/Oncology, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, Departments of Physiology and Biophysics and Department of Ophthalmology, University of California, Irvine, CA, 92617, USA.
| | - Leslie A Crews
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA.
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Pan C, Wang K, Hong R, Wang X, Zhang Y, Fan Z, Shi Y, Liu T, Chen H. Chronic microcystin-leucine-arginine exposure induces osteoporosis by breaking the balance of osteoblasts and osteoclasts. ENVIRONMENTAL RESEARCH 2024; 263:120098. [PMID: 39366441 DOI: 10.1016/j.envres.2024.120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Microcystin-leucine-arginine (MC-LR) produced by cyanobacterial harmful algal blooms are hazardous materials. However, the toxicity and mechanisms of continuous exposure to MC-LR on the occurrence of osteoporosis remains poorly documented. In this study, to mimic the chronic influences of MC-LR on the bone tissues in humans, an animal model was constructed in which mice were treated with MC-LR through drinking water at an environmentally relevant level (1-30 μg/L) for 6 months. MC-LR was enriched in the skeletal system, leading to the destruction of bone microstructure, the decrease of bone trabecular number, the reduction of osteoblasts, the enhanced content of lipid droplets, and the activation of osteoclasts, which is the characteristic of osteoporosis. Herein, we revealed ferroptosis is a vital mechanism of osteoblast death in mouse models of MC-LR. MC-LR exposure activates AMPK/ULK1 signaling, further promotes ferritin selective autophagy, causes free iron release and lipid peroxidation deposition, and eventually leads to ferroptosis of osteoblasts. Importantly, the use of AMPK or ferroptosis inhibitors in vivo markedly reduced MC-LR-induced osteoblast death and impaired osteogenic differentiation. Interestingly, MC-LR exposure promotes iron uptake in bone marrow macrophages through the TF-TFR1 pathway, leading to its transformation to TRAP-positive pre-osteoclast cells, thereby promoting bone resorption. Overall, our data innovatively revealed the core mechanism of MC-LR-induced osteoporosis, providing the bi-directional regulation of MC-LR on osteoblast-osteoclast from the perspective of iron homeostasis imbalance.
Collapse
Affiliation(s)
- Chun Pan
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Kehan Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Runyang Hong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xinglong Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yao Zhang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhencheng Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujie Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Li H, Luo D, Xie W, Ye W, Chen J, Alberton P, Zhang M, Feng E, Docheva D, Lin D. Irisin reduces senile osteoporosis by inducing osteocyte mitophagy through Ampk activation. iScience 2024; 27:111042. [PMID: 39559753 PMCID: PMC11570468 DOI: 10.1016/j.isci.2024.111042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/04/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Irisin, an exercise-induced myokine, is known to be able to regulate bone metabolism. However, the underlying mechanisms regarding the effects of irisin on senile osteoporosis have not been fully elucidated. Here, we demonstrated that irisin can inhibit bone mass loss and bone microarchitecture alteration in senile osteoporosis mouse model. In addition, irisin has effects on bone remodeling that is in favor of bone formation. Remarkably, irisin induced autophagy in osteocytes demonstrated by increased LC3-positive osteocytes, and increased autophagy-related genes and proteins. In vitro analysis revealed that Irisin can prevent mitochondrial oxidative damage. Furthermore, irisin can obviously induce osteocyte mitophagy and increased phosphorylation of Ampk and Ulk1. Inhibition of Ampk signaling recapitulated the biological effect of irisin loss, accompanied by the markedly lower expression of Ulk1. Taken together, our findings show that irisin reduces age-related bone loss by inducing osteocyte mitophagy via Ampk-dependent activation of Ulk1.
Collapse
Affiliation(s)
- Honghan Li
- Department of Orthopaedic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, P.R. China
| | - Deqing Luo
- Department of Orthopaedics, the 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, P.R. China
| | - Wei Xie
- Department of Orthopaedics, the 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, P.R. China
| | - Wenbin Ye
- Department of Orthopaedic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, P.R. China
| | - Jinlong Chen
- Department of Orthopaedic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, P.R. China
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Mingzhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China
| | - Eryou Feng
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration Orthopaedic Hospital König-Ludwig-Haus & University of Wuerzburg, Wuerzburg, Germany
| | - Dasheng Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
7
|
Vicenzi S, Gao F, Côté P, Hartman JD, Avsharian LC, Vora AA, Rowe RG, Li H, Skowronska-Krawczyk D, Crews LA. Systemic deficits in lipid homeostasis promote aging-associated impairments in B cell progenitor development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.614999. [PMID: 39386685 PMCID: PMC11463619 DOI: 10.1101/2024.09.26.614999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Organismal aging has been associated with diverse metabolic and functional changes across tissues. Within the immune system, key features of physiological hematopoietic cell aging include increased fat deposition in the bone marrow, impaired hematopoietic stem and progenitor cell (HSPC) function, and a propensity towards myeloid differentiation. This shift in lineage bias can lead to pre-malignant bone marrow conditions such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenias of undetermined significance (CCUS), frequently setting the stage for subsequent development of age-related cancers in myeloid or lymphoid lineages. At the systemic as well as sub-cellular level, human aging has also been associated with diverse lipid alterations, such as decreased phospholipid membrane fluidity that arises as a result of increased saturated fatty acid (FA) accumulation and a decay in n-3 polyunsaturated fatty acid (PUFA) species by the age of 80 years, however the extent to which impaired FA metabolism contributes to hematopoietic aging is less clear. Here, we performed comprehensive multi-omics analyses and uncovered a role for a key PUFA biosynthesis gene, ELOVL2 , in mouse and human immune cell aging. Whole transcriptome RNA-sequencing studies of bone marrow from aged Elovl2 mutant (enzyme-deficient) mice compared with age-matched controls revealed global down-regulation in lymphoid cell markers and expression of genes involved specifically in B cell development. Flow cytometric analyses of immune cell markers confirmed an aging-associated loss of B cell markers that was exacerbated in the bone marrow of Elovl2 mutant mice and unveiled CD79B, a vital molecular regulator of lymphoid progenitor development from the pro-B to pre-B cell stage, as a putative surface biomarker of accelerated immune aging. Complementary lipidomic studies extended these findings to reveal select alterations in lipid species in aged and Elovl2 mutant mouse bone marrow samples, suggesting significant changes in the biophysical properties of cellular membranes. Furthermore, single cell RNA-seq analysis of human HSPCs across the spectrum of human development and aging uncovered a rare subpopulation (<7%) of CD34 + HSPCs that expresses ELOVL2 in healthy adult bone marrow. This HSPC subset, along with CD79B -expressing lymphoid-committed cells, were almost completely absent in CD34 + cells isolated from elderly (>60 years old) bone marrow samples. Together, these findings uncover new roles for lipid metabolism enzymes in the molecular regulation of cellular aging and immune cell function in mouse and human hematopoiesis. In addition, because systemic loss of ELOVL2 enzymatic activity resulted in down-regulation of B cell genes that are also associated with lymphoproliferative neoplasms, this study sheds light on an intriguing metabolic pathway that could be leveraged in future studies as a novel therapeutic modality to target blood cancers or other age-related conditions involving the B cell lineage.
Collapse
|
8
|
Li S, Ren W, Zheng J, Li S, Zhi K, Gao L. Role of O-linked N-acetylglucosamine protein modification in oxidative stress-induced autophagy: a novel target for bone remodeling. Cell Commun Signal 2024; 22:358. [PMID: 38987770 PMCID: PMC11238385 DOI: 10.1186/s12964-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic post-translational modification (PTM) involving the covalent binding of serine and/or threonine residues, which regulates bone cell homeostasis. Reactive oxygen species (ROS) are increased due to oxidative stress in various pathological contexts related to bone remodeling, such as osteoporosis, arthritis, and bone fracture. Autophagy serves as a scavenger for ROS within bone marrow-derived mesenchymal stem cells, osteoclasts, and osteoblasts. However, oxidative stress-induced autophagy is affected by the metabolic status, leading to unfavorable clinical outcomes. O-GlcNAcylation can regulate the autophagy process both directly and indirectly through oxidative stress-related signaling pathways, ultimately improving bone remodeling. The present interventions for the bone remodeling process often focus on promoting osteogenesis or inhibiting osteoclast absorption, ignoring the effect of PTM on the overall process of bone remodeling. This review explores how O-GlcNAcylation synergizes with autophagy to exert multiple regulatory effects on bone remodeling under oxidative stress stimulation, indicating the application of O-GlcNAcylation as a new molecular target in the field of bone remodeling.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
9
|
Zhang L, Guan Q, Wang Z, Feng J, Zou J, Gao B. Consequences of Aging on Bone. Aging Dis 2023; 15:2417-2452. [PMID: 38029404 PMCID: PMC11567267 DOI: 10.14336/ad.2023.1115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
With the aging of the global population, the incidence of musculoskeletal diseases has been increasing, seriously affecting people's health. As people age, the microenvironment within skeleton favors bone resorption and inhibits bone formation, accompanied by bone marrow fat accumulation and multiple cellular senescence. Specifically, skeletal stem/stromal cells (SSCs) during aging tend to undergo adipogenesis rather than osteogenesis. Meanwhile, osteoblasts, as well as osteocytes, showed increased apoptosis, decreased quantity, and multiple functional limitations including impaired mechanical sensing, intercellular modulation, and exosome secretion. Also, the bone resorption function of macrophage-lineage cells (including osteoclasts and preosteoclasts) was significantly enhanced, as well as impaired vascularization and innervation. In this study, we systematically reviewed the effect of aging on bone and the within microenvironment (including skeletal cells as well as their intracellular structure variations, vascular structures, innervation, marrow fat distribution, and lymphatic system) caused by aging, and mechanisms of osteoimmune regulation of the bone environment in the aging state, and the causal relationship with multiple musculoskeletal diseases in addition with their potential therapeutic strategy.
Collapse
Affiliation(s)
- Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|